Chapter 04 - ElsevierDirect by yaoyufang


									 Figure 4.1 Sexual behavior and ultimately reproduction are mediated by interactions between environmental factors, the nervous system (brain), and the
 hormonal system. Gonadotropin-releasing hormone (GnRH) stimulates the pituitary to produce gonadotropins (lutenizing hormone and follicle-stimulating
 hormone), which, in turn, stimulate testes or ovaries to produce mature gametes and androgens. Androgens not only effect development of secondary
 sexual structures but also feed back on sexual behavior and the brain.

Chapter 04                                                                                                                                       FIG 1
 Figure 4.2 Spermatogenesis. Diagrammatic representation of a cross section through a seminiferous tubule in a reptile testis.

Chapter 04                                                                                                                       FIG 2
 Figure 4.3 Structure of spermatozoan of a hylid frog. Only the base of the tail is shown, and the head of the sperm has been shortened. Redrawn from
 Costa et al., 2004.

Chapter 04                                                                                                                                        FIG 3
 Figure 4.4 Development of eggs in amphibians and reptiles. Fertilization occurs internally in all reptiles after eggs are ovulated into the oviducts.
 Fertilization occurs externally in most amphibians. Corpora lutea are often prominent in reptiles but rare in amphibians. Following production of the clutch,
 the process is repeated as unused ovarian follicles mobilize lipids for production of the subsequent clutch. Subsequent clutches may be produced within
 the same season or in the following season, depending upon species and the environment.

Chapter 04                                                                                                                                             FIG 4
 Figure 4.5 Oogenesis. Cross section through the ovary of the skink Carlia bicarinata, showing a corpus luteum (left) and a maturing follicle (right) with its
 ovum. Abbreviations: CL, corpus luteum; F, follicular cells; Tf, theca folliculi; Y, yolk; Zp, zona pellucida. (D. Schmidt)

Chapter 04                                                                                                                                              FIG 5
 Figure 4.6 Comparison of anatomy of the anamniotic amphibian egg and the amniotic reptile egg.

Chapter 04                                                                                        FIG 6
 Figure 4.7 Wall of the oviduct of the lizard Sceloporus woodi during shell production. Two proteinaceous fibers are emerging from the endometrial glands
 of the oviduct. Scale bar = 5 μm. Adapted from Palmer et al., 1993.

Chapter 04                                                                                                                                         FIG 7
 Figure 4.8 Positions used by frogs during amplexus. Adapted from Duellman and Trueb, 1986.

Chapter 04                                                                                    FIG 8
 Figure 4.9 Diagrammatic representations of a spermatophore and a single spermatozoan of the salamander Ambystoma texanum. Sperm are located on
 the periphery of the cap of the spermatophore; the sperm heads point outward and tails are directed inward. Adapted from Kardong, 1992.

Chapter 04                                                                                                                               FIG 9
 Figure 4.10 Nest of the Gladiator frog, Hypsiboas boans, from western Brazil. (J. P. Caldwell)

Chapter 04                                                                                        FIG 10
 Figure 4.11 Nest of the saltwater crocodile (Crocodylus porosus). (R. Whitaker)

Chapter 04                                                                         FIG 11
 Figure 4.12 Indian python (Python molurus) brooding clutch of eggs. (M. T. O'Shea)

Chapter 04                                                                            FIG 12
 Figure 4.13 Effects of temperature on incubation period and developmental rate in eggs of the Australian skink Bassiana duperreryi. Developmental rate is
 the inverse of the observed incubation period divided by the shortest incubation period in the laboratory. Adapted from Shine and Harlow, 1996.

Chapter 04                                                                                                                                        FIG 13
 Figure 4.14 Spatial arrangement of hatchlings of Chrysemys picta in the nest during winter. From Breitenbach et al., 1984.

Chapter 04                                                                                                                    FIG 14
 Figure 4.15 Sex ratios for four tortoise species (Gopherus polyphemus, G. agassizii, Testudo graeca, T. hermanni) raised at different incubation
 temperatures showing that males are produced at low developmental temperatures and females are produced at high developmental temperatures.
 Adapted from Burke et al., 1996.

Chapter 04                                                                                                                                          FIG 15
 Figure 4.16 Genetic and environmental factors affect embryo and hatchling phenotypes and can affect the sex of offspring in species that have
 temperature-dependent sex determination (TSD). Maternal effects cut across genetic and environmental effects, whereas paternal effects are only genetic.
 Adapted from Valenzuela, 2004.

Chapter 04                                                                                                                                       FIG 16
 Figure 4.17 Evolutionary hypotheses to explain TSD center on sex ratios, maternal effects, fecundity, and survival, none of which is mutually exclusive.
 Most hypotheses can be categorized by the fitness component that they address. Adapted from Valenzuela, 2004.

Chapter 04                                                                                                                                           FIG 17
 Figure 4.18 Offspring sex ratios differ in offspring produced in the first clutch of the season for Jacky Dragons in Australia in response to differing
 operational sex ratios (OSR) in experimental arenas of the mother. The response is exactly the opposite from what theory predicts. In successive clutches
 (2–3) sex ratios did not differ as a result of varying OSR, but the sex ratio of hatchlings was biased toward females. Adapted from Warner and Shine, 2007.

Chapter 04                                                                                                                                          FIG 18
 Figure 4.19 Annual variation in the trade-off between number of eggs and size of eggs in Lacerta agilis. The influence of body size on clutch size has been
 removed by expressing clutch size as residuals from the common regression. Adapted from Olsson and Shine, 1997.

Chapter 04                                                                                                                                          FIG 19
 Figure 4.20 Species and populations of Sceloporus lizards with variable clutch size have relatively massive clutches of eggs at any given body size when
 compared with Anolis lizards that have fixed clutch sizes of a single egg. In addition, clutch mass increases linearly with body size in Anolis but
 exponentially in Sceloporus. Adapted from Andrews and Rand, 1974. Refer to the original paper for species identifications.

Chapter 04                                                                                                                                         FIG 20
 Figure 4.21 Variation in the size of the pelvic opening of turtles and width of eggs associated with increasing body size in three species of emydid turtles.
 Adapted from Congdon and Gibbons, 1987.

Chapter 04                                                                                                                                              FIG 21
 Figure 4.22 Schematic diagrams of sex steroid production in relation to gametogenic cycle of a spring-breeding temperate-zone reptile. Steroid levels
 match the peaks of gametogenesis; androgen production begins simultaneously with spermiogenesis and continues until the testes regress; estrogen
 production occurs during final maturation of ovarian follicles, stopping at their maturation and ovulation. Corpora lutea produce progesterone, which
 continues while ova remain in the oviducts; production declines and corpora lutea degenerate with egg-laying, but in viviparous taxa, progesterone is
 produced throughout pregnancy. Adapted from Whittier and Crews, 1987.

Chapter 04                                                                                                                                          FIG 22
 Figure 4.23 Hybridogenesis in the frog Pelophylax [Rana] esculenta. Two general breeding systems (LE and RE) exist involving sexual and unisexual
 species, with considerable variation within each. At three localities in Denmark, southern Sweden, and northern Germany, all-hybrid populations of P.
 esculenta occur in the absence of sexual species. Because the male-determining "y" factor is on the L genome, hybridization can and does produce male
 hybrids. In the RE system, male hybrids (LyRx) are more successful than female hybrids (LxRx) in reproducing with P. ridibunda, resulting in female
 hybrids being less common. Hybrid triploids are produced in some populations when a P. lessonae male (LL) fertilizes a P. esculenta (LR) egg.

Chapter 04                                                                                                                                      FIG 23
 Figure 4.24 The cost (hybrid load) to hybridogenesis in Pelophylax [Rana] esculenta is high, with about 63% of offspring produced in all-hybrid populations
 dying before or during metamorphosis (Christiansen et al., 2005). Aneuploidy occurs when the ploidy level is not a multiple of the haploid number of
 chromosomes for the species.

Chapter 04                                                                                                                                          FIG 24
 Figure 4.25 Four sexual species of Ambystoma from which unisexual Ambystoma"steal" genomes. From left to right, A. jeffersonianum, A. tigrinum, A.
 texanum, and A. laterale. (J. P. Bogart).

Chapter 04                                                                                                                                      FIG 25
 Figure 4.26 Kleptogenesis occurs in salamanders of the Ambystoma laterale–jeffersonianum complex. mtDNA has persisted unchanged since the hybrid
 origin of unisexual populations in the Pliocene, but unisexuals pick up and use genomes of sexual species each time they breed yet do not pass those
 genomes on from generation to generation. In effect, they are "stealing" genes adapted to local conditions from sexual males.

Chapter 04                                                                                                                                     FIG 26
 Figure 4.27 Skin-graft test for genetic similarity in the unisexual Aspidoscelis uniparens (left) and the bisexual A. tigris (right). Because of the clonal nature
 of A. uniparens, all 9 grafts were accepted; in contrast, all 10 grafts were rejected in A. tigris. Adapted from Cuellar, 1976.

Chapter 04                                                                                                                                                 FIG 27
 Figure 4.28 Genealogy of the parthenogenetic teiid and gymnophthalmid lizards. The lines originating on species names denote the parents that
 hybridized to create the parthenoforms/parthenogens (black circles). In many cases, a single hybridization event produced diploid parthenoforms, in others,
 a single hybridization produced triploid parthenoforms, and in yet others, backcrosses between a parthenoforms and a sexual species produced triploid
 parthenoforms. Parthenogenesis has arisen independently in the Teioidea multiple times. Adapted from Reeder et al., 2002.

Chapter 04                                                                                                                                          FIG 28
 Figure 4.29 Relationship between hormone production, follicle development, and behavior in parthenogenetic whiptail lizards (Aspidoscelis) during
 pseudocopulation. Adapted from Crews and Moore, 1993.

Chapter 04                                                                                                                                           FIG 29
 Figure 4.30 Hypothetical growth rates for populations of parthenogenetic and sexually reproducing Aspidoscelis based on laboratory data on A. exsanguis
 and assuming no mortality. The starting point on the graph represents hatching of one egg. Because 50% (males) of the sexually reproducing species do
 not produce eggs, population size of the parthenogenetic population is more than double that of the sexual species after only 3 years. Adapted from Cole,

Chapter 04                                                                                                                                         FIG 30
 Figure 4.31 Age distribution patterns of a snake, lizard, and tortoise population. Point-in-time patterns differ between a moderate-lived snake, Agkistrodon
 contortrix; a short-lived lizard, Basiliscus basiliscus; and a long-lived tortoise, Geochelone gigantea. The bars denote the percent (of total population) of
 males or females present in each age class; open bars, unsexed individuals; shaded bars, females; solid bars, males. Adapted from Vial et al., 1977; Van
 Devender, 1982; and Bourn and Coe, 1978, respectively.

Chapter 04                                                                                                                                             FIG 31
 Figure 4.32 Top: Hypothetical survivorship curves for animal populations (see text). Bottom: Representative survivorship curves for amphibians and
 reptiles with short life spans (left) and long life spans (right). Although the lower graphs are superficially similar, note the great difference in age scale.
 Data from the following: Amphibians—Pj, Hairston, 1983; Rc, Briggs and Storm, 1970; Reptiles—Cc, Brown and Parker, 1984; Ts, Frazer et al., 1990; Us,
 Tinkle, 1967.

Chapter 04                                                                                                                                               FIG 32
 Figure 4.33 Prim diagram showing axes of variation in life history traits of lizards. Adapted from Dunham et al., 1988, with taxonomy for the Iguania

Chapter 04                                                                                                                                               FIG 33
 Figure 4.34 Prim diagram showing axes of variation in life history traits of snakes. Only three snake families are included, so the analysis must be
 considered preliminary. Nevertheless, coadapted sets of life history traits appear evident. Adapted from Dunham et al., 1988, with errors corrected.

Chapter 04                                                                                                                                              FIG 34

To top