Docstoc

TIS

Document Sample
TIS Powered By Docstoc
					            NuFact’02




Summary of
 NuFact’02
 Rob Edgecock
CERN-PS & RAL
                Outline

• Introduction to the Neutrino Factory
• NuFact School
• NuFact’02
• The machine and R&D
• Neutrino Oscillations
• Conclusions

      If you have questions, please
                interrupt
             Introduction




CERN layout: 2.2 GeV protons; 50 GeV muons
                     Introduction

NF capable of producing intense beams of
  Neutrinos: long baseline neutrino oscillations
             (only future project guaranteed physics BSM)
  Neutrinos: short baseline, high precision physics studies
  Muons:       precision measurements, MuSR, MuCF, etc
  Kaons:       rare decays, etc

Test bed for
  High power proton projects: neutron spallation, waste
                              transmutation, etc
  Muon collider: particularly cooling
                        NuFact School
1st International Neutrino Factory Summer Institute

 • 23 students, 12 lecturers (and a cat)
 • Aim: to provide an introduction to NuFact




                                                                        The
                                                                     Cosener’s
                                                                    House, near
                                                                      to RAL




  See cern.ch/mellis/physics/nufact/nufact_school.html for photos
                   NuFact School

• Programme:

      Physics of Massive Neutrinos:   Boris Kayser
      Basic Accelerator Physics:      Ted Wilson
      Neutrino Factory:               Bennett/Geer/Kaplan/
                                      Mori/Palmer/Prior
      Slow Muons:                     Yoshi Kuno
      Neutrino Detectors:
      Harris/McFarland          Neutrinos in Astrophysics:
      Bob Bingham
• Very positive response from students (the cat, however,
                                        was only interested
                                        in MICE)
• Second school is planned before NuFact’03
Introduction to NuFact’02
                                    Introduction

• At Imperial College, London
• 4th in the series: Lyon, Monterey CA, Tsukuba
• 161 participants, 14 from CERN (cf 23 in 2000) – (no
cats)
• Programme:
             Monday Jul 1   Tuesday Jul 2   Wednesday Jul 3   Thursday Jul 4   Friday Jul 5   Saturday Jul 6

     9:00                                        WG                WG              WG
               Plenary          WGs             reports          reports         reports        Summaries

     10:30      Coffee         Coffee            Coffee           Coffee          Coffee          Coffee
    11:00                                                                                       Summaries
               Plenary          WGs              WGs              WGs            Plenary
                                                                                                  Close

     13:00      Lunch          Lunch             Lunch            Lunch           Lunch
    14:00
               Plenary          WGs              WGs              WGs            Plenary

     15:30      Coffee         Coffee            Coffee           Coffee          Coffee
    16:00
               Plenary          WGs              WGs              WGs            Plenary

    19:00     Reception                                         Banquet
                         Introduction
• Four working groups:

  (1) Machine                  - B.Autin (CERN), R.Fernow (BNL),
                                 S.Machida (KEK)

  (2) Neutrino oscillations    - D.Harris (FNAL), S.King (Soton),
                                 O.Yasuda (TMU)

  (3) Non-oscillation          - A.Kataev (Moscow), S.Kumano
      neutrino physics           (SAGA), K.McFarland (Rochester)

  (4) Non-neutrino science     - K.Jungmann (KVI), J-M.Poutissou
                                 (TRIUMF), K.Yoshimura (KEK)
• 49 Plenary talks, 106 parallel talks
• ~85 hours of talks!
                   Social events…..

• Reception at V&A Silver Gallery
• Banquet in Flight Gallery,
      Science Museum
• Attended by
  Lord Sainsbury – Minister of
                   Science
  Sir Richard Sykes – Rector of IC
  Prof Ian Halliday – CEO PPARC

• Positive sign (hopefully) for UK
              funding
             The Machine

• Proton drivers
• Targetry
• Particle production measurements
• RF manipulation
• Cooling
• Muon acceleration
• -beams
• Emphasize changes since NuFact’01
                       Proton Drivers

• Range of energies:
      2.2 to 50 GeV
• Some multiple purpose:
      PP + other areas
• Some multi-functional:
      superbeams, -beams,
      NF
• But…..
      1-4 MW,
      ~ns bunch length
                   Proton Drivers

• For CERN, two possibilities:




           SPL



                    Wyss
                 Proton Drivers


30 GeV Rapid
   Cycling
Synchrotron in
the ISR tunnel
                  Proton Drivers
Cost comparison
            PDAC             RCS
            MCHF             MCHF
                                                 Schönauer
   SPL       350    Linac     110
Accumulator   63 Booster RCS   88
Compressor    50    Driver    233
  TOTAL      463   TOTAL      431

    SPL:   driver for a conventional superbeam to Frejus
           driver for -beams
           R&D already started with CEA
    RCS: replacement for PS
                   Others……JHF

                      (0.77MW)
  JHF Facility
               JAERI@Tokai-mura
               (60km N.E. of KEK)     Super Conducting
                                      magnet for n beam line
Construction
2001~2006
(approved)




                                         Near n detectors
                                         @280m and
                                         @~2km
                         1021POT(130day)≡ “1 year”
                         JHF


        Plan to start in 2007
                                                Kobayashi

          Kamioka ~1GeV n beam
                                     JAERI
Super-K: 22.5 kt                  (Tokaimura)

Hyper-K: 1000 kt                   0.77MW 50 GeV PS
                                   4MW 50 GeV PS
                                  ( conventional n beam)

              Phase-I (0.77MW + Super-Kamiokande)
              Phase-II (4MW+Hyper-K) ~ Phase-I  200
                            JHF Superbeam
  “Conventional” neutrino beam                             Kobayashi
                                         Decay Pipe
                            Focusing
 Proton           Target
                            Devices              m
 Beam
                                p,K                           nm
  “Off-axis”
                              Far Det.                Beam Dump
     Horns Decay Pipe
Target                  q
             JHF Neutrino Factory


                                    Neuffer




Neutrino Factory based on FFAGs:
Fixed Field Alternating Gradient
synchrotrons
                                 Others…..

• Upgrade to the AGS – BNL to Homestake/                                    Kahn
                       WIPP superbeam

                  See hep-ex/0205040

          Machine            Power   Proton/Pulse   Repetition Rate   Protons/SSC year
       Current AGS         0.17 MW     6  1013       0.625 Hz           3.75  1020
     AGS Proton Driver      1 MW       1  1014         2.5 Hz            2.5  1021
   Japan Hadron Facility   0.77 MW    3.3  1014       0.29 Hz            9.6  1020
   Super AGS Prot Driver    4 MW       2  1014         5.0 Hz            1.0  1022


• ISIS upgrade:
                                                                            Rees
      New ring, R=78m; ISIS R=26m
      3 GeV at 50Hz – 1MW neutron spallation source
      8 GeV at 50/3 Hz – 1MW R&D for a Neutrino Factory
      Same RF, modified magnet P/S for 8 GeV
      Possibility of developing to 4MW
                         Targetry
   Many difficulties: enormous power density
                                 lifetime problems
                      pion capture

                                    Stationary target:
  Replace target between
         bunches:
Liquid mercury jet or rotating
        solid target


     Proposed rotating
     tantalum target
     ring

                                 Sievers

  Densham
                          Liquid Hg Tests

     Tests with a
    proton beam at
         BNL.


• Proton power 16kW in 100ns
         Spot size 3.2 x 1.6 mm
• Hg jet - 1cm diameter; 3m/s         Kirk




         0.0ms       0.5ms        1.2ms      1.4ms   2.0ms   3.0ms

                  Dispersal velocity ~10m/s, delay ~40ms
                Liquid Hg Tests

Tests with a 20T magnet at Grenoble.           Fabich/Lettry

                                   Mercury jet (v=15 m/s)




                         B = 0T                             B = 18T




                   Jet deflection
                   Reduction in velocity
Pion Capture: Solenoids
                           Kirk




 20T                      1.25T
            Pion Capture: Horn



                     Current of 300 kA


               p
  Protons                          To decay channel

                                    B=0
Hg target          B1/R




                                            Gilardoni
                                    Pion Capture: Horn

                                                                                 Inner conductor
                                 1500




                                    600 kA (outer horn)
                   1000




                                                                         Ø2000
                                             Ø800
                            BEAM AXIS
Ø80




      300 kA (inner horn)




                                                          Not to scale


                Tests of inner horn
             prototype delayed due to                                                 Gilardoni
                budget constraints
 Particle Production Experiments


Raja
                                                      Ellis




               Main Injector Particle Production Experiment
  The Hadron Production Experiment
                      5-120 GeV, FNAL, 2002-2004
     2-15 GeV, East Hall, CERN
                Phase Rotation




Beam after drift plus            Beam after ~200MHz rf rotation;
adiabatic buncher –              Beam is formed into
Beam is formed into              string of equal-energy bunches;
string of ~ 200MHz bunches       matched to cooling rf acceptance

                             Neuffer
                  Phase Rotation

Many ideas:

    • Induction linac                        Studyii

    • Drift and bunching                     Neuffer

    • Phase rotation in an FFAG               Sato

    • Bunch to bucket at 88MHz               Hanke

    • Magnetic compression in AG chicane    Pasternak

    • Weak focussing FFAG chicane          Rees/Harold
                           Muon Frontend Chicane

                                               Pion-muon decay channel
             Muon Front Ends


Decay      44 MHz      44 MHz       44 MHz    88 MHz Cooling
Region     Rotation     Cooling      Accel’n   & Acceleration
.2 GeV     .2 GeV       .2 GeV       .28 GeV   .4 GeV
                                               286.0 m


Decay     88 MHz     88 Mhz
Region    Rotation    Acceleration
.19 GeV   .19 GeV     .4 GeV
                      132.7 m


Decay     Reverse     88 MHz
Region    Rotation    Acceleration
.19 GeV   .19 GeV     .4 GeV
                      128.0 m



                                                                         88 MHz
                            Rees/Harold                                  muon linac
Muon Frontend Chicane
       Muon Frontend Chicane


              Solenoid                        Solenoid
              channel                          channel
            Es=190MeV                        Es=190MeV



              RF phase                        Inverse
               rotation                       rotation
               channel                        channel
            Es=190MeV                        Es=190MeV



               Linac                            Linac
            Es=400MeV                        Es=400MeV
            (Transmission
               =77%)



Transmission comparable to 44/88MHz scheme
                         Cooling
• Cooling  >10 increase in muon flux
• Existing techniques can’t be used  ionsation cooling
                                               beam in




• Cooling is delicate balance:

      d , N  N dE  x 13.6MeV/c 
                                    2

                 
        dz    E dz     2  3 Emm LR
                                                beam out
                    Cooling

• Cooling cells are complex




• R&D essential: MuCool, MuScat and MICE

                                           McKigney
                        Cooling

• Main change: Rings!

                             Main advantages:
                                   shorter
                                   longitudinal cooling




         Balbekov                      Palmer
                  More Rings




                               RFOFO Ring
                                 Cooler

Quadrupole Ring
    Cooler

     Cline
                                  Palmer
                       Performance

 Merit = 6 x trans.

But…..

 Insertion  110
 RF windows
 Wedge absorber
 Injection kicker




         Palmer
Performance
                        MuScat
• Measurement of muon multiple scattering
                                               Murray
• Input for cooling simulations and MICE
• First (technical) run at TRIUMF summer 2000, M11 beam




   • Run2: Oct 2002/Apr 2003
   • New people welcome!
                            MICE

• Muon Ionisation Cooling Experiment
• Collaboration of 40 institutes from Europe, Japan, US
• LOI recently reviewed by international panel at RAL
• Enthusiastically supported MICE
• Asked for a proposal by end 2002             Edgecock




• Construction:    2002-2004
• First beam:      2004/5
• New collaborators welcome!
                     MICE
               Muon Acceleration

• Needs to be fast – muon lifetime
• Needs to be a reasonable cost – not linacs all the way
• Baseline: Recirculating Linear Accelerators




                                                Bogacz
   • Other possibilities……
                          MICE
                          FFAGs
• Fixed Field Alternating Gradient  magnets not ramped
• Cheaper/faster RLAs/RCSs
• Large momentum acceptance
• Large transverse acceptance
       less cooling required!




                                            B ~ rk
                                     Johnstone/Machida/Neuffer
                           MICE
                           FFAGs

  Proof Of Principle
machine built and tested
      in Japan.
50keV to 500keV in 1ms.
  150MeV FFAG under
     construction.


But…..

 • Injection/extraction
 • Low frequency 6.5MHz
   high gradient
                         MICE
                         VRCS

   • Fastest existing RCS: ISIS at 50Hz  20ms
   • Proposal: accelerate in 58ms  4.3kHz
   • Do it 15 times a second
                                                 Summers
For 2  20 GeV:
            Ring – 350m circumference
            RF – 200 MHz, 15 MV/m, possibly s/c
            Magnets – 100 micron laminations of thick
                       grain oriented silicon steel
                   Eddy current losses: 45MW  24kW
                   Skin depth: 94 microns
                   Power supplies: 115kV x 81kA
                   Copper heating: 600 + 800W

   • Also proposed:    20  180 GeV
                      180  1600 GeV
                            MICE
                        Storage Ring

• Straights should be
  large fraction
• Should point at two far
  detectors
• Come in various shapes



 Fraction
of decays
   in a
 straight




                            Length straights/length arcs
                            MICE
                          -Beams

• Produce radioactive beta emitters with T½~1s
• Accelerate and store:

                              Lindroos/Wenander/Zucchelli
       SPL


   ISOL Target
                    Linac     Cyclotron     Storage Ring
     and ECR




          PS         SPS       Decay ring/Buncher
                           MICE
                         -Beams

 n e Source:       6He
                               n e Source:       18Ne

                  T½=0.81s                      T½=1.67s
               Elab= 580 MeV                 Elab= 930 MeV
                  5 x 1013/s                      1012/s

• Single flavour
• Known intensity & energy spectrum
• Focussed
• Low energy
• Complementary to superbeams: same baseline/detector

      But…… not cheap, needs R&D, decays losses a
            problem
                   Neutrino Oscillations

   Mixing described by               n   Ui n i
                                             i

For 3-flavour eigenstates U is Maki-Nakagawa-Sakata (MNS):

                 c13c12                     c13s12            s13e  i 
                                                                        
    U    c23s12  s13 s23c12ei    c23c12  s13s23s12ei     c13s23 
         s s  s c c ei             s23c12  s13c23s12ei   c13c23 
         23 12 13 23 12                                                 

   6 parameters: 3 mixing angles                    - θ23,θ12 and θ13
                      CP-violation angle            -δ
                      2 mass differences            - Δm223 and Δm212

                                                                       m23 L 
   Transition probability: P e  n m   sin 2 2q13 sin 2 q 23 sin 2 
                                                                          2
                            n                                          4E    
                                                                          n 
                     Neutrino Oscillations
Or more precisely (in vacuum)
                          cyclic                                 mij L 
                                                                    2

   P(n e  n m )  4  Re(U eiU miU ejU mj ) sin 2 
                                             *   *                        
                                                                 4E 
                           ( ij )                                             Kimura
                           cyclic                               mij L 
                                                                    2

                       2  Im(U eiU miU ejU mj ) sin 
                                              *    *                     
                                                                2E 
                             ( ij )                                     
                                                              2        ~
                                                   m13 
                                                         2
                                                                     B L 
  P(n e (n e )  n m (n m ))  s23 sin 2 2q13  ~  sin 2 
                                    2
                                                   2 EB            2 
                                                                            
                                                                           Mena
  In matter                                       m12  2  AL 
                                                       2
                                 c23 sin 2 2q12 
                                    2
                                                  2 EA  sin  2 
                                                          
                                                                     
                                                           ~
                              ~ m12 m13      AL   B L            m13 L 
                                   2     2                                  2
                             J         ~ sin      sin     
                                                          2  cos    4 E  
                                2 EA 2 EB  2                              
                ~                                                     m13
                J  c13 sin 2q12 sin 2q 23 sin 2q13
                                                                         2
                                                             ~
    where                                                    B  A 
                A  2G F ne                                            2E
                    What don’t we know?

• Which solar solution is correct (just)
• Atmospheric params (accurately)
• q13 (at all)
•  (“ “)
• Sign of m223 (“ “)
• Whether LSND is correct

“Holy grail” - 
                matter-antimatter
                leptogenesis

            Ibarra/Morozumi/Pluemacher

      (Davdison & Ibarra, hep-ph/0206304:
        important over much of parameter   Choubey
                     space)
                     What about q13 and ?
               Ep    Power            〈E〉       L       Mdet     nmCC        Ne
                     (MW)     Beam
             (GeV)                   (GeV)    (km)      (kt)     (/yr)      @peak
CNGS            400 0.3        WB    18          732       ~2    ~5,000     0.8%
K2K              12 0.005      WB    1.3         250      22.5       ~50     ~1%
MINOS(LE)       120 0.41       WB    3.5         730       5.4   ~2,500     1.2%
JHF-SK           50 0.75       OA    0.7         295      22.5   ~3,000     0.2%
NuMI-OA         120 0.3        OA    ~2          730?     20?    ~1,000?    0.5%
AGS??           28 1.3       WB/OA ~1        2,500?    1,000?   ~1,000?
CNGS-OA         400 0.3        OA    0.8      ~1200     1,000?       ~400   0.2%
SJHF-HK          50 4          OA    0.7         295    1,000 ~600,000      0.2%
SNuMI-OA        120 1.2        OA    ~2          730?     20?    ~4,000?    0.5%
SPL-Frejus      2.2 4          WB    0.26        130 40(400)      650(0)    0.4%
-Beam          2.2 0.1        WB    ~1          130      400
n-Factory    2.2-50 4          WB    ~10-30   3000/      50*2
                                               7000

       Near term: $100-200M   Mid-term: >$300M     Long term: >$1B     Kobayashi
                                                                         Harris
                     Comparison

Huber                     90% CL




        JHF-HK = 4MW, 1000kT; 6 years n , 2 years n
        NuFact-II = 5.3 x1020 useful m/yr, 50kT; 4 years m
                 Comparison
Zucchelli




                      (M. Mezzetto, NNN02)




            SB+BB = 400kT; Nufact = 2x40kT
                                  Degeneracies

 Degeneracy: 2 or more parameter sets fit the same data
 Three types, all of which can effect measurement of  &
 q13:
(1)    ,q13    ' ,q '13 
(2)   m23   m23
        2        2


               p                     p
(3)   q 23         q 23 , q 23 
               2                     4

      (1) 

        P en m q '13 ,  '  P en m q13 ,  
         n                      n

        P en m q '13 ,  '  P en m q13 ,  
         n                      n
                                                   q13=8o, =-90o, 0o, 90o, 180o
                        Degeneracies

             ' p  ,
    q13
  large                                                m13 L  m12 L 
                                                          2         2
            q '13  q13  cos  cot q 23 sin 2q12 cot 
                                                       4 E  4 E 
                                                                       
                                                                      
NB depends on L/E  possible solutions


 • Two baselines and E-dependence at NF                        Mena

 • NF + SB combination                                     Huber/Mena

 • Two off-axis detectors                                   Whisnant

 • nen as well as nenm                                     Meloni
            Degeneracies

  Mena




NuFact at                    NuFact at
 2810km                       732km
    +                large       +
  SB at                        SB at
 130KM                        130KM




                     small
                     Comments……
• Neutrino Factory is still the best
• We must continue with the R&D!
• Resources are scarce:
      Cannot do everything
      Must build complementary programme          Harris/Mezzetto
            based on physics
• Degeneracy:
      Better SB + large (water) detector than        Mezzetto
      two NF detectors – SN, proton decay, etc
• Weighing difference proposals will be painful
• Delicate balance:
       keep n growing                                  Harris
       prevent fragmentation
                            LSND
n m n e
 m+ decay at rest: 87.9  22.4  6.0 (3.8)

n m n e
p+ decay in flight: 8.1  12.2  1.7 (0.7)

     n s



   Coney
                               LSND

        Valle

Analysis of osc. data 
(3+1) ruled out at 4.8
(2+2)   “       “    “ 2.5

                                 (3+1)         2+2
Other possibilities?
                                          m3
• CPT violation:
  Not yet excluded by data.
  MiniBooNE:        n m n e
                                m3        m2
                    n m n e    m2        m1

                                      n        n
                                m1
                       LSND

• Lepton flavour violating muon decay        Babu


      m  e  n e  n i , i  e, m ,
              


   Branching ratio: (1.5 – 3) x 10-3
   Not yet excluded.
   MiniBooNE: uses p+ decays  would see nothing!


  Whatever MiniBooNE sees, LSND is still alive!
                      Conclusions

• NuFact’02: very enjoyable and well organised
• Nice location (despite the weather)
• Good attendance
• Lots of new ideas
• NF is still the ultimate LBL neutrino oscillation facility
• Very important R&D continues
• Need a complementary oscillation programme
• NuFact’03……..
                      NuFact’03


  NuFact 03
    5th International
 Workshop on Neutrino
Factories & Superbeams
  Columbia University
      New York

   5 – 11 June 2003
     NuFact’03

         Chairs
R. Fernow & M. Shaevitz

Local Organizing Group
    J. S. Berg (BNL)
 J. Conrad (Columbia)
 L. Coney (Columbia)
    S. Geer (FNAL)
    D. Harris (FNAL)
 J. Monroe (Columbia)
     A. Para (FNAL)

				
DOCUMENT INFO
Shared By:
Categories:
Tags:
Stats:
views:9
posted:9/28/2011
language:English
pages:63