lElectrical and Computer Engineering _ECE_

Document Sample
lElectrical and Computer Engineering _ECE_ Powered By Docstoc
					                                                       Bang-Sup Song, Ph.D., Charles Lee Powell Endowed
   Electrical and

                                                          Chair in Wireless Communications                      The Undergraduate Programs
   Computer                                            David Sworder, Ph.D., Associate Dean, OGSR
                                                       Mohan Trivedi, Ph.D.                                         The Department of Electrical and Computer

   Engineering (ECE)                                   Charles W. Tu, Ph.D., Chair
                                                       Alexander Vardy, Ph.D.
                                                                                                                Engineering offers undergraduate programs lead-
                                                                                                                ing to the B.S. degree in electrical engineering,
                                                       Andrew J. Viterbi, Ph.D., Emeritus (not in-residence)    engineering physics, and computer engineer-
                                                       Harry H. Wieder, Ph.D., Research Professor-              ing. Each of these programs can be tailored to
Undergraduate Affairs, Room 2705
                                                          in-Residence                                          provide preparation for graduate study or
Graduate Affairs, Room 2718
                                                       Jack K. Wolf, Ph.D., Stephen O. Rice Professor of        employment in a wide range of fields.
Engineering Building Unit 1, Warren College
                                                          Electrical and Computer Engineering                       The Electrical Engineering Program has a com-
                                                       (Endowed Chair)                                          mon lower-division and a very flexible structure in
Professors                                             Edward T. Yu, Ph.D.                                      the upper-division. After the lower-division core, all
                                                       Paul Yu, Ph.D.                                           students take six breadth courses during the junior
Anthony S. Acampora, Ph.D.
                                                       Kenneth A. Zeger, Ph.D.                                  year.They must then satisfy a depth requirement
Victor C. Anderson, Ph.D., Emeritus (not in-
                                                                                                                which can be met with five courses focused on
    residence)                                         Associate Professors
                                                                                                                some speciality, and a design requirement of at
Peter M. Asbeck, Ph.D.
                                                       Paul Chau, Ph.D.                                         least one project course.The remainder of the pro-
H. Neal Bertram, Ph.D., CMRR Endowed Chair II
                                                       Pamela C. Cosman, Ph.D.                                  gram consists of six electives which may range as
William S. C. Chang, Ph.D., Research Professor
                                                       Sujit Dey, Ph.D.                                         widely or as narrowly as needed.The Electrical
William A. Coles, Ph.D.
                                                       Ian Galton, Ph.D.                                        Engineering Program has been accredited by the
Rene L. Cruz, Ph.D.
Sadik C. Esener, Ph.D.                                 Clark C. Guest, Ph.D.                                    Accreditation Board of Engineering and Techno-
Shaya Fainman, Ph.D.                                   George J. Lewak, Ph.D., Emeritus (not in-residence)      logy (ABET).
Jules A. Fejer, D.Sc., Emeritus (not in-residence)     Bill Lin, Ph.D.                                              The Engineering Physics Program is conducted
Carl W. Helstrom, Ph.D. Emeritus                       Anthony V. Sebald, Ph.D., Associate Dean, Jacobs         in cooperation with the Department of Physics. Its
Ramesh Jain, Ph.D., Research Professor                     School of Engineering                                structure is very similar to that of electrical engi-
Andrew B. Kahng, Ph.D.                                 Kenneth Y. Yun, Ph.D.                                    neering except the depth requirement includes
Kenneth Kreutz-Delgado, Ph.D.                                                                                   seven courses and there are only four electives.
                                                       Adjunct Professors
Walter Ku, Ph.D.                                                                                                    The Computer Engineering Program is con-
Lawrence E. Larson, Ph.D., CWC Industry Endowed        C. K. Cheng, Ph.D., Computer Science and                 ducted jointly with the Department of Computer
    Chair in Wireless Communications                      Engineering                                           Science and Engineering. It has a more prescribed
S. S. Lau, Ph.D.                                       Pankaj K. Das, Ph.D., Rensselaer Polytechnic Institute   structure. The program treats hardware design,
Sing H. Lee, Ph.D.                                     Karen L. Kavanagh, Ph.D., Simon Fraser University        data storage, computer architecture, assembly
Yu Hwa Lo, Ph.D.                                       Robert Hecht-Nielsen, Ph.D., Hecht-Nielsen               languages, and the design of computers for engi-
Robert Lugannani, Ph.D.                                   Neurocomputing Corporation                            neering, information retrieval, and scientific
Huey-Lin Luo, Ph.D.                                    Michael J. Heller, Ph.D., Nanogen                        research.
Elias Masry, Ph.D.                                     John A. Hildebrand, Ph.D., Marine Physical                   For information about admission to the pro-
D. Asoka Mendis, Ph.D., Research Professor                Laboratory, Scripps Institution of Oceanography       gram and about academic advising, students are
Laurence B. Milstein, Ph.D., Academic Senate           William S. Hodgkiss, Ph.D., Marine Physical              referred to the section on ECE departmental regu-
    Distinguished Teaching Award                          Laboratory, Scripps Institution of Oceanography       lations. In order to complete the programs in a
Farrokh Najmabadi, Ph.D.                               James U. Lemke, Ph.D., Center for Magnetic               timely fashion, students must plan their courses
Truong Q. Nguyen, Ph.D.                                   Recording Research                                    carefully, starting in their freshman year. Students
Alon Orlitsky, Ph.D.                                   John Proakis, Ph.D., Northeastern University             should have sufficient background in high school
Kevin B. Quest, Ph.D.                                  James Zeidler, Ph.D., SPAWAR (formerly Naval             mathematics so that they can take freshman cal-
Bhaskar Rao, Ph.D.                                        Ocean Systems Center)                                 culus in the first quarter.
Ramesh Rao, Ph.D.
                                                       Associate Adjunct Professor                                  For graduation, each student must also
Barnaby J. Rickett, Ph.D.
                                                       Anthony Weathers, Ph.D., Overland Data, Inc.             satisfy general-education requirements deter-
Manuel Rotenberg, Ph.D., Research Professor
                                                                                                                mined by the student’s college. The five colleges
M. Lea Rudee, Ph.D., Research Professor
                                                       Associated Faculty                                       at UCSD require widely different numbers of gen-
Victor H. Rumsey, PhD., Emeritus (not in-residence)
Vitali Shapiro, Ph.D.                                  Gustaf O. S. Arrhenius, Ph.D., Professor,                eral-education courses. Students should choose
Paul H. Siegel, Ph.D., Director, Center for Magnetic     Scripps Institution of Oceanography                    their college carefully, considering the special
    Recording Research                                 George Tynan, Ph.D., Assistant Professor,                nature of the college and the breadth of educa-
                                                         Mechanical and Aerospace Engineering                   tion required. They should realize that some col-
                                                                                                                leges require considerably more courses than

others. Students wishing to transfer to another        SOPHOMORE YEAR                                         Upper-Division Requirements (total of 72 units)
college should see their college adviser.              Math. 20F            Math. 21D        Math. 20E        Recommended Schedule
                                                       Phys. 2C             Phys. 2D         ECE 60L
   Graduates of community colleges may enter           ECE 30               ECE 60A          ECE 60B          FALL                 WINTER             SPRING
ECE programs in the junior year. However, transfer     GER                  GER              GER              JUNIOR YEAR
students should be particularly mindful of the                                                                ECE 101              ECE 107            Elective (c)
                                                       * 8A must be taken before 8B.
freshman and sophomore course requirements                                                                    ECE 102              ECE 108            Depth #1
when planning their programs.                          Additional Notes:                                      ECE 103              ECE 109            Depth #2
                                                                                                              GER                  GER                GER
   These programs have strong components in            1. Students can take CSE 11 either in the winter       SENIOR YEAR
laboratory experiments and in the use of comput-          or spring quarter of their freshman year.           Depth #3             Depth #4           Depth #5
ers throughout the curricula. In addition, the            Students taking CSE 8A-B should enroll in CSE       Elective (c)         Eng. Design (b)    Elective (c)
department is committed to exposing students to           8A in the winter quarter of their freshman year.    Elective (c)         Elective (c)       Elective (c)
the nature of engineering design. This is accom-                                                              GER                  GER                GER
                                                       2. ECE 20A and 20B are offered every quarter;
plished throughout the curricula by use of open-
                                                          therefore, some students will be able to take
ended homework problems, by exposure to
                                                          ECE 20A in the fall quarter (enrollment limited     Summary by Discipline
engineering problems in lectures, by courses
                                                          and priority for transfer students). Other stu-
which emphasize student-initiated projects in
                                                          dents will postpone taking ECE 20A until the
both laboratory and computer courses, and finally                                                             a. Electrical Engineering BREADTH Courses (24
                                                          winter or spring quarter of their freshman year.
by senior design-project courses in which teams                                                                  units)
of students work to solve an engineering design        3. Students taking CSE 8A-B may take ECE 20A in           Courses required of all electrical engineering
problem, often brought in from industry.                  the spring quarter and ECE 20B in the fall quar-    majors:
   IT IS IMPERATIVE THAT STUDENTS DISCUSS                 ter of their sophmore year. ECE 30 will be post-
                                                                                                                 The six courses, ECE 101, 102, 103, 107, 108, and
THEIR CURRICULUM WITH THE APPROPRIATE                     poned to the winter quarter of the sophmore
                                                                                                                 109 are required of all electrical engineering
                                                                                                                 majors and they are an assumed prerequisite
ENTRANCE TO UCSD, AND THEN AT LEAST                    4. Students with AP Math credit are strongly              for senior-level courses, even if they are not
ONCE A YEAR UNTIL GRADUATION.                             advised to take Math. 20B in the fall quarter,         explicitly required. They are taught in two
                                                          leaving room for a GER in the winter quarter.          phases as shown below. Although the courses
B.S. Electrical Engineering Program                    5. The ECE undergraduate student handbook                 are largely independent, there are some pre-
   Students must complete 180 units for gradua-           shows several scheduling options. Please refer to      requisites. ECE 102 is a prerequisite for ECE 108,
tion, including the general Education Require-            the handbook and consult with the staff adviser        and ECE 101 and 103 should be taken either
ments (GER). Note that 144 units (excluding GER)          in the undergraduate office, EBUI, room 2705.          concurrently or before ECE 102. Students who
are required.                                                                                                    delay some of the breadth courses into the
                                                                                                                 spring should be careful that it does not delay
Lower-Division Requirements (total of 72 units)        Summary by Discipline                                     their depth sequence.
   Please note that electrical engineering stu-                                                               Fall and Winter
                                                       Mathematics (24 units): Math. 20A-B, 21C-D, and
dents cannot take CSE 11 or 8A in the fall quarter
                                                       20E-F. Students will be allowed to use another             ECE 101 Linear Systems Fundamentals
of the freshman year. The fall quarter enrollment in
                                                       mathematics sequence only if they transfer from            ECE 102 Introduction to Active Circuit
CSE courses is reserved for computer science and
                                                       another department on campus, junior college, or                   Design
computer engineering majors. Electrical engineer-
                                                       other university.                                          ECE 103 Fundamentals of Devices and
ing students can follow the recommended sched-
                                                       Physics (16 units): Phys. 2A-B-C-D or Phys. 4A-B-                  Materials
ule listed below or make up alternate schedules
according to the course offering (See the addi-        C-D-E. Math. 20A is a prerequisite for Phys. 2A.       Winter and Spring
tional notes and the ECE undergraduate hand-           Students whose performance on the mathemat-               ECE 107 Electromagnetism
book.)                                                 ics placement test permits them to start with
                                                       Math. 20B or higher may take Phys. 2A in the fall         ECE 108 Digital Circuits
Recommended Schedule                                   quarter of the freshman year.                             ECE 109 Engineering Probability and
FALL               WINTER             SPRING           Chemistry (4 units): Chem. 6A.                               Statistics
                                                       Computer Science (4 units): CSE 11 or 8B*.             b. Electrical Engineering DESIGN Course
Math. 20A          Math. 20B          Math. 21C                                                                  (4 units)
Chem. 6A           Phys. 2A           Phys. 2B         Electrical Engineering (24 units): ECE 20A-B
GER                ECE 20A            ECE 20B          (should be completed by the end of the freshman        Note: In order to fulfill the design requirement, stu-
GER                CSE 11 or 8B*      GER
                                                       year), ECE 30, ECE 60A-B, and ECE 60L.                 dents must complete one of the following courses
                                                                                                              with a grade C– or better.
                                                                                                                The electrical engineering design requirement
                                                                                                              can be fulfilled in any of the following three ways:

1. Take ECE 191: Engineering Group Design             approval of their faculty adviser. Some of the         tional notes and the ECE undergraduate hand-
   Project                                            approved sequences have lower-division prereq-         book.)
2. Take ECE 192: Engineering Design                   uisites and thus list six courses. Students choosing
                                                                                                             FALL                 WINTER           SPRING
   This course requires the department stamp.         one of these sequences will have only two “pro-
                                                                                                             FRESHMAN YEAR
   Specifications and enrollment forms are avail-     fessional” electives. Guidelines for meeting the
                                                                                                             Math. 20A            Math. 20B        Math. 21C
   able in the undergraduate office.                  depth requirement can be obtained from the             Chem. 6A             Phys. 2A         Phys. 2B
                                                      undergraduate office.                                  GER                  ECE 20A          ECE 20B
3. Take one of the following courses:                                                                        GER                  CSE 11 or 8B*    GER
                                                      Electronics Circuits and Systems:
  •   ECE 111: Advanced Digital Design Project                                                               SOPHOMORE YEAR
                                                         ECE 163, 164, 165, and any two of ECE
                                                                                                             Math. 20F            Math. 21D        Math. 20E
  •   ECE 118: Computer Interfacing                      111, 118, 161A, 161B, 161C, and 166.                Phys. 2C             Phys. 2D         ECE 60L
  •   ECE 155B or 155C: Digital Recording             Electronic Devices and Materials:                      ECE 30               ECE 60A          ECE 60B
      Projects                                                                                               GER                  Phys. 2DL        GER
                                                         ECE 135A, 136L, 135B, 139, and 183.
  •   Phys. 121: Experimental Techniques              Controls and Systems Theory:                           * 8A must be taken before 8B.

       Students who wish to take one of these           ECE 171A, 174, 171B, 118, and 173.
                                                                                                             Additional Notes:
  courses to satisfy the design requirement must      Machine Intelligence:
  fill out an enrollment form and have depart-                                                               1. Students can take CSE 11 either in the winter
                                                        ECE 173, 174, 172A and any two of ECE 175,
  mental approval for the design credit. The proj-                                                              or spring quarter of their freshman year.
                                                        161A, 187, 253A, 285, and COGS 108C.
  ect must meet the same specifications as                                                                      Students taking CSE 8A-B should enroll in CSE
                                                      Photonics:                                                8A in the winter quarter of their freshman year.
  ECE 192.
                                                        ECE 181, 182, 183, 184, and 185.
c. Electrical Engineering ELECTIVES                                                                          2. ECE 20A-B are offered every quarter; therefore,
                                                      Communications Systems:                                   some students will be able to take ECE 20A in
   (24 units)
                                                        ECE 161A, 153, 154A-B-C.                                the fall quarter (enrollment limited and priority
  •   Three upper-division engineering, mathe-                                                                  for transfer students). Other students will post-
      matics, or physics courses.                                                                               pone taking ECE 20A until the winter or spring
                                                        ECE 161A, 153, 159A, 158A-B.
  •   Three additional electives which students                                                                 quarter of their freshman year.
                                                      Queuing Systems:
      may use to broaden their professional                                                                  3. Students taking CSE 8A-B may take ECE 20A in
                                                        ECE 171A, 174, and 159A-B-C.
      goals. Normally these will be upper-division                                                              the spring quarter and ECE 20B in the fall quar-
      courses in engineering, mathematics, or         Computer Design:
                                                        CSE 12, 21, and 141, ECE 158A, 111 or 118, and          ter of their sophmore year. ECE 30 will be post-
      physics. Students may also choose upper-                                                                  poned to the winter quarter of the sophmore
      division courses from other departments,          165.
      such as humanities, social sciences, or arts,   Software Systems:
      provided that they fit into a coherent pro-       CSE 12, 21, 100, 101, 141, and 120.                  4. Students with AP Math credit are strongly
      fessional program. In such cases a lower-                                                                 advised to take Math. 20B in the fall quarter,
      division prerequisite may be included in        B.S. Engineering Physics                                  leaving room for a GER in the winter quarter.
      the electives. Courses other than upper-           The engineering physics degree combines a           5. The ECE undergraduate student handbook
      division engineering, mathematics, or           strong program in physics with most of the                shows several scheduling options. Please refer to
      physics must be justified in terms of such a    requirements for a B.S. degree in electrical engi-        the handbook and consult with the staff adviser
      program, and must be approved by a fac-         neering. Students must complete a total of 180            in the undergraduate office, EBUI, room 2705.
      ulty adviser.                                   units for graduation, including the general-educa-
      (For additional information, please refer to    tion requirements. Note that 146 units are             Summary by Discipline
      the section on “Elective Policy for             required for the major.
      Electrical Engineering and Engineering                                                                 Mathematics (24 units): Math. 20A-B, Math. 21C-
                                                      Lower-Division Requirements (total of 74 units)
      Physics Majors.”)                                                                                      D, and 20E-F. Students will be allowed to use
                                                          Please note that engineering physics students
d. Electrical Engineering Depth Requirement                                                                  another mathematics sequence only if they trans-
                                                      cannot take CSE 11 or 8A in the fall quarter of the
   (20 units)                                                                                                fer from another department on campus, or com-
                                                      freshman year. (The fall quarter enrollment in CSE
    Students must complete a “depth requirement”                                                             munity college, or other university.
                                                      courses is reserved for computer science and com-
of at least five quarter courses to provide a focus   puter engineering majors). Electrical engineering      Physics (16 units): Phys. 2A-B-C-D or Phys. 4A-B-
for their studies. This set must include a clear      students can follow the recommended schedule           C-D-E. Math. 20A is a prerequisite for Phys. 2A.
chain of study of at least three courses which        listed below or make up alternate schedules            Students whose performance on the mathemat-
depend on the “breadth” courses. Students may         according to the course offering (See the addi-        ics placement test permits them to start with
choose one of the approved depth sequences                                                                   Math. 20B or higher may take Phys. 2A in the fall
listed below, or propose another with the                                                                    quarter of the freshman year.

Physics Lab (2 units): Phys. 2DL is required.            an enrollment form and have departmental             Bioengineering: The following series of courses
Chemistry (4 units): Chem. 6A.                           approval for the design credit.The project must      will provide “core” preparation in bioengineering
                                                         meet the same specifications as ECE 192.             and will satisfy the ECE technical elective
Computer Science (4 units): CSE 11 or 8B.
                                                       c. Engineering Physics ELECTIVES (16 units)            requirements:
Electrical Engineering (24 units): ECE 20A and
                                                         •   One upper-division engineering, mathe-           • BILD 1, BILD 2, BE 100, BE 140A-B.
20B (should be completed by the end of the fresh-
                                                             matics, or physics course.                         The bioengineering department will guarantee
man year), ECE 30, ECE 60A, ECE 60B and ECE 60L.
                                                                                                              admission to these courses for ECE students who
                                                         •   Three additional electives which students
Upper-Division Requirements (72 units)                                                                        meet the eligibility requirements listed in the
                                                             may use to broaden their professional
                                                                                                              Undergraduate Handbook.
FALL               WINTER             SPRING                 goals. Normally these will be upper-division
JUNIOR YEAR                                                  courses in engineering, mathematics, or          • Students may use BE 186B to satisfy the ECE
Math. 110          ECE 101            ECE 108                physics. Students may also choose upper-           design requirements.
Phys. 110A         ECE 102            ECE 109                division courses from other departments,         CSE: The following courses are excluded as elec-
ECE 103            ECE 107            Phys. 130A
GER                GER                GER
                                                             such as humanities, social sciences, or arts,    tives: CSE 1, 2, 5A-B, 8A-B, 11, 140 (duplicates ECE
                                                             provided that they fit into a coherent pro-      20B or 81), 140L (duplicates ECE 20B or 82), 143
ECE 123            Elective (d)       ECE 166                fessional program. In such cases a lower-        (duplicates ECE 165). CSE 12, 20, and 21 will count
Phys. 130B         Eng. Design (c)    Elective (d)           division prerequisite may be included in         toward the three professional electives ONLY.
Phys. 140A         Elective (d)       Elective (d)           the electives. Courses other than upper-
GER                GER                GER
                                                                                                              Mechanical and Aerospace Engineering (MAE):
                                                             division engineering, mathematics, or            Credit will not be allowed for MAE 105, 139, 140,
                                                             physics must be justified in terms of such a     141A, or 170.
                                                             program, and must be approved by a fac-
Summary by Discipline                                        ulty adviser.
                                                                                                              Special Studies Courses 195–199: At most four
                                                                                                              units of 195–199 may be used for elective credit.
                                                             (For additional information, please refer to
a. Engineering Physics BREADTH Courses                                                                        2. Professional Electives:
                                                             the section on Elective Policy for Electrical
   (24 units)                                                                                                     Normally these will be upper-division courses
                                                             Engineering and Engineering Physics
   The electrical engineering breadth courses ECE                                                             in engineering, mathematics, or physics. Students
101, 102, 103, 107, 108, and 109, are also required                                                           may also choose upper-division courses from
                                                       d. Engineering Physics DEPTH Courses                   other departments, such as humanities, social
of engineering physics majors. However, because
                                                          (28 Units)                                          sciences, or arts, provided that they fit into a
of the scheduling of Math. 110, Phys. 110A and
130A, they can only be taken in the order sched-          All B.S. engineering physics students are           coherent professional program. In such cases, a
uled above.                                            required to take Phys. 110A, 130A-B, 140A, Math.       lower-division prerequisite may be included in
                                                       110, ECE 123, and ECE 166.                             the electives. Courses other than upper-division
b. Engineering Physics DESIGN Course (4 units)
                                                                                                              engineering, mathematics, or physics must be jus-
   Note: In order to fulfill the design requirement,   Elective Policy for Electrical                         tified in terms of such a program, and must be
students must complete one of the following courses                                                           approved by a faculty adviser.
                                                       Engineering and Engineering
with a grade C– or better.
                                                       Physics Majors                                         Biology and Chemistry: Of the three electives
  The engineering physics design requirement                                                                  intended to allow for the professional diversity,
can be fulfilled in any of the following three ways:   1. Technical Electives:                                one lower-division biology or chemistry course
1. Take ECE 191: Engineering Group Design Project          Certain courses listed below are not allowed as    from BILD 1, 2, Chem. 6B-C may be counted for
                                                       electives because of overlap with ECE courses.         credit. Furthermore, this will count only if the stu-
2. Take ECE 192: Engineering Design
   This course requires the department stamp.          Physics: Students may not receive upper-division       dent can demonstrate to a faculty adviser that
   Specifications and enrollment forms are avail-      elective credit for any lower-division physics         they constitute part of a coherent plan for profes-
   able in the undergraduate office.                   courses. Students may not receive credit for both      sional/career development.
                                                       Phys. 100A and ECE 107, Phys. 100B and ECE 107,           Upper-division biology and chemistry courses
3. Take one of the following courses:                  Phys. 100C and ECE 123.                                will count toward the three professional electives
  •    ECE 111: Advanced Digital Design Project        Mathematics: Math. 180A-B overlap ECE 109 and          but not the three math/physics/engineering
  •    ECE 118: Computer Interfacing                   153, and therefore will not qualify for elective       electives.
  •    ECE 155B or 155C: Digital Recording             credit of either type. Math. 183 will not be allowed   Economics: Suitable electives would include:
       Projects                                        as an elective. Math. 163 will only be allowed as a       Economics 1A or 2A followed by courses in one
                                                       professional elective. All lower-division mathe-       of the following tracks:
  •    Physics 121: Experimental Techniques
                                                       matics is excluded from elective credit of either
  Students who wish to take one of these courses                                                              • Law, Economics and Policy: Select 2—
  to satisfy the design requirement must fill out                                                               Economics 118A-B, 130, 131, 132.

• Labor and Human Resources: Select 2—                 SOPHOMORE YEAR                                          b. In addition, all B.S. computer engineering stu-
  Economics 136, 138A-B, 139.                          Math. 21D            Math. 20F        ECE 109              dents must fulfill the following upper-division
                                                       CSE 30               Phys. 2C         Phys. 2D
• Urban Economics: Economics 133, 135.                 ECE 53A              ECE 53B          Phys. Lab
                                                                                                                  ECE requirements:
                                                       GER                  CSE 21 or        GER                 •   Engineering Probability and Statistics
• Microeconomics: Select 2—Economics 100A-B,                                 Math. 15B
  170A                                                                                                               ECE 109. This course can be taken in the
                                                       * 8A must be taken before 8B.                                 sophomore year.
• Finance Track (MBA) I: Must complete all 3—
  Economics 4, 173, and 1 upper-division                                                                         •   Electronic Circuits and Systems ECE 102
  Economics elective.                                  Summary by Discipline                                         and 108. The department recommends that
                                                                                                                     these courses be taken in the junior year.
• Finance Track (MBA) II: Economics 100A, 175.
                                                       Mathematics (20 units): Math. 20A-B, 21C-D, and           •   Linear systems ECE 101 and 171A or 161A.
• Operations Research: Must complete 172 A—
                                                       20F.                                                    c. Technical electives: All B.S. computer engineer-
  Economics 172A and (172B or 172C).
                                                       Physics (16 units): Phys. 2A-B-C-D, or Phys. 4A-B-         ing majors are required to take six technical
   Economics 1B or 2B followed by courses in one
                                                       C-D. Math. 20A is a prerequisite for Phys. 2A.             electives.
of the following tracks:
                                                       Students whose performance on the mathemat-               •   One technical elective must be either ECE
• Monetary Economics: Economics 111 and 1              ics placement test permits them to start with                 111 or ECE 118.
  upper-division Economics Elective.                   Math. 20B or higher may take Phys. 2A in the fall
                                                       quarter of the freshman year.                             •   Of the remaining five technical electives,
• Macroeconomics: Economics 110A-B.
                                                                                                                     four must be ECE or CSE upper-division or
Note: Economics 120A, and 158A-B will not be           Physics lab (2 units): Phys. 2BL or 2CL or 2DL. The
                                                                                                                     graduate courses.
allowed as professional electives.                     lab course should be taken concurrently with the
                                                       Phys. 2 or Phys. 4 sequence.                              •   The remaining course can be any upper-
                                                                                                                     division course listed under the non-
B.S. Computer Engineering                              Computer Science (20 units): CSE 11 or 8B*, 12,
                                                                                                                     CSE/ECE electives. (See the section on
                                                       CSE 20 or Math. 15A, CSE 21 or Math. 15B, and
   Students wishing to pursue the computer                                                                           electives below.)
                                                       CSE 30.
engineering curriculum must be admitted to
                                                       *8A must be taken before 8B.
either the ECE or CSE department. The set of                                                                   Electives
required courses and allowed electives is the          Electrical Engineering (12 units): ECE 53A-B,
                                                       ECE 109.                                                   The discipline of computer engineering inter-
same in both departments; please note that the
                                                                                                               acts with a number of other disciplines in a mutu-
curriculum requires twenty upper-division              Upper-Division Requirements                             ally beneficial way. These disciplines include
courses. The Computer Engineering Program              (total of 76 units)                                     mathematics, computer science, and cognitive
requires a total of 146 units (not including the
                                                                                                               science. The following is a list of upper-division
general-education requirements).                       FALL                WINTER           SPRING
                                                                                                               courses from these and other disciplines that can
   The Computer Engineering Program offers a           JUNIOR YEAR
                                                       ECE 102             ECE 108          GER                be counted as technical electives.
strong emphasis on engineering mathematics
                                                       CSE 100 or          CSE 101 or       CSE 105 or            At most four units of 197, 198, or 199 may be
and other basic engineering science as well as a
                                                        Math. 176           Math. 188         Math. 166        used towards technical elective requirements.
firm grounding in computer science. Students           CSE 140#            CSE 141*         CSE 120
should have sufficient background in high school                                                               ECE/CSE 195 cannot be used towards course
                                                       CSE 140L#           CSE 141L*        T.E.
mathematics so that they can take freshman cal-                                                                requirements. Undergraduate students should get
                                                       SENIOR YEAR
culus in their first quarter. Courses in high school                                                           instructor’s permission and departmental stamp
                                                       ECE 101             T.E.             GER
physics and computer programming, although             CSE 131A            CSE 131B         T.E.               to enroll in a graduate course.
helpful, are not required for admission to the         T.E.                T.E.             ECE 171A or 161A      Students may not get duplicate credit for
program.                                               GER                 GER              T.E.               equivalent courses. The UCSD General Catalog
                                                       # CSE 140 and 140L must be taken concurrently.          should be consulted for equivalency information
Lower-Division Requirements                                                                                    and any restrictions placed on the courses.
                                                       * CSE 141 and 141L must be taken concurrently.
(total of 70 units) Recommended Schedule                                                                       Additional restrictions are noted below. Any devi-
                                                                                                               ation from this list must be petitioned.
FALL               WINTER         SPRING
                                                       Summary by Discipline                                   Mathematics: All upper-division courses except
Math. 20A          Math. 20B      Math. 21C                                                                    Math. 168A-B, 179A-B, 183, 184A-B, 189A-B, and
CSE 11 or 8B*      CSE 20 or      CSE 12               a. All B.S. computer engineering students are           195–199. If a student has completed CSE 167, then
                    Math. 15A
GER                Phys. 2A       Phys. 2B
                                                          required to take CSE 100 or Math. 176, CSE 101       he or she cannot get elective credit for Math.
GER                GER            GER                     or Math. 188, CSE 105 or Math. 166, CSE 120,         155A. Students may receive elective credit for only
                                                          131A-B, 140, 140L, 141, 141L.                        one of the following courses: CSE 164A, Math. 174,
                                                                                                               Math. 173, Phys. 105A-B, MAE 107, CENG 100. No
                                                                                                               credit for any of these courses will be given if

Math. 170A-B-C is taken. Students will receive        Music: Computer Music II 172, Audio Production:       Electrical Engineering and Engineering Physics
credit for either Math. 166 or CSE 105 (but not       Mixing and Editing 173.                               majors:
both), either Math. 188 or CSE 101 (but not both),    Psyschology: Engineering Psychology 161.
and either Math. 176 or CSE 100 (but not both).                                                             1. Math. 20A-B, 21C

Computer Science and Engineering: All CSE                                                                   2. Phys. 2A-B
upper-division courses. Students will receive
                                                      Minor Curricula                                       3. ECE 20A-B
credit for either CSE 123A or ECE 158A (but not                                                             4. CSE 11 or 8B
                                                         ECE offers three minors in accord with the gen-
both) and CSE 143 or ECE 165 (but not both).
                                                      eral university policy that a minor requires five     Computer Engineering majors:
Cognitive Science: Cognitive Theory and               upper-division courses. Students must realize
Phenomena 101A-B-C, Cognitive Neuroscience            that these upper-division courses have extensive          Admission to the computer engineering major
107A-B-C, Theory of Computation and Formal            lower-division prerequisites (please consult the      is currently restricted as described in the section
Systems 108A, Symbolic Modeling of Cognition          ECE undergraduate office). Students should also       “Admission to the School of Engineering.”The
108B, Neural Network Models of Cognition I 108C,      consult their college provost’s office concerning     only way to become a computer engineering (CE)
Everyday Cognition 130, Distributed Cognition         the rules governing minors and programs of con-       major is to be directly admitted as an entering
131, Cognitive Engineering 132, Semantics 150,        centration.                                           freshman or as an entering transfer (Transfer stu-
Language Comprehension 153, Natural and                                                                     dents, see TRANSFER STUDENTS section below).
                                                      Electrical Engineering: 20 units chosen from the
Artificial Symbolic Representational Systems 170,                                                               Space permitting and at its sole discretion, the
                                                      breadth courses ECE 101, 102, 103, 107, 108, 109.
Neural Network Models of Cognition II 181,                                                                  electrical and computer engineering department
Artificial Intelligence Modeling II 182, Multimedia   Engineering Physics: 20 units chosen from the         may periodically grant admission to the computer
Design 187A-B.                                        junior year courses Phys. 110A, 130A, Math. 110,      engineering (CE) major to a small number of aca-
   Students may not get credit for both CSE 150       ECE 101, 102, 103, 107, 108, 109.                     demically exceptional UCSD undergraduate stu-
and Neural Network Models of Cognition I 108C         Computer Engineering: 20 units chosen from            dents who were not admitted to this major as
or for both CSE 151 and Artificial Intelligence       the junior year courses ECE 102, 108, CSE 100, 101,   entering students. Exceptional admission will be
Modeling II 182.                                      105, 120, 140, 140L, 141, 141L.                       considered for students having an overall UCSD
Mechanical and Aerospace Engineering (MAE):             The department will consider other mixtures of      GPA of 3.5 or better who have taken at least two
All upper-division MAE courses except MAE 140,        upper-division ECE, CSE, physics, and mathematics     CSE, math, or science courses demonstrating spe-
and MAE 195-199.                                      courses by petition.                                  cial aptitude for the CE curriculum. Applications
   Students may receive elective credit for only                                                            for exceptional admission must include submis-
one of the following courses: CSE 164A, Math. 174,                                                          sion of a course plan demonstrating ability to sat-
Math. 173, Phys. 105A-B, CENG 100, MAE 107.           Undergraduate Regulations                             isfy graduation requirements and a personal
Students may only get credit for one of the two       and Requirements                                      statement addressing the applicant’s motivation
courses, CSE 167 or MAE 152.                                                                                to join the CE major, in addition to other criteria
Economics: Microeconomics 100A-B, Game Theory            Because of heavy student interest in depart-       established by the department.
109, Macroeconomics 110A-B, Mathematical              mental programs, and the limited resources avail-
Economics 113, Econometrics 120B-C, Applied           able to accommodate this demand, maintenance          Transfer Students
Econometrics 121, Management Science                  of a high quality program makes it necessary to          The B.S. in Computer Engineering is a heavily
Microeconomics 170A-B, Decisions Under                limit enrollments to the most qualified students.     impacted major and admission is limited to appli-
Uncertainty 171, Introduction to Operations           Admission to the department as a major, pre-          cants who have demonstrated a high level of
Research 172A-B-C, Economic and Business              major, transfer, minor, or to fulfill a major in      achievement commensurate with the prospect of
Forecasting 178.                                      another department which requires (Dept)              success in this major. Successful applicants must
                                                      courses is in accordance with the general require-    have completed substantial training at the com-
  Students cannot take Economics. 120A since it
                                                      ments established by the School of Engineering.       munity college and must have achieved a high
duplicates ECE 109.
                                                      These requirements and procedures are                 level of academic performance there. For exam-
Linguistics: Phonetics 110, Phonology I 111,          described in detail in the section on “Admission to   ple, the required minimum of ninety quarter
Phonology II 115, Morphology 120, Syntax I 121,       the School of Engineering” in this catalog.           transfer units must include eighteen quarter units
Syntax II 125, Semantics 130, Mathematical
                                                                                                            of calculus, twelve quarter units of calculus-based
Analysis of Languages 160, Computers and              Admission to ECE Majors                               physics, and the highest level computer science
Language 163, Computational Linguistics 165,
                                                         Admission to upper-division ECE courses is         course offered at their community college.
Psycholinguistics 170, Language and the Brain
                                                      based on the GPA in required lower-division           Although the actual required GPA cutoff depends
172, and Sociolinguistics 175.
                                                      courses.                                              on the number of openings, at least a 3.2 GPA in
Engineering: Team Engineering 101                        Students must complete the following courses       the community college transfer courses, and a
                                                      in order to apply to the Department of Electrical     3.4 GPA in math, physics and computer science
                                                      and Computer Engineering:                             courses, are likely to be needed to gain admission.

   When planning their programs, students should        among physics, mathematics, problem solving,                      shown that most students who are not familiar
be mindful of lower-division prerequisites neces-       and computation. All later courses are specifically               with programming and take CSE 11 have to
sary for admission to upper-division courses.           designed to build on this foundation. All transfer                retake the class because the accelerated pace
   Effective fall 2001 applicants seeking admis-        students should understand that the lower-                        makes it difficult to learn the new material.
sion as transfer students will be considered for        division curriculum is demanding. Transfer                        Note: Transfer students are encouraged to consult
direct admission into the Computer Engineering          students will be required to take all lower-                      with the ECE undergraduate office for academic
(CE) major in the Department of Electrical and          division requirements or their equivalent.                        planning upon entrance to UCSD.
Computer Engineering (ECE). The only way to bec-        • Transfer students should start with ECE 20A
ome a Computer Engineering (CE) major is to be            in the fall quarter. Transfer students will be
directly admitted as an entering transfer student.        allowed to take ECE 20B and 60A concurrently.
                                                                                                                          ECE Honors Program
   Students who wish to enter in the Electrical           The recommended schedule for the lower-
Engineering or Engineering Physics major must                                                                                The ECE Undergraduate Honors Program is
                                                          division ECE course is as follows:                              intended to give eligible students the opportunity
apply to the department before the beginning of
the fall quarter, submitting course descriptions and    Recommended Schedule                                              to work closely with faculty in a project, and to
transcripts for courses used to satisfy their lower-    FALL                   WINTER                SPRING
                                                                                                                          honor the top graduating undergraduate students.
division requirements. Normally, admission will be      ECE 20A                ECE 20B               ECE 60B
for the fall quarter; students entering in the winter                          ECE 60A               ECE 60L
                                                                                                                          Eligibility for Admission to the
or spring quarter should be aware that scheduling                              CSE 11 or 8B*                              Honors Program:
difficulties may occur because upper-division           * 8A must be taken before 8B.                                     1. Students with a minimum GPA of 3.5 in the
sequences normally begin in the fall quarter.
                                                           Junior Year: ECE 30 requires ECE 20B as a pre-                    major and 3.25 overall will be eligible to apply.
                                                        requisite and thus should be taken in the fall                       Students may apply at the end of the winter
Grade Requirement in the Major                                                                                               quarter of their junior year and no later than
                                                        quarter of the junior year, concurrently with the
   A GPA of 2.0 is required in all upper-division                                                                            the end of the second week of fall quarter of
                                                        upper-division breadth courses ECE 101, 102,
courses in the major, including technical electives.                                                                         their senior year. No late applications will be
                                                        and 103.
No more than two courses with a D grade may be                                                                               accepted.
counted towards the major.The grade of D will not                                                                         2. Students must submit a project proposal
be considered an adequate prerequisite for any          New Transfer Students in                                             (sponsored by an ECE faculty member) to the
ECE course.The engineering design requirement           Computer Engineering                                                 honors program committee at the time of
must be completed with a grade of C– or better.                                                                              application.
                                                        Recommended Schedules                                             3. The major GPA will include ALL lower-division
                                                        FALL                   WINTER                SPRING                  required for the major and all upper-division
   Students are required to complete an aca-            FIRST YEAR*                                                          required for the major that are completed at
demic planning form and to discuss their cur-           CSE 11                 CSE 12                CSE 30                  the time of application (a minimum of twenty-
riculum with the appropriate departmental               CSE 20 (or             CSE 121 (or           ECE 109                 four units of upper-division course work).
adviser immediately upon entrance to UCSD,                Math. 15A)            Math. 15B)           ECE 53B
                                                                               ECE 53A
and then every year until graduation. This is                                                                             Requirements for Award of Honors:
                                                        FIRST YEAR**
intended to help students in: a) their choice of
                                                        CSE 8A                 CSE 8B                CSE 20 (or
depth sequence, b) their choice of electives, c)        ECE 53A                ECE 53B                Math. 15A)
                                                                                                                          1. Completion of all ECE requirements with a
keeping up with changes in departmental                                        CSE 12                CSE 30                  minimum GPA of 3.5 in the major based on
requirements. An adviser will be assigned by the                                                     ECE 109                 grades through winter quarter of the senior
ECE department undergraduate office.                    * Recommended schedule for students with programming
                                                          experience. This schedule will require students to get clear-   2. Formal participation (i.e., registration and
                                                          ance from the CSE department to take CSE 8B and CSE 20             attendance) in the ECE 290 graduate seminar
New Transfer Students in                                  concurrently
                                                                                                                             program in the fall quarter of their senior year.
Electrical Engineering and                              ** Recommended schedule for students with no program-
Engineering Physics                                       ming experience.This schedule will require students to get      3. Completion of an eight-unit approved honors
                                                          clearance from the CSE department to take CSE 8B and CSE           project (ECE 193H: Honors Project) and submis-
                                                          12 in the winter quarter, and CSE 20 and CSE 30 concurrent-        sion of a written report by the first day of
   The entire curriculum is predicated on the idea        ly in the spring quarter. CSE 21 should then be taken during
of actively involving students in engineering from        the summer sessions or the following fall quarter.
                                                                                                                             spring quarter of the senior year. This project
the time they enter as freshmen. The freshman                                                                                must contain enough design to satisfy the ECE
                                                          Students who do not have any programming                           BS four-unit design requirement.
course “Introduction to Engineering” has been
                                                        experience are encouraged to take the CSE 8A-B
carefully crafted to provide an overview of the                                                                           4. The ECE honors committee will review each
                                                        sequence instead of CSE 11. Experience has
engineering mindset with its interrelationships                                                                              project final report and certify the projects

  which have been successfully completed at the         warded by the department to the UCSD Office of           senior year may be counted toward the B.S.
  honors level.                                         Graduate Studies and Research. Each student              requirements or the masters degree require-
                                                        must submit the regular graduate application fee         ments, but not both.
Procedure for Application to the                        at this time for their application to be processed.        The five-year schedule assumes that the student
Honors Program:                                         Students who have been accepted into the B.S./           is participating in the M.Eng. program or the M.S.
                                                        Masters program will automatically be admitted           Plan 2 (comprehensive exam) program. This
   Between the end of the winter quarter of their
                                                        for graduate study in the appropriate program            option requires that the student complete four
junior year and the second week of the fall quar-
                                                        (M.S. or M.Eng.) beginning the following fall pro-       units of ECE 297 (project) and pass the depart-
ter of their senior year, interested students must
                                                        vided they maintain an overall GPA through the           mental comprehensive exam at the M.S. level.
advise the department of their intention to partic-
                                                        fall quarter of the senior year of at least 3.0.         Students may also elect to participate in the M.S.
ipate by submitting a proposal for the honors
                                                        Upper-division (up to twelve units) or graduate          Plan 1 (thesis) program, which requires twelve
project sponsored by an ECE faculty member.
                                                        courses taken during the senior year that are not        units of research and completion of a masters’
Admission to the honors program will be formally
                                                        used to satisfy undergraduate course require-            thesis. However, the Plan 1 program is generally
approved by the ECE honors committee based on
                                                        ments may be counted towards the forty-eight             more time-consuming than the Plan 2 program.
GPA and the proposal.
                                                        units required for the M.S. or M.Eng. degree.            Note that of forty-eight units required for the M.S,
                                                                                                                 degree, thirty-six must be graduate level, the
Unit Considerations                                     Continuation in the Program                              remainder may be undergraduate level.
   Except for the two-unit graduate seminar, this
                                                            Once admitted to the B.S./Masters program,
honors program does not increase a participant’s
total unit requirements. The honors project will
                                                        students must maintain a 3.0 cumulative GPA in           The Graduate Programs
                                                        all courses through the fall of the senior year and
satisfy the departmental design requirement and
                                                        in addition must at all times maintain a 3.0 cumu-          The department offers graduate programs
students may use four units of their honors proj-
                                                        lative GPA in their graduate course work. Students       leading to the M.Eng., M.S., and Ph.D. degrees in
ect course as a technical elective.
                                                        not satisfying this requirement may be re-               Electrical Engineering. The M.S. and Ph.D. are
                                                        evaluated for continuation in the program. To            research programs whereas the M.Eng. is a termi-
Five-Year B.S./Masters Program                          complete the program requirements within five            nal professional degree program aimed at work-
                                                        years, students are expected to have satisfied all       ing engineers.
   Undergraduates in the ECE department who             B.S. degree requirements by the end of their                In addition, the department offers M.S. and
have maintained a good academic record in both          fourth year, and to have been awarded their B.S.         Ph.D. programs in Computer Engineering jointly
departmental and overall course work are encour-        degrees prior to the fall quarter of their fifth year.   with CSE; and a Ph.D. program in Applied Ocean
aged to participate in the five-year B.S./Masters       Students who have not received their B.S. degree         Science jointly with MAE and Scripps Institution
program offered by the department. Participation        are not eligible to enroll as graduate students in       of Oceanography.
in the program will permit students to complete         the department.                                             Admission to an ECE graduate program is in
the requirements for either the M.Eng. or the M.S.          Admission for graduate study through the             accordance with the general requirements of the
degree within one year following receipt of the         B.S./Masters program will be for the M.Eng or            UCSD graduate division, and requires at least a
B.S. degree. Complete details regarding admission       M.S. degree only. Students wishing to continue           B.S. degree in engineering, physical sciences, or
to and participation in the program are available       towards the Ph.D. degree must apply and be               mathematics with a minimum upper division GPA
from the ECE undergraduate affairs office.              evaluated according to the usual procedures              of 3.0. Applicants must provide three letters of
                                                        and criteria for admission to the Ph.D. program.         recommendation and recent GRE General Test
Admission to the Program                                                                                         scores. TOEFL scores are required from interna-
   Students should submit an application for the        Curriculum                                               tional applicants whose native language is not
B.S./Masters program, including three letters of           Students in the five-year B.S./Masters program        English. Applicants should be aware that the
recommendation, by the program deadline dur-            must complete, as appropriate, the same require-         University does not permit duplication of
ing the spring quarter of their junior year. Applica-   ments as those in the regular M.S. or M.Eng.             degrees.
tions are available from the ECE Undergraduate          programs. Completion of the masters degree                  Support: The department makes every effort
Affairs office. No GRE’s are required for application   requirements within one year following receipt of        to provide financial support for Ph.D. students
to the B.S./Masters program. A GPA of at least 3.0      the B.S. degree will generally require that stu-         who are making satisfactory progress. Support
both overall and in the major, and strong letters       dents begin graduate course work in their senior         may take the form of a fellowship, teaching assist-
of recommendation are required for admission to         year, perhaps continuing in the summer with              antship, research assistantship, or some combina-
the program. Students should indicate at that           work on a research project in preparation for the        tion thereof. International students will not be
time whether they wish to be considered for the         M.S. project. All requirements for the B.S. degree       admitted unless there is reasonable assurance
M.S. or the M.Eng. degree program.                      should be completed by the end of the senior             that a research assistantship can be provided for
   In the fall of the senior year, applications of      (fourth) year, and the B.S. degree awarded prior to      the duration of their Ph.D. program. Students in
students admitted to the program will be for-           the start of the fifth year. Courses taken in the        the M.Eng. and M.S. programs may also obtain

support through teaching or research assistant-          breadth requirement is intended to provide           2. Communications and Signal Analysis:
ships, but this is less certain.                         protection against technical obsolescence,                 Allied Ph.D. research areas: Communication
   Advising: Students should seek advice on              open up new areas of interest, and provide for             Theory and Systems, Intelligent Systems,
requirements and procedures from the depart-             future self-education. The minimum breadth                 Robotics, and Control, Magnetic Recording,
mental graduate office and/or the departmental           requirement is eight units (two quarter                    Signal and Image Processing.
Web site All students           courses) of ECE/CSE graduate courses selected
                                                                                                                    ECE 153. Random Processes
will be assigned a faculty academic adviser upon         from among the courses listed below, in an
admission and are strongly encouraged to discuss         area distinctly different from that of the focus           ECE 250. Random Processes
their academic program with their adviser imme-          requirement.                                               ECE 251AN-BN-CN-DN. Digital Signal
diately upon arrival and subsequently at least         3. Technical Electives: (two courses) Two techni-            Processing
once per academic year.                                   cal electives may be any graduate courses in              ECE 252A-B. Speech Compression and
                                                          ECE, CSE, Physics, or Mathematics. Other techni-          Recognition
Master of Engineering                                     cal courses may be selected with the approval             ECE 253A-B. Digital Image Analysis
   The Master of Engineering (M. Eng.) program is         of the faculty adviser. Technical electives may
                                                          include a maximum of four units of ECE 298                ECE 254. Detection Theory
intended primarily for engineers who desire
Master’s level work but do not intend to continue         (Independent Study), or ECE 299 (Research).               ECE 255A. Information Theory
with Ph.D. Ievel research. It differs from the M.S.    4. Professional Electives: (three courses) The               ECE 255B-C. Source Coding
program as it is a terminal professional degree,          three professional electives may be used in               ECE 256A-B. Time Series Analysis
whereas the M.S. may serve as an entry to a Ph.D.         several ways: for a series in business, manage-
program. Salient features of the M.Eng. program                                                                     ECE 257A-B. Wireless Communications
                                                          ment, and finance; for undergraduate technical
include the following: it can be completed in one         courses to improve preparation for graduate               ECE 258A-B. Digital Communications
year at full-time or two years at half-time; it does      work; or for additional graduate technical                ECE 259AN-BN-CN. Channel Coding
not require a thesis, a research project, or a com-       courses.                                                  ECE 273A-B-C. Optimization in Linear
prehensive exam; it has flexible course require-
                                                          Scholarship Requirement: The forty-eight                  Vector Spaces
ments; and it has an option of three courses in
                                                       units of required course work must be taken                  ECE 275A-B. Statistical Parameter
business, management, and finance.
                                                       for a letter grade (A-F), except for ECE 298 or 299,         Estimation
Course Requirements:                                   for which only S/U grades are allowed. Courses for
                                                                                                                    ECE 285. Special Topic: Computer Vision;
                                                       which a D or F is received may not be counted.
   The total course requirements are forty-eight                                                                    Pattern Recognition (offerings vary annually)
                                                       Students must maintain a GPA of 3.0 overall.
units (twelve quarter courses). The choice of                                                                 3. Electronic Circuits and Systems
courses is subject to general focus and breadth
requirements. Students will be assigned a faculty      Master of Engineering Program                                Allied Ph.D. Research areas: Computer
                                                                                                                    Engineering, Electronic Circuits, and
adviser who will help select courses and approve       Focus Courses                                                Systems.
exceptions as necessary.
1. The Focus Requirement: (five courses) The              Please consult the ECE graduate office or the             ECE 222A-B-C. Applied Electromagnetic
   M.Eng. program should reflect, among other          ECE Web site for the cur-            Theory
   things, a continuity and focus in one subject       rent list of focus areas and courses.                        ECE 230A-B-C. Solid State Electronics
   area. The course selection must therefore           1. Applied Physics                                           ECE 236A-B-C. Semiconductor Hetero-
   include at least twenty units (five quarter               Allied Ph.D. research areas: Photonics,                structure Materials
   courses) in closely related courses leading to            Electronic Devices and Materials, Radio                ECE 250. Random Processes
   the state of the art in that area. The require-           Space Science, Magnetic Recording.
   ment may be met by selecting five courses                                                                        ECE 260A-B-C. VLSI Circuits
   from within one of the focus areas listed                 ECE 222A-B-C. Electromagnetic Theory                   ECE 263A-B-C. Fault Tolerant Computing
   below. In some cases it may be appropriate to             ECE 230A-B-C. Solid State Electronics                  ECE 264A-B. Analog IC Design
   select five closely related courses from two of           ECE 236A-B-C-D. Semiconductors                         ECE 265A-B. Wireless Circuit Design
   the areas listed below. Such cases must be
                                                             ECE 238A-B. Materials Science                          CSE 240, 241. Computer Architecture
   approved by a faculty adviser.
                                                             MS 201A-B-C. Materials Science                         CSE 242, 243. Computer Aided Design
2. The Breadth Requirement: (two courses) A
   graduate student often cannot be certain of               ECE 240A-B-C. Optics                             4. Professional Electives
   his or her future professional career activities          ECE 241A-B-C. Optics                                   IP/Core 401. Managerial Economics
   and may benefit from exposure to interesting
   opportunities in other subject areas. The                                                                        IP/Core 420. Accounting
                                                                                                                    IP/Core 421. Finance

Master of Science                                       may consist of four or eight units of ECE 299          passed the preliminary exam. They should plan on
                                                        (Research). The engineering project is intended to     taking the University Qualifying Examination
    The ECE department offers an M.S. program in
                                                        demonstrate advanced technical proficiency,            about one year later. The University does not per-
electrical engineering and an M.S. program in
                                                        preferably by applying some aspect of one’s grad-      mit students to continue in graduate study for
computer engineering, the latter jointly with the
                                                        uate course work to a realistic engineering prob-      more than four years without passing this exami-
Computer Science and Engineering department.
                                                        lem. The project proposal must be approved in          nation. At the Qualifying Examination the student
The M.S. programs are research oriented, are
                                                        advance by a committee consisting of the project       will give an oral presentation of the thesis pro-
intended to provide intensive technical prepara-
                                                        instructor and another instructional faculty mem-      posal to a campus-wide committee. The commit-
tion and can serve as a foundation for subsequent
                                                        ber, at least one of whom must be an Academic          tee will decide if the proposal has adequate
pursuit of a Ph.D. Students whose terminal degree
                                                        Senate member in the ECE department. The proj-         content and reasonable chance for success. They
goal is at the master’s level may also consider the
                                                        ect requires a written report which will be pre-       may require that the student modify the proposal
M.Eng. program which is more flexible in nature.
                                                        sented to the committee members and defended           and may require a further review.
The M.S. degree may be earned either with a the-
                                                        orally. The report and its defense will serve as the      The final Ph.D. requirements are the submis-
sis (Plan 1) or with a research project followed by
                                                        M.S. Plan 2 comprehensive examination. For both        sion of a thesis, and the thesis defense (as
a comprehensive examination (Plan 2). However
                                                        Plan 1 and Plan 2, no more than eight units of ECE     described under the “Graduate Studies” section of
entry to the Ph.D. program requires a comprehen-
                                                        299 may count towards the thirty-six unit gradu-       this catalog).
sive examination so most students opt for Plan 2.
                                                        ate course requirements.
                                                                                                               Course Requirements:
Course Requirements:                                        Transfer to the Ph.D. Programs: M.S. students
                                                        wishing to continue in the Ph.D. program should           The total course requirements for the Ph.D.
   The total course requirements for the Master of
                                                        note that the entrance requirement to the Ph.D.        degree in electrical engineering are forty-eight
Science degrees in electrical engineering and in
                                                        program is eight units of ECE 299 (Research) with      units (twelve quarter courses), of which at least
computer engineering are forty-eight units
                                                        a report and an oral examination. M.S. students        thirty-six units must be in graduate courses. Note
(twelve quarter courses) and forty-nine units,
                                                        who are considering applying for transfer to the       that this is greater than the minimum require-
respectively, of which at least thirty-six units must
                                                        Ph.D. program should advise the ECE graduate           ments of the university. The department main-
be in graduate courses. Note that this is greater
                                                        office of their intention as early as possible. M.S.   tains a list of core courses for each disciplinary
than the minimum requirements of the university.
                                                        students planning to transfer to the Ph.D. pro-        area from which the thirty-six graduate course
The department maintains a list of core courses
                                                        gram must make sure that (a) they take the             units must be selected. The current list may be
for each disciplinary area from which the thirty-
                                                        courses required of the appropriate discipline         obtained from the ECE department graduate
six graduate course units must be selected. The
                                                        within the Ph.D. program, (b) they take eight units    office or the official Web site of the department.
current list may be obtained from the department
                                                        of ECE 299 (Research), and (c) they identify a regu-   Students in the interdisciplinary programs may
graduate office or the official Web site of the
                                                        lar ECE faculty member who agrees (in writing) to      select other core courses with the approval of
department. Students in interdisciplinary pro-
                                                        be their research adviser.                             their academic adviser. The course requirements
grams may select other core courses with the
                                                                                                               must be completed within two years of full-time
approval of their academic adviser. The course
                                                        The Doctoral Programs                                  study.
requirements must be completed within two
                                                                                                                  Students in the Ph.D programs may count no
years of full-time study. Students will be assigned
                                                           The ECE department offers graduate programs         more than eight units of ECE 299 towards their
a faculty adviser who will help select courses and
                                                        leading to the Ph.D. degree in ten disciplines         core course requirements.
approve exceptions as necessary.
                                                        within electrical and computer engineering, as            Students who already hold an M.S. degree in
   Scholarship Requirement: The forty-eight             described in detail below. The Ph.D. is a research     electrical engineering must nevertheless satisfy
units of required course work must be taken for a       degree requiring completion of the Ph.D. program       the requirements for the core courses. However,
letter grade (A-F), except for ECE 299 (Research)       course requirements, satisfactory performance on       graduate courses taken else where can be substi-
for which only S/U grades are allowed. Courses for      the ECE departmental preliminary examination           tuted for specific courses with the approval of the
which a D or F is received may not be counted.          and University Qualifying Examination, and sub-        academic adviser.
Students must maintain a GPA of 3.0 overall.            mission and defense of a doctoral thesis (as desc-        Scholarship Requirement: The forty-eight
   Thesis and Comprehensive Requirements:               ribed under the “Graduate Studies” section of this     units of required courses must be taken for a let-
The department offers both M.S. Plan 1 (thesis)         catalog). Students in the Ph.D. program must pass      ter grade (A-F), except for eight units of ECE 299
and M.S. Plan 2 (comprehensive exam). Students          the departmental preliminary exam before the           (Research) for which only S/U grades are allowed.
admitted to the M.S. program may elect either           beginning of the third year of graduate study. To      Courses for which a D or F is received may not be
Plan 1 or Plan 2 any time. Students in the M.S. Plan    ensure timely progress in their research, students     counted. Students must maintain a GPA of 3.0
1 (thesis) must take twelve units of ECE 299            are strongly encouraged to identify a faculty          overall. In addition, a GPA of 3.4 in the core gradu-
(Research) and must submit a thesis as described        member willing to supervise their doctoral             ate courses is generally expected.
in the general requirements of the university.          research by the end of their first year of study.         Ph.D. Preliminary Exam: Ph.D. students must
Students in the M.S. Plan 2 (comprehensive exam)           Students should begin defining and preparing        find a faculty member who will agree to supervise
must undertake an engineering project, which            for their thesis research as soon as they have

their thesis research. This should be done before       time limits for the Ph.D. program, assuming entry            lasers, and photodetectors. Current research
the start of the second year of study. They should      with a B.S. degree, are as follows:                          projects are focused on applications such as
then devote at least half their time to research        1. The Preliminary Exam must be completed                    optical interconnects in high-speed digital sys-
and must pass the departmental preliminary                 before the start of the third year of full-time           tems, optical multidimensional signal and
examination by the end of their second year of             study.                                                    image processing, ultrahigh-speed optical
study. * This is an oral exam in which the student                                                                   networks, 3D optical memories and memory
                                                        2. The University Qualifying Exam must be
presents his or her research to a committee of                                                                       interfaces, 3D imaging and displays, and bio-
                                                           completed before the start of the fifth year of
three ECE faculty members, and is examined                                                                           photonic systems. Facilities available for
                                                           full-time study.
orally for proficiency in his or her area of special-                                                                research in these areas include electron-beam
ization. The outcome of the exam is based on the        3. Support Limit: Students may not receive                   and optical lithography, material growth, micro-
student’s research presentation, proficiency               financial support through the University for              fabrication, assembly, and packaging facilities,
demonstrated in the student’s area of specializa-          more than seven years of full-time study (six             cw and ferntosecond pulse laser systems,
tion, and overall academic record and perform-             years with an M.S. degree).                               detection systems, optical and electro-optic
ance in the graduate program. Successful                4. Registered Time Limit: Students may not reg-              components and devices, and electronic and
completion of the Ph.D. preliminary examination            ister as graduate students for more than eight            optical characterization and testing equipment.
will also satisfy the M.S. Plan 2 comprehensive            years of full-time study (seven years with an           3. Communication Theory and Systems
exam requirement.                                          M.S. degree).                                              Communications theory and systems con-
   * Students in the computer engineering disci-           Half-Time Study: Time limits are extended by               cerns the transmission, processing, and stor-
pline may elect to take two written examinations           one quarter for every two quarters on                      age of information. Topics covered by the
in the Department of Computer Science and                  approved half-time status. Students on half-               group include wireless and wireline commu-
Engineering, in accordance with the CSE guide-             time status may not take more than 6 units                 nications, spread-spectrum communication,
lines, in place of the oral examination on a two-          each quarter.                                              multi-user communication, network proto-
quarter sequence in ECE. They are then required                                                                       cols, error-correcting codes for transmission
to give a thirty to forty-five minute research pres-                                                                  and magnetic recording, data compression,
                                                        Ph.D. Research Programs:
entation in the ECE department.                                                                                       time-series analysis, and image and voice
   Students who have passed the departmental            1. Applied Ocean Sciences: This program in                    processing.
preliminary exam should plan to take the                   applied science related to the oceans is inter-
                                                                                                                   4. Computer Engineering consists of balanced
University Qualifying Examination approximately            departmental with the Graduate Department
                                                                                                                      programs of studies in both hardware and soft-
a year after passing the preliminary exam. The             of the Scripps Institution of Oceanography
                                                                                                                      ware, the premise being that knowledge and
University does not permit students to continue            (SIO) and the Department of Mechanical and
                                                                                                                      skill in both areas are essential both for the
in graduate study for more than four years with-           Aerospace Engineering (MAE). It is adminis-
                                                                                                                      modern-day computer engineer to make the
out passing this examination. The University               tered by SIO. All aspects of man’s purposeful
                                                                                                                      proper unbiased trade-offs in design, and for
Qualifying Examination is an oral exam in which            and unusual intervention into the sea are
                                                                                                                      researchers to consider all paths towards the
the student presents his or her thesis proposal to         included. The M.S. degree is not offered in this
                                                                                                                      solution of research questions and problems.
a university-wide committee. After passing this            program.
                                                                                                                      Toward these ends, the programs emphasize
exam the student is “advanced to candidacy.”The         2. Applied Physics—Applied Optics and                         studies (course work) and competency (com-
final Ph.D. requirements are the submission of a           Photonics: These programs encompass a                      prehensive examinations, and dissertations or
thesis, and the thesis defense (as described under         broad range of interdisciplinary activities                projects) in the areas of VLSI and logic design,
the Graduate Studies section of this catalog).             involving optical science and engineering, opti-           and reliable computer and communication sys-
Students who are advanced to candidacy may                 cal and optoelectronic materials and device                tems. Specific research areas include: computer
register for any ECE course on an S/U basis.               technology, communications, computer engi-                 systems, signal processing systems, multipro-
Departmental Time Limits:                                  neering, and photonic systems engineering.                 cessing and parallel and distributed comput-
                                                           Specific topics of interest include ultrafast opti-        ing, computer communications and networks,
    Students who enter the Ph.D. program with an           cal processes, nonlinear optics, quantum cryp-
M.S. degree from another institution are expected                                                                     computer architecture, computer-aided design,
                                                           tography and communications, optical image                 fault-tolerance and reliability, and neurocom-
to complete their Ph.D. requirements a year ear-           science, multidimensional optoelectronic I/O
lier than B.S. entrants. They must discuss their pro-                                                                 puting. The faculty is composed of interested
                                                           devices, spatial light modulators and photode-             members of the Departments of Electrical and
gram with an academic adviser in their first               tectors, artificial dielectrics, multifunctional dif-
quarter of residence. If their Ph.D. program over-                                                                    Computer Engineering (ECE), Computer
                                                           fractive and micro-optics, volume and                      Science and Engineering (CSE), and related
laps significantly with their earlier M.S. work, the       computer-generated holography, optoelec-
time limits for the preliminary and qualifying                                                                        areas. The specialization is administered by
                                                           tronic and micromechanical devices and pack-               both departments; the requirements are simi-
exams will also be reduced by one year. Specific           aging, wave modulators and detectors,                      lar in both departments, with students taking
                                                           semiconductor-based optoelectronics, injection

   the comprehensive exam, if necessary, given by          optoelectronic, and photonic devices.                  suite of sensors, computers, and problem
   the student’s respective department.                    Extensive facilities are available for research in     dynamics into one integrated system.
5. Electronic Circuits and Systems: This program           this area, including several MBE and MOCVD             Faculty affiliated with the ISRC subarea are
   involves the study and design of analog, mixed-         systems; a complete microfabrication facility;         involved in virtually all aspects of the field,
   signal (combined analog and digital), and digi-         electron-beam lithography and associated               including applications to intelligent communi-
   tal electronic circuits and systems. Emphasis is        process tools for nanoscale fabrication; a             cations systems; advanced human-computer
   on the development, analysis, and implementa-           Rutherford backscattering system; x-ray diffrac-       interfacing; statistical signal- and image-pro-
   tion of integrated circuits that perform analog         tometers; electron microscopy facilities; exten-       cessing; intelligent tracking and guidance sys-
   and digital signal processing for applications          sive scanning-probe instrumentation;                   tems; biomedical system identification and
   such as wireless and wireline communication             cryogenic systems; and comprehensive facili-           control; and control of teleoperated and
   systems, test and measurement systems, and              ties for DC to RF electrical device characteriza-      autonomous multiagent robotic systems.
   interfaces between computers and sensors.               tion and optical characterization of materials
                                                                                                                8. Magnetic Recording is an interdisciplinary
   Particular areas of study currently include radio       and devices.
                                                                                                                   field involving physics, material science, com-
   frequency (RF) power amplifiers, RF low noise         7. Intelligent Systems, Robotics, and Control:            munications, and mechanical engineering. The
   amplifiers, RF mixers, fractional-N phase-locked         This information sciences-based field is con-          physics of magnetic recording involves study-
   loops (PLLs) for modulated and continuous-               cerned with the design of human-interactive            ing magnetic heads, recording media, and the
   wave frequency synthesis, pipelined analog-to-           intelligent systems that can sense the world           process of transferring information between
   digital converters (ADCs), delta-sigma ADCs and          (defined as some specified domain of interest);        the heads and the medium. General areas of
   digital-to-analog converters (DACs), PLLs for            represent or model the world; detect and iden-         investigation include: nonlinear behavior of
   clock recovery, adaptive and fixed continuous-           tify states and events in the world; reason            magnetic heads, very high frequency loss
   time, switched-capacitor, and digital filters, echo      about and make decisions about the world;              mechanisms in head materials, characterization
   cancellation circuits, adaptive equalization cir-        and/or act on the world, perhaps all in real-          of recording media by micromagnetic and
   cuits, wireless receiver and transmitter lineariza-      time. A sense of the type of systems and appli-        many body interaction analysis, response of
   tion circuits, mixed-signal baseband processing          cations encountered in this discipline can be          the medium to the application of spatially
   circuits for wireless transmitters and receivers,        obtained by viewing the projects shown at the          varying vectorial head fields, fundamental
   high-speed digital circuits, and high-speed              Web site                     analysis of medium nonuniformities leading to
   clock distribution circuits.                            The development of such sophisticated sys-              media noise, and experimental studies of the
6. Applied Physics—Electronic Devices and                  tems is necessarily an interdiscipinary activity.       channel transfer function emphasizing non-
   Materials: This program addresses the synthe-           To sense and succinctly represent events in the         linearities, interferences, and noise. Current
   sis and characterization of advanced electronic         world requires knowledge of signal processing,          projects include numerical simulations of high
   materials, including semiconductors, metals,            computer vision, information theory, coding             density digital recording in metallic thin films,
   and dielectrics, and their application in novel         theory, and data-basing; to detect and reason           micromagnetic analysis of magnetic reversal
   electronic, optoelectronic, and photonic                about states of the world utilizes concepts             in individual magnetic particles, theory of
   devices. Emphasis is placed on exploration of           from statistical detection theory, hypothesis           recorded transition phase noise and magneti-
   techniques for high-quality epitaxial growth of         testing, pattern recognition, time series analy-        zation induced nonlinear bit shift in thin metal-
   semiconductors, including both molecular-               sis, and artificial intelligence; to make good          lic films, and analysis of the thermal-temporal
   beam epitaxy (MBE) and metalorganic chemi-              decisions about highly complex systems                  stability of interacting fine particles.
   cal vapor deposition (MOCVD); fabrication and           requires knowledge of traditional mathemati-           Research laboratories are housed in the Center
   characterization of materials and devices at the        cal optimization theory and contemporary               for Magnetic Recording Research, a national
   nanoscale; development of novel materials               near-optimal approaches such as evolutionary           center devoted to multi-disciplinary teaching
   processing and integration techniques; and              computation; and to act upon the world                 and research in the field.
   high-performance electronic devices based on            requires familiarity with concepts of control
                                                                                                                9. Radio and Space Science: The Radio Science
   both Group IV and III-V compound semicon-               theory and robotics. Very often learning and
                                                                                                                   Program focuses on the study of radio waves
   ductor materials. Areas of current interest             adaptation are required as either critical
                                                                                                                   propagating through turbulent media. The pri-
   include novel materials and high-speed                  aspects of the world are poorly known at the
                                                                                                                   mary objectives are probing of otherwise inac-
   devices for wireless communications; elec-              outset, and must be refined online, or the
                                                                                                                   cessible media such as the solar wind and
   tronic and optoelectronic devices for high-             world is non-stationary and our system must
                                                                                                                   interstellar plasma. Techniques for removing
   speed optical networks; high-power                      constantly adapt to it as it evolves. In addition
                                                                                                                   the effects of the turbulent medium to restore
   microwave-frequency devices; heterogeneous              to the theoretical information and computer
                                                                                                                   the intrinsic signals are also studied.
   materials integration; novel device structures          science aspects, many important hardware and
   for biological and chemical sensing; advanced           software issues must be addressed in order to          The Space Science Program is concerned with
   tools for nanoscale characterization and                obtain an effective fusion of a complicated            the nature of the sun, its ionized and super-
   metrology; and novel nanoscale electronic,                                                                     sonic outer atmosphere (the solar wind), and

  the interaction of the solar wind with various       Information Engineering; and the Institute for                 ture, one hour of discussion, three hours of laboratory.
                                                                                                                      (Lab fee: $35) Prerequisites: ECE 20A and Math. 20A with
  bodies in the solar system. Theoretical studies      Neural Computation.                                            grades of C- or better,Math.20B must be taken concurrently.
  include: the interaction of the solar wind with         Department research is associated with the                  (F,W,S) K. Quest
  the earth, planets, and comets; cosmic dusty-        Center for Astronomy and Space Science, the
                                                                                                                      30. Introduction to Computer Engineering (4)
  plasmas; waves in the ionosphere; and the            Center for Magnetic Recording Research, the                    This course is designed to introduce the fundamentals
  physics of shocks. A major theoretical effort        California Space Institute, and the Institute for              of both the hardware and software in a computer sys-
  involves the use of supercomputers for model-        Nonlinear Science. Departmental researchers also               tem. Topics include: representation of information,
                                                                                                                      computer organization and design, assembly and
  ing and simulation studies of both fluid and         use various national and international laborato-               microprogramming, current technology in logic design.
  kinetic processes in space plasmas.                  ries, such as the National Nanofabrication Facility            (Students who have taken CSE 30 may not take ECE 30
                                                       and the National Radio Astronomy Laboratory.                   for credit.) Three hours of lecture, four hours of labora-
  Students in radio science will take measure-                                                                        tory. Prerequisite: ECE 20B and CSE 11 or 8A-B with grades
  ments at various radio observatories in the U.S.        The department emphasizes computational                     of C- or better. (F,W) K. Yun
  and elsewhere. This work involves a great deal       capability and maintains numerous computer lab-
                                                                                                                      53A. Fundamentals of Electrical Engineering I (4)
  of digital signal processing and statistical         oratories for instruction and research. One of the             This is a coordinated lecture and laboratory course for
  analysis. All students will need to become           NSF national supercomputer centers is located on               students majoring in other branches of science and
                                                       the campus. This is particularly useful for those              engineering. It covers analysis and design of passive
  familiar with electromagnetic theory, plasma                                                                        and active circuits. The course emphasizes problem-
  physics, and numerical analysis.                     whose work requires high data bandwidths.                      solving and laboratory work on passive circuits. Three
                                                                                                                      hours of lecture, one hour of discussion, one hour of
10. The Signal and Image Processing Program                                                                           laboratory. Prerequisites: Math. 21C, Math. 21D must be
  explores engineering issues related to the                              COURSES                                     concurrent, Phys. 2B or BS or 4C with grades of C– or bet-
  modeling of signals starting from the physics                                                                       ter. (F,W) P. Cosman

  of the problem, developing and evaluating               The department will endeavor to offer the                   53B. Fundamentals of Electrical Engineering II (4)
  algorithms for extracting the necessary infor-       courses as out lined below; however, unforeseen                This is a coordinated lecture and laboratory course for
                                                       circumstances sometimes require a change of                    students majoring in other branches of science and
  mation from the signal, and the implementa-                                                                         engineering. It covers analog and digital systems and
  tion of these algorithms on electronic and           scheduled offerings. Students are strongly                     active circuit design. Laboratory work will include oper-
  opto-electronic systems. Specific research areas     advised to check the Schedule of Classes or the                ational amplifiers, diodes and transistors. Two hours of
                                                       department before relying on the schedule                      lecture, one hour of discussion, three hours of labora-
  include filter design, fast transforms, adaptive                                                                    tory. Prerequisites: Phys. 2B or BS or 4C, ECE 53A, Math.
  filters, spectrum estimation and modeling, sen-      below. The names appearing below the course                    20C-D or 21C, 21D with grades of C– or better. (W,S) B.
  sor array processing, image processing, motion       descriptions are those of faculty members in                   Rickett
  estimation from images, and the implementa-          charge of the course. For the names of the
                                                                                                                      60A. Circuits and Systems I (4)
  tion of signal processing algorithms using           instructors who will teach the course, please refer            Voltage-current relationships for circuit elements,
  appropriate technologies with applications in        to the quarterly Schedule of Classes. The depart-              Kirchhoff’s voltage and current laws, source transforma-
                                                                                                                      tions, loop and node analysis, initial conditions, the
  sonar, radar, speech, geophysics, computer-          mental Web site http://www.ece.ucsd.edut                       Laplace transform, inverse transforms, partial fraction
  aided tomography, image restoration, robotic         includes the present best estimate of the sched-               expansions. Three hours of lecture, one hour of discus-
                                                       ule of classes for the entire academic year.                   sion, one hour of laboratory. Prerequisites: Math. 20A-B-C
  vision, and pattern recognition.
                                                                                                                      or 21C and Math. 20F, ECE 20A and 20B with grades of C–
                                                                          LOWER-DIVISION                              or better. (F,W) R. Lugannani
Research Facilities                                                                                                   60B. Circuits and Systems II (4)
                                                       1A-B-C. Mesa Orientation Course (1-1-1)
   Most of the research laboratories of the            Students will be given an introduction to the engineer-
                                                                                                                      Solution of network equations using Laplace trans-
                                                                                                                      forms; convolution integral; the concept of impedance;
department are associated with individual faculty      ing profession and our undergraduate program.
                                                                                                                      Thevenin’s and Norton’s theorems; transfer functions;
members or small informal groups of faculty.           Exercises and practicums will develop the problem-
                                                                                                                      poles and zeros; two-port networks, steady state sinu-
                                                       solving skills needed to succeed in engineering. One
Larger instruments and facilities, such as those for   and a half hours of lecture. Prerequisite: none.(F,W,S) M.L.
                                                                                                                      soidal response; Bode plots. Three hours of lecture, one
                                                                                                                      hour of discussion. Prerequisite: ECE 60A and Math. 21D
electron microscopy and e-beam lithography are         Rudee
                                                                                                                      with grades of C– or better. (W,S) W. Ku
operated jointly. In addition the department oper-     20A. Introduction to Electrical Engineering I (4)
ates several research centers and participates in      Areas of electrical engineering from Ohm’s Law to semi-        60L. Circuits and Systems Laboratory (4)
                                                       conductor physics to engineering ethics are discussed,         Essential aspects of electrical engineering. Topics cov-
various university wide organized research units.                                                                     ered include transient and steady-state response of RLC
                                                       demonstrated, and experienced. Principles introduced in
   The department-operated research centers are        lectures are put to use as student lab teams build a work-     circuits, transistor circuits, operational amplifiers, non-
the NSF Industrial/University Cooperative              ing system.The first quarter emphasizes analog electron-       linear circuit components, power supplies, digital cir-
                                                       ics. Two hours of lecture, one hour of discussion, three       cuits and error analysis. The material complements the
Research Center (I/UCRC) for Ultra-High Speed                                                                         topics in ECE 60A and 60B. One and a half hours of lec-
                                                       hours of laboratory. (Lab fee: $35) Prerequisite: Math. 20A
Integrated Circuits and Systems (ICAS);                must be taken concurrently. (F,W,S) A. Sebald                  ture, three and a half hours of laboratory. (Lab fee: $15)
Optoelectronics Technology Center (OTC) spon-                                                                         Prerequisites: ECE 20A-B, ECE 60A with grades of C– or bet-
                                                       20B. Introduction to Electrical Engineering II (4)             ter. ECE 60B must be taken concurrently. (S) F. Najmabadi
sored by the Advanced Project Research Agency;         This continuation of ECE 20A emphasizes semiconductor
the Center for Wireless Communications which is        devices and digital electronics. Lab teams complete their      90. Undergraduate Seminar (1)
                                                       system as they learn engineering design methods.               This seminar class will provide a broad review of current
a university-industry partnership; the Center for                                                                     research topics in both electrical engineering and com-
                                                       Students are prepared for proceeding toward their choice
                                                       of an electrical engineering profession. Two hours of lec-     puter engineering. Typical subject areas are signal pro-
                                                                                                                      cessing, VLSI design, electronic materials and devices,

radio astronomy, communications, and optical comput-          ture, one hour of discussion. Prerequisites: Math. 20A-B-C      136. Fundamentals of Semiconductor Device
ing. One hour lecture. Prerequisite: none. (F,W,S)            or 21C, 20D or 21D, 20F, with grades of C– or better. (ECE      Fabrication (4)
                                                              101 recommended). (W,S) A. Acampora, R. Rao                     Crystal growth, controlled diffusion, determination of
                                                                                                                              junction-depth and impurity profile, epitaxy, ion-
                   UPPER-DIVISION                             111. Advanced Digital Design Project (4)                        implantation, oxidation, lithography, chemical vapor
                                                              Advanced topics in digital circuits and systems. Use of         deposition, etching, process simulation and robust
101. Linear Systems Fundamentals (4)                          computers and design automation tools. Hazard elimi-            design for fabrication. Three hours of lecture. Prere-
Complex variables. Singularities and residues. Signal         nation, synchronous/asnychronous FSM synthesis, syn-            quisite: ECE 103 with a grade of C– or better. (S) P. Yu, E. Yu
and system analysis in continuous and discrete time.          chronization and arbitration, pipelining and timing
Fourier series and transforms. Laplace and z-transforms.                                                                      136L. Microelectronics Laboratory (4)
                                                              issues. Problem sets and design exercises. A large-scale
Linear Time Invariant Systems. Impulse response, fre-                                                                         Laboratory fabrication of diodes and field effect transis-
                                                              design project. Simulation and/or rapid prototyping.            tors covering photolithography, oxidation, diffusion,
quency response, and transfer functions. Poles and
                                                              Prerequisite: ECE 108 or CSE 140 with grades of C– or bet-      thin film deposition, etching and evaluation of devices.
zeros. Stability. Convolution. Sampling. Aliasing. Three
                                                              ter. (F) K. Yun, B. Lin                                         Two hours of lecture, three hours of laboratory. (Lab fee:
hours of lecture, one hour of discussion. Prerequisites:
Math. 20A-B-C or 21C, 20D or 21D, 20F, ECE 60B and 60L or                                                                     $35) Prerequisite: ECE 103 with a grade of C– or better.
                                                              118. Computer Interfacing (4)                                   (F,S) S. S. Lau
ECE 53A and 53B with grades of C– or better. (F,W) K.
                                                              Interfacing computers and embedded controllers to
Zeger, P. Siegel
                                                              the real world: busses, interrupts, DMA, memory map-            138L. Microstructuring Processing Technology
102. Introduction to Active Circuit Design (4)                ping, concurrency, digital I/O, standards for serial and        Laboratory (4)
Nonlinear active circuits design. Nonlinear device mod-       parallel communications, A/D, D/A, sensors, signal con-         A laboratory course covering the concept and practice
els for diodes, bipolar and field-effect transistors.         ditioning, video, and closed loop control. Students             of microstructuring science and technology in fabricat-
Linearization of device models and small signal equiva-       design and construct an interfacing project. Three              ing devices relevant to sensors, lab-chips and related
lent circuits. Circuit designs will be simulated by com-      hours of lecture, four hours of laboratory. (Lab fee: $20)      devices. Three hours of lecture, three hours of labora-
puter and tested in the laboratory.Three hours of lecture,    Prerequisites: ECE 30 or CSE 30 and ECE 60A-B-L or ECE          tory. (Lab fee: $40) Prerequisite: upper-division standing
one hour discussion, three hours of laboratory. (Lab fee:     53A-B. (S) C. Guest                                             for science and engineering students. (W) S. S. Lau and
                                                                                                                              Yu-Hwa Lo
$15) Prerequisites: Math. 20A-B-C or 21C, 20D or 21D, 20F,
Phys. 2A-B or 4A-C, ECE 60B and 60L or ECE 53A and 53B        120. Solar System Physics (4)
                                                                                                                              139. Semiconductor Device Design and Modeling (4)
with grades of C– or better. (F,W) W. Coles, L. Larson        General introduction to planetary bodies, the overall
                                                                                                                              Device physics of modern field effect transistors and
                                                              structure of the solar system, and space plasma physics.
                                                                                                                              bipolar transistors, including behavior of submicron
103. Fundamentals of Devices and Materials (4)                Course emphasis will be on the solar atmosphere, how            structures. Relationship between structure and circuit
Introduction to semiconductor materials and devices.          the solar wind is produced, and its interaction with both       models of transistors. CMOS and BiCMOS technologies.
Semiconductor crystal structure, energy bands, doping,        magnetized and unmagnitized planets (and comets).               Emphasis on computer simulation of transistor opera-
carrier statistics, drift and diffusion. p-n junctions,       Three hours of lecture, four hours of laboratory.               tion and application in integrated circuits. Three hours
metal-semiconductor junctions. Bipolar junction tran-         Prerequisites: Phys. 2A-C or 4A-D, Math. 20A-B, 20C or 21C      of lecture. Prerequisites: ECE 135A-B with grades of C– or
sistors: current flow, amplification, switching, non-ideal    with grades of C- or better. (S) N. Omidi                       better. (W) P. Asbeck
behavior. Metal-oxide-semiconductor structures,
MOSFETs, device scaling. Three hours of lecture, one          123. Antenna Systems Engineering (4)                            145AL-BL-CL. Acoustics Laboratory (4-4-4)
hour of discussion. Prerequisites: Math. 20A-B-C or 21C,      The electromagnetic and systems engineering of radio            Automated laboratory based on H-P GPIB controlled
20D or 21D, 20E, 20F, Phys. 2A-D or 4A-E, ECE 60B and 60L     antennas for terrestrial wireless and satellite communi-        instruments. Software controlled data collection and
or ECE 53A and 53B with grades of C– or better. (F,W) E.Yu,   cations. Antenna impedance, beam pattern, gain, and             analysis. Vibrations and waves in strings and bars of
H-L Luo                                                       polarization. Dipoles, monopoles, paraboloids, phased           electromechanical systems and transducers. Transmis-
                                                              arrays. Power and noise budgets for communication               sions, reflection, and scattering of sound waves in air
107. Electromagnetism (4)                                                                                                     and water. Aural and visual detection. Two hours of lec-
                                                              links. Atmospheric propagation and multipath. Three
Electrostatics and magnetostatics; electrodynamics;                                                                           ture, four hours lab. Prerequisite: ECE 107 with a grade of
                                                              hours of lecture, one hour of discussion. Prerequisite:
Maxwell’s equations; plane waves; skin effect.                                                                                C– or better or consent of instructor. (F-W-S) J. Hildebrand
Electromagnetics of transmission lines: reflection and        ECE 107 with a grade of C– or better. (F) B. Rickett
transmission at discontinuities, Smith chart, pulse prop-                                                                     146. Introduction to Magnetic Recording (4)
                                                              134. Electronic Materials Science of Integrated
agation, dispersion. Rectangular waveguides. Dielectric                                                                       A laboratory introduction to the writing and reading of
                                                              Circuits (4)
and magnetic properties of materials. Electromagnetics                                                                        digital information in a disk drive. Basic magnetic
                                                              Electronic materials science with emphasis on topics
of circuits. Three hours of lecture, one hour of discus-                                                                      recording measurements on state-of-art disk drives to
                                                              pertinent to microelectronics and VLSI technology.
sion. Prerequisites: Math. 20A-B-C or 21C, 20D or 21D, 20E,                                                                   evaluate signals, noise, erasure, and non-linearities that
                                                              Concept of the course is to use components in inte-             characterize this channel. Lectures on the recording
20F, Phys. 2A-C or 4A-D, ECE 60B and 60L or ECE 53A and       grated circuits to discuss structure, thermodynamics,
53B with grades of C– or better. (W,S) K. Quest, N. Bertram                                                                   process will allow comparison of measurements with
                                                              reaction kinetics, and electrical properties of materials.      basic voltage expressions. E/M FEM software utilized to
                                                              Three hours of lecture. Prerequisites: Phys. 2C-D with          study geometric effects on the record and play trans-
108. Digital Circuits (4)
                                                              grades of C– or better. (S) E. Yu                               ducers. One hour of lecture, three hours of laboratory.
Digital integrated electronic circuits for processing
technologies. Analytical methods for static and                                                                               Prerequisite: ECE 107 with a grade of C– or better. (W) N.
                                                              135A. Semiconductor Physics (4)
dynamic characteristics. MOS field-effect transistors                                                                         Bertram
                                                              Crystal structure and quantum theory of solids; elec-
and bipolar junction transistors, circuits for logic gates,   tronic band structure; review of carrier statistics, drift      153. Probability and Random Processes for
flip-flop, data paths, programmable logic arrays, mem-        and diffusion, p-n junctions; nonequilibrium carriers,          Engineers (4)
ory elements. Three hours of lecture, one hour of dis-        imrefs, traps, recombination, etc; metal-semiconductor
                                                                                                                              Random processes. Stationary processes: correlation,
cussion, three hours of laboratory. (Lab fee: $20)            junctions and heterojunctions. Three hours of lecture.
                                                                                                                              power spectral density. Gaussian processes and linear
Prerequisites: ECE 102, ECE 30 or CSE 30 with grades of C–    Prerequisite: ECE 103 with a grade of C– or better. (F) H. L.
                                                                                                                              transformation of Gaussian processes. Point processes.
or better. (W,S) S. Esener, P. Chau                           Luo
                                                                                                                              Random noise in linear systems. Three hours of lecture,
                                                              135B. Electronic Devices (4)                                    one hour of discussion. Prerequisite: ECE 109 with a grade
109. Engineering Probability and Statistics (4)                                                                               of C– or better. (F,S) R. Rao
Axioms of probability, conditional probability, theorem       Structure and operation of bipolar junction transistors,
of total probability, random variables, densities,            junction field-effect transistors, metal-oxide-semicon-
                                                              ductor diodes and transistors. Analysis of dc and ac            154A. Communications Systems I (4)
expected values, characteristic functions, transforma-                                                                        Study of analog modulation systems including AM, SSB,
                                                              characteristics. Charge control model of dynamic
tion of random variables, central limit theorem.                                                                              DSB, VSB, FM, and PM. Performance analysis of both
                                                              behavior. Three hours of lecture. Prerequisite: ECE 135A
Random number generation, engineering reliability,            with a grade of C– or better. (W) H. L. Luo                     coherent and noncoherent receivers, including thresh-
elements of estimation, random sampling, sampling                                                                             old effects in FM.Three hours of lecture, one hour of dis-
distributions, tests for hypothesis. Three hours of lec-

cussion. Prerequisite: ECE 153 with a grade of C– or better.   159C. Queuing Systems: Networks & Operation Research           cussion, three hours of laboratory. (Lab fee: $10)
(F) L. Milstein                                                Applications (4)                                               Prerequisite: ECE 108 with a grade of C– or better. (W) P.
                                                               (Not offered 2001/2002.) Elements of computer-com-             Chau
154B. Communications Systems II (4)                            munication networks; delay analysis, capacity, and flow
Design and performance analysis of digital modulation          assignments. Operation research applications, cost             166. Microwave Systems and Circuits (4)
techniques, including probability of error results for         models and optimization, a case study, introduction to         Waves, distributed circuits, and scattering matrixmeth-
PSK, DPSK, and FSK. Introduction to effects of intersym-       inventory systems. Three hours of lecture. Prerequisite:       ods. Passive microwave elements. Impedance match-
bol interference and fading. Detection and estimation          ECE 159B with a grade of C– or better. (S) E. Masry            ing. Detection and frequency conversion using
theory, including optimal receiver design and maxi-                                                                           microwave diodes. Design of transistor amplifiers
mum-likelihood parameter estimation. Three hours of            161A. Introduction to Digital Signal Processing (4)            including noise performance. Circuits designs will be
lecture, one hour of discussion. Prerequisite: ECE 154A        Review of discrete-time systems and signals, Discrete-         simulated by computer and tested in the laboratory.
with a grade of C– or better. (W) L. Milstein                  Time Fourier Transform and its properties, the Fast            Three hours of lecture, one hour of discussion, three
                                                               Fourier Transform, design of Finite Impulse Response           hours of laboratory. Prerequisites: ECE 102 and 107 with
154C. Communications Systems III (4)                           (FIR) and Infinite Impulse Response (IIR) filters, imple-      grades of C– or better. (S) P. Asbeck
Introduction to information theory and coding, includ-         mentation of digital filters. Three hours of lecture, one
ing entropy, average mutual information, channel               hour of discussion. Prerequisite: ECE 101 and 109 with         171A. Linear Control System Theory (4)
capacity, block codes and convolutional codes. Three           grades of C– or better. (F,S) W. Hodgkiss, B. Rao              Stability of continous- and discrete-time single-
hours of lecture, one hour of discussion. Prerequisite:                                                                       input/single-output linear time-invariant control sys-
ECE 154B with a grade of C– or better. (S) L. Milstein         161B. Digital Signal Processing I (4)                          tems emphasizing frequency domain methods.
                                                               Sampling and quantization of baseband signals; A/D             Transient and steady-state behavior. Stability analysis
155A. Digital Recording Systems (4)                            and D/A conversion, quantization noise, oversampling           by root locus, Bode, Nyquist, and Nichols plots.
This course will be concerned with modulation and              and noise shaping. Sampling of bandpass signals,               Compensator design. Three hours of lecture, one hour
coding techniques for digital recording channels. Three        undersampling downconversion, and Hilbert trans-               of discussion. Prerequisite: ECE 60B or ECE 53-54 or MAE
hours of lecture. Prerequisites: ECE 109 and 153 with          forms. Coefficient quantization, roundoff noise, limit         140 with a grade of C– or better. (S) D. Sworder
grades of C– or better and concurrent registration in ECE      cycles and overflow oscillations. Insensitive filter struc-
154A required. Department stamp required. (F) J. Wolf          tures, lattice and wave digital filters. Systems will be       171B. Linear Control System Theory (4)
                                                               designed and tested with Matlab, implemented with              Time-domain, state-variable formulation of the control
155B-C. Digital Recording Projects (4-4)                       DSP procesors and tested in the laboratory.Three hours         problem for both discrete-time and continous-time lin-
These courses will be concerned with modulation and            of lecture, one hour of discussion, three hours of labo-       ear systems. State-space realizations from transfer func-
coding techniques for digital recording channels. In           ratory. (Lab fee: $15) Prerequisite: ECE 161A with a grade     tion system description. Internal and input-output
winter and spring quarters, students will perform              of C– or better. (W) W. Coles, P. Chau                         stability, controllability/observability, minimal realiza-
experiments and/or computer simulations. One hour
                                                                                                                              tions, and pole-placement by full-state feedback. Three
lecture, four hours of laboratory. Prerequisites: ECE 109      161C. Digital Signal Processing II (4)                         hours of lecture, one hour of discussion. Prerequisite:
and 153 with grades of C– or better and concurrent regis-      Basic principles of adaptive algorithms. Algorithms for        ECE 171A with a grade of C– or better. (F) D. Sworder
tration in ECE 154B-C required. Department stamp               adaptive FIR (gradient, LMS, recursive techniques) and
required. (W,S) J. Wolf                                        adaptive IIR filtering. Implementation issues. Introduc-       172A. Introduction to Intelligent Systems: Robotics and
                                                               tion of fast transform algorithms (FFT, Winograd FFT,          Machine Intelligence (4)
158A. Data Networks I (4)                                      number theoric transforms, DCT). Fast convolution and          This course will introduce basic concepts in machine
Layered network architectures, data link control proto-        correlation Algorithms simulated by MATLAB. Three              perception.Topics covered will include: edge detection,
cols and multiple-access systems, performance analy-           hours of lecture, one hour of discussion, three hours of       segmentation, texture analysis, image registration, and
sis. Flow control; prevention of deadlock and                  laboratory. (Lab fee: $15) Prerequisite: ECE 161B with a       compression. Prerequisite: ECE 101 with a grade of C– or
throughput degradation. Routing, centralized and               grade of C– or better. (S) P. Chau                             better, ECE 109 recommended. (F) M. Trivedi
decentralized schemes, static dynamic algorithms.
Shortest path and minimum average delay algorithms.            163. Electronic Circuits and Systems (4)                       173. Theory and Applications of Neural Networks and
Comparisons.Three hours of lecture, three hours of lab-        Analysis and design of analog circuits and systems.            Fuzzy Logic (4)
oratory. Prerequisite: ECE 109 with a grade of C– or better.   Feedback systems with applications to operational              Theory of fuzzy logic, reasoning and control; mathe-
ECE 159A recommended. (W) R. Rao                               amplifier circuits. Stability, sensitivity, bandwidth, com-    matical aspects of neural architectures for pattern clas-
                                                               pensation. Design of active filters. Switched capacitor        sification, functional approximation, and adaptive
158B. Data Networks II (4)                                     circuits. Phase-locked loops. Analog-to-digital and digi-      estimation and control; theory of computer-assisted
Layered network architectures, data link control proto-        tal-to-analog conversion. Three hours of lecture, one          learning (supervised, unsupervised and hybrid); theory
cols and multiple-access systems, performance analy-           hour of discussion, three hours of laboratory. (Lab fee:       and practice of recurrent networks (stability, placement
sis. Flow control; prevention of deadlock and                  $10) Prerequisites: ECE 101 and 102 with grades of C– or       of equilibria); computer-aided design of fuzzy and neu-
throughput degradation. Routing, centralized and               better. (S) W. Coles                                           ral systems, Bayes and minimax design. Four hours of
decentralized schemes, static dynamic algorithms.                                                                             lecture. Prerequisite: Math. 20F with a grade of C– or bet-
Shortest path and minimum average delay algorithms.            164. Analog Integrated Circuit Design (4)                      ter. (S) A. Sebald
Comparisons.Three hours of lecture, three hours of lab-        Design of linear and non-linear analog integrated cir-
oratory. Prerequisite: ECE 158A with a grade of C– or bet-     cuits including operational amplifiers, voltage regula-        174. Introduction to Linear and Nonlinear Optimization
ter. (S) R. Cruz                                               tors, drivers, power stages, oscillators, and multipliers.     with Applications (4)
                                                               Use of feedback and evaluation of noise performance.           The linear least squares problem, including constrained
159A. Queuing Systems: Fundamentals (4)                        Parasitic effects of integrated circuit technology.            and unconstrained quadratic optimization and the rela-
Analysis of single and multiserver queuing systems;            Laboratory simulation and testing of circuits. Three           tionship to the geometry of linear transformations.
queue size and waiting times. Modeling of telephone            hours of lecture, one hour of discussion, three hours of       Introduction to nonlinear optimization. Applications to
systems, interactive computer systems and the                  laboratory. Prerequisite: ECE 102 with a grade of C– or bet-   signal processing, system identification, robotics, and
machine repair problems. Three hours of lecture.               ter. ECE 163 recommended. (F) I. Galton                        circuit design. Four hours of lecture. Prerequisite: Math.
Prerequisite: ECE 109 with a grade of C– or better. (F) E.                                                                    20F with a grade of C– or better. (S) B. Rao
Masry                                                          165. Digital Integrated Circuit Design (4)
                                                               VLSI digital systems. Circuit characterization, perform-       175. Elements of Machine Intelligence: Pattern
159B. Queuing Systems: Computer Systems                        ance estimation, and optimization. Circuits for alterna-       Recognition and Machine Learning (4)
Performance (4)                                                tive logic styles and clocking schemes. Subsystems             Decision functions. Pattern classification by distance
Computer systems applications; priority scheduling,            include ALUs, memory, processor arrays, and PLAs.              and likelihood functions; deterministic and statistical
time-sharing scheduling, modeling and performance of           Techniques for gate arrays, standard cell, and custom          trainable pattern classifiers; feature selection; issues in
interactive multiprogrammed computer systems, a                design. Design and simulation using CAD tools.                 machine learning. Four hours of lecture. Prerequisites:
case study. Three hours of lecture. Prerequisite: ECE 159A     (Students who have taken CSE 143 may not take ECE              ECE 109 and ECE 174 with grades of C– or better. (W) K.
with a grade of C– or better. (W) E. Masry                     165 for credit.) Three hours of lecture, one hour of dis-      Kreutz-Delgado

181. Geometrical Optics and Guided-wave Optics (4)              Written final report required. Prerequisites: Students        222A-B-C. Applied Electromagnetic Theory (4)
Electromagnetic optics, reflection, refraction, and strati-     enrolling in this course must have completed all of the       Electrostatics and dielectric materials. Uniqueness, reci-
fied media. Geometrical optics, ray tracing, aberrations,       breadth courses and one depth course. The department          procity, and Poynting theorems. Solutions to Maxwell’s
optical elements, and optical system design. Optical            stamp is required to enroll in ECE 192. (Specifications and   equations in rectangular, cylindrical, and spherical coor-
instruments, photometry, radiometry, and interferome-           enrollment forms are available in the undergraduate           dinates. Waves in isotropic and anisotropic media,
ters. Resonators, guided-wave and fiber optics. Labs: ray       office.)                                                      transmission lines, wave-guides, optical fibers, and reso-
tracing, interferometry, guided-wave and fiberoptics.                                                                         nant structures. Radiation, propagation, and scattering
Three hours of lecture, two hours of demonstration lab-         193H. Honors Project (4-8)                                    problems. Scattering matrices, microwave circuits, and
oratory. (Lab fee: $35) Prerequisites: ECE 103 and 107 with     An advanced reading or research project performed             antennas. Three hours of lecture. Prerequisites: ECE 107,
grades of C– or better. (S) C. Guest                            under the direction of an ECE faculty member. Must            123, 124 or equivalent. (F,W,S) B. Rickett
                                                                contain enough design to satisfy the ECE program’s
182. Physical Optics and Fourier Optics (4)                     four-unit design requirement. Must be taken for a letter      230A. Solid State Electronics (4)
Diffraction: Kirchoff, Fraunhofer, and Fresnel. Fourier         grade. May extend over two quarters with a grade              This course is designed to provide a general back-
and Fresnel Transform optics and optical information                                                                          ground in solid state electronic materials and devices.
                                                                assigned at completion for both quarters. Prerequisite:
processing. Holography, Gaussian beams, coherence,                                                                            Course content emphasizes the fundamental and cur-
                                                                admission to the ECE departmental honors program.
statistical optics and photon optics. Polarization and                                                                        rent issues of semiconductor physics related to the ECE
crystal optics. Labs: diffraction, Fourier and Fresnel          195. Teaching (2 or 4)                                        solid state electronics sequences. Three hours of lec-
Transforms, coherence. Three hours of lecture, two                                                                            ture. Prerequisites: fundamentals of quantum mechanics,
                                                                Teaching and tutorial activities associated with courses
hours of demonstration laboratory. (Lab fee: $35)                                                                             ECE 135A-B, or equivalent. (F) S.S. Lau
                                                                and seminars. Not more than four units of ECE 195 may
Prerequisites: ECE 103 and 107 with grades of C– or better.
                                                                be used for satisfying graduation requirements. (P/NP
(F) S. Lee and S. Fainman                                                                                                     230B. Solid State Electronics (4)
                                                                grades only.) Three hours of lecture. Prerequisite: con-
                                                                                                                              Physics of solid-state electronic devices, including p-n
183. Optical Electronics (4)                                    sent of the department chair.
                                                                                                                              diodes, Schottky diodes, field-effect transistors, bipolar
Quantum electronics, interaction of light and matter                                                                          transistors, pnpn structures. Computer simulation of
in atomic systems, semiconductors. Laser amplifiers             197. Field Study in Electrical and Computer Engineering
                                                                (4, 8, 12, or 16)                                             devices, scaling characteristics, high frequency per-
and laser systems. Photodetection. Electrooptics and                                                                          formance, and circuit models. Three hours of lecture.
acoustooptics, photonic switching. Fiber optic commu-           Directed study and research at laboratories and obser-
                                                                                                                              Prerequisite: ECE 230A. (W) P. Asbeck
nication systems. Labs: semiconductor lasers, semicon-          vatories away from the campus. (P/NP grades only.)
ductor photodetectors. Three hours of lecture, two              Prerequisites: consent of instructor and approval of the      230C. Solid State Electronics (4)
hours of demonstration laboratory. (Lab fee: $35)               department.                                                   This course is designed to provide a treatise of semi-
Prerequisites: ECE 103 and 107 with grades of C– or better.                                                                   conductor devices based on solid state phenomena.
(S) C. Tu                                                       198. Directed Group Study (2 or 4)
                                                                                                                              Band structures carrier scattering and recombination
                                                                Topics in electrical and computer engineering whose
                                                                                                                              processes and their influence on transport properties
184. Optical Information Processing and                         study involves reading and discussion by a small group
                                                                                                                              will be emphasized. Three hours of lecture. Prerequisite:
Holography (4)                                                  of students under direction of a faculty member. (P/NP
                                                                                                                              ECE 230A or equivalent. (S) P. Yu
Labs: optical holography, photorefractive effect, spatial       grades only.) Prerequisite: consent of instructor.
filtering, computer generated holography. Two and a                                                                           230E. Introduction to Superconductivity (4)
half hours of lecture, four hours of laboratory. (Lab fee:      199. Independent Study for Undergraduates (2 or 4)
                                                                                                                              Superconductivity phenomenon, two-fluid models and
$35) Prerequisite: ECE 182 with a grade of C– or better. (W)    Independent reading or research by special arrange-
                                                                                                                              phenomenological theories, magnetic properties of
S. Fainman and S. Lee                                           ment with a faculty member. (P/NP grades only.)
                                                                                                                              ideal superconductors, type II superconductors, tunnel-
                                                                Prerequisite: consent of instructor.                          ing, microscopic theory, superconducting materials,
185. Lasers and Modulators (4)
                                                                                                                              current developments. Three hours of lecture.
Labs: CO2 laser, HeNe laser, electrooptic modulation,
acoustooptic modulation, spatial light modulators. Two                                GRADUATE                                Prerequisite: consent of instructor. (F) H-L. Luo
and a half hours of lecture, four hours of laboratory. (Lab                                                                   231. Thin Film Phenomena (4)
fee: $35) Prerequisite: ECE 183 with a grade of C– or better.   200. Research Conference (2)
                                                                                                                              This course is designed to provide a general survey of
(S) S. Lee and S. Fainman                                       Group discussion of research activities and progress of
                                                                                                                              thin film processes pertinent to microelectronics.Topics
                                                                group members. (S/U grades only.) Prerequisite: consent
                                                                                                                              to be discussed include preparation methods, various
187. Introduction to Biomedical Imaging and                     of instructor. (F,W,S) Staff
                                                                                                                              modern analytical techniques, physical properties,
Sensing (4)
                                                                210. Information Systems in Manufacturing (4)                 growth morphology, interface reaction, and alloy for-
Image processing fundamentals: imaging theory, image
                                                                Basic problem solving and search techniques.                  mation and applications. Three hours of lecture.
processing, pattern recognition; digital radiography,                                                                         Prerequisite: consent of instructor. (W) S.S. Lau and H-
computerized tomography, nuclear medicine imaging,              Knowledge based and expert systems. Planning and
                                                                decision support systems. Fuzzy logic and neural nets.        L.Luo
nuclear magnetic resonance imaging, ultrasound imag-
ing, microscopy imaging. Three hours of lecture, four           Topics covered will include data models, query process-
                                                                                                                              232. The Field Effect and Field Effect Transistors (4)
hours of laboratory. Prerequisite: Math. 20A-B-F, 20C or        ing, distributed systems, enterprise computing and            Physics of the field effect of elemental and III-V com-
21C, 20D or 21D, Phys. 2A-D, ECE 101 (may be taken con-         intelligent agents, fuzzy logic, neural nets. Four hours of   pound semiconductors related to the technology and
currently) with grades of C– or better. (F) S. Fainman          lecture. Prerequisite: basic engineering and introduction     characteristics of Schottky barrier gate, insulated gate,
                                                                to computers. (W) R. Jain                                     and junction gate field effect transistors. Three hours of
191. Engineering Group Design Project (4)                                                                                     lecture. Prerequisite: consent of instructor. (S) H. Wieder
Groups of students work to design, build, demonstrate,          211. Manufacturing Engineering Seminar and
and document an engineering project. All students               Laboratory (2)                                                233. X-Ray Diffraction Analysis of Materials (4)
give weekly progress reports of their tasks and con-            Combination of seminars, laboratory activities, and field     This class will cover the physics of x-ray diffraction and
tribute a section to the final project report.Two hours of      trips. Seminars by top manufacturing engineers, man-          its application to the analysis of crystal structure, grain
discussion, eight hours of laboratory. Prerequisites:           agers, and student interns.Visits to manufacturing facil-     size, grain orientation, surface roughness, epitaxy, film
Completion of all of the breadth courses and one depth          ities. Techniques in accessing international technical        thickness, etc. Experimental techniques to be discussed
course. (W) C. Guest                                            and patent databases. Prerequisite: none. M. Trivedi          and will include theta-2theta diffractometry, high reso-
                                                                                                                              lution x-ray rocking curves, Laue patterns, pole figures,
192. Engineering Design (4)                                     220. Space Plasma Physics (4)                                 reflectivity, small angle scattering, laboratory experi-
Students complete a project comprising at least 50              The nature of the solar wind interaction with different       ments, and computer simulations. Three hours of lec-
percent or more engineering design to satisfy the               planets and comets leads to a variety of magnetos-            ture, one hour of laboratory. Prerequisite: consent of
following features: student creativity, open-ended for-         pheres. This course will deal with both nature of the         instructor. (S) K. Kavanagh
mulation of a problem statement/specifications, con-            solar wind as well as these interactions. Three hours of
sideration of alternative solutions/realistic constraints.      lecture. Prerequisite: ECE 107 or equivalent or consent of
                                                                instructor. (W) A. Mendis

234A. Imperfections in Solids (4)                              238B. Solid State Diffusion and Reaction Kinetics (4)            poral coherance measurements. Design and fabrication
Point, line, and planar defects in crystalline solids,         Thermally activated processes. Boltzman factor, homo-            of transmission, reflection, bleached, color, multiple
including vacancies, self-interstitials, solute atoms, dis-    geneous and heterogeneous reactions, solid state dif-            exposure holograms. Prerequisites: ECE 181,182,183 or
location interactions, stacking faults, grain boundaries,      fusion, Fick’s law, diffusion mechanisms, Kirkendall             consent of instructor. (This course is cojoint with ECE 184.
and their effects on the properties of solids. Hardening       effects, Boltzmann-Manato analysis, high diffusivity             Graduate students will choose 50 percent of the experi-
by localized obstacles, precipitates, and dispersoids.         paths. Multiple listed with Materials Science 201B.Three         ments and receive two units of credit.) (F) S. Lee and S.
Three hours of lecture. Prerequisite: consent of instructor.   hours of lecture. Prerequisite: ECE 238A. (W) Staff              Fainman
(F) R.A. Asaro
                                                               239. Nanometer-Scale Probes and Devices (4)                      241BL. Optical Signal Processing Laboratory (2)
234B. Advanced Study of Defects in Solids (4)                  Discussion of scanning tunneling microscopy, atomic              Construction and characterization of Fourier/Fresnel
Advanced topics in dislocation theory and dislocation          force microscopy, and other high-resolution scanning             transform, coherent/incoherent, imaging-processing
dynamics. Defects and defects interactions. Atomistic          probe techniques, including basic concepts, experi-              systems. Design, coding, fabrication of spatial filters,
and subatomistic effects. Physical models based on             mental considerations, and applications. Fabrication             computer-generated holograms. Experiments in non-
microscopic considerations. Three hours of lecture.                                                                             linear photorefractive phenomena and image-process-
                                                               and properties of submicron structures, with emphasis
Prerequisite: ECE 234A or consent of instructor. (W) R.A.                                                                       ing applications. Construction of vector-matrix
                                                               on the study of semiconductor materials and devices.
Asaro                                                                                                                           multipliers. Optical systems design using Code-V.
                                                               Three hours of lecture. Prerequisite: consent of instructor.     Prerequisites: ECE 181, 182, 183, or consent of instructor.
                                                               (F) Edward T. Yu                                                 (This course is cojoint with ECE 185. Graduate stduents will
236A. Semiconductor Heterostructure Materials (4)
This course covers the growth, characterization, and                                                                            choose 50 percent of the experiments and receive two
                                                               240A. Lasers and Optics (4)                                      units of credit.) (W) S. Lee and S. Fainman
heterojunction properties of III-IV compound semicon-
                                                               Fresnel and Fraunhofer diffraction theory. Optical res-
ductors and group-IV semiconductor heterostructures
                                                               onators, interferometry. Gaussian beam propagation               241CL. Optoelectronics and Communications
for the subsequent courses on electronic and photonic
device applications. Topics include epitaxial growth           and transformation. Laser oscillation and amplification,         laboratory (2)
techniques, electrical properties of heterojunctions,          Q-switching and mode locking of lasers, some specific            Operation and characterization of electro-optic,
transport and optical properties of quantum wells and          laser systems. Three hours of lecture. Prerequisites: ECE        acousto-optic modulators. Polarization manipulation
superlattices. Three hours of lecture. Prerequisites: ECE      123, 124 or equivalent; introductory quantum mechanics           techniques. Heterodyne detection schemes. Para-
230A-B-C or consent of instructor. (F) C. Tu                   or ECE183. (F), P. Yu                                            metrization of P-I-N and avalanche detectors, LED
                                                                                                                                sources. Evaluation of optical fiber, thin film wave-guide
236B. Optical Processes in Semiconductors (4)                  240B. Optical Information Processing (4)                         properties. Characterization of Hughes LCLV spatial
Absorption and emission of radiation in semiconduc-            Space-bandwidth product, superresolution, space-vari-            light modulator. Prerequisites: ECE 181, 182, 183, or con-
tors. Radiative transition and nonradiative recombina-         ant optical system, partial coherence, image processing          sent of instructor. Staff
tion. Ultra-fast optical phenomena. Laser and                  with coherent and incoherent light, processing with
photodetector devices will be emphasized.Three hours           feedback, real-time light modulators for hybrid process-         242A. Optical Systems (4)
of lecture. Prerequisites: ECE 230A and 230C or equivalent.    ing, nonlinear processing. Optical computing and other           Principles of optical system design. Modeling of optical
(W) P. Yu                                                      applications.Three hours of lecture. Prerequisite: ECE 182       and opto-electronic components, modules, and sys-
                                                               or equivalent. (W) S. Lee and S. Fainman                         tems. Signal integrity analysis. Design optimization
236C. Heterojunction Field Effect Transistors (4)                                                                               using CAD. Assembly and testing. System scalability
Device physics and applications of isotype and aniso-          240C. Optical Modulation and Detection (4)                       and manufacturability. Opto-electronic packaging.
type heterojunctions and quantum wells, including              Propagation of waves and rays in anisotropic media.              Three hours of lecture. Prerequisites: ECE 240A-B-C, or
band-edge discontinuities, band bending and space                                                                               consent of instructor. (W) S. Lee
                                                               Electro-optical switching and modulation. Acousto-
charge layers at heterojunction interfaces, charge trans-      optical deflection and modulation. Detection theory.
port normal and parallel to such interfaces, two-dimen-                                                                         244A. Statistical Optics (4)
                                                               Heterodyne detection, incoherent and coherent detec-             Introduction to statistical phenomena in optics includ-
sional electron gas structures, modulation doping,             tion. Three hours of lecture. Prerequisites: ECE 181,183 or
heterojunction and insulated gate field effect transis-                                                                         ing first order properties of light waves generated from
                                                               equivalent. (S) S. Esener and P. Yu                              various sources. Coherence of optical waves, high-order
tors. Three hours of lecture. Prerequisite: consent of
instructor. (S) H. Wieder                                                                                                       coherence. Partial coherence and its effects on imaging
                                                               241A. Nonlinear Optics (4)
                                                                                                                                systems. Imaging in presence of randomly inhomoge-
                                                               Second harmonic generation (color conversion), para-
236D. Heterojunction Bipolar Transistors (4)                   metric amplification and oscillation, photorefractive            neous medium. Limits in photelectric detection of light.
Current flow and charge storage in bipolar transistors.        effects and four-wave mixing, optical bistability; appli-        Three hours of lecture. Prerequisite: ECE 240A-B or con-
Use of heterojunctions to improve bipolar structures.          cations.Three hours of lecture. Prerequisites: ECE 240A, C,      sent of instructor. (F) Y. Fainman
Transient electron velocity overshoot. Simulation of           or consent of instructor. (F) S.Fainman and S. Lee
device characteristics. Circuit models of HBTs.                                                                                 244B. Quantum Electronics of Femtosecond Optical
Requirements for high-speed circuit applications.              241B. Optical Devices for Computing. (4)                         Pulses (4)
Elements of bipolar process technology, with emphasis          Application of electro-optic, magneto-optic, acousto-            Femtosecond optical pulses in linear dispersive media.
on III-V materials. Three hours of lecture. Prerequisite:      optic, and electro-absorption effects to the design of           Self-action of optical pulses. Parametric interaction of
                                                               photonic devices with emphasis on spatial light modu-            optical pulses. Self- and cross-phase modulation. Fast
consent of instructor. (F) P. Asbeck
                                                               lation and optical storage techniques. Three hours of            phase control, compression and shaping of optical
237. Modern Materials Analysis (4)                             lecture. Prerequisites: ECE 240A, C, or consent of instructor.   pulses. Optical solitons. Applications of femtosecond
Analysis of the near surface of materials via ion, elec-       (F) S. Esener                                                    optical pulses. Three hours of lecture. Prerequisite: ECE
tron, and x-ray spectroscopes. Topics to be covered                                                                             240A-B-C or consent of instructor. (W) Y. Fainman
include particle solid interactions. Rutherford backscat-      241C. Holographic Optical Elements (4)
tering, secondary ion mass spectroscopy, electron              Fresnel, Fraunhofer, and Fourier holography. Analysis of         245A. Advanced Acoustics I (4)
                                                               thin and volume holograms, reflection and transmis-              Boundary value problems in vibrating systems, wave
energy loss spectroscopy, particle induced x-ray emis-
                                                               sion holograms, color and polarization holograms.                propagation in strings, bars, and plates. Fundamentals
sion, Auger electron spectroscopy, extended z-ray
                                                               Optically recorded and computer-generated hologra-               of acoustical transducers. Three hours of lecture.
absorption, fine structure and channeling. Three hours
                                                               phy. Applications to information storage, optical inter-         Prerequisite: concurrent registration in ECE 145AL recom-
of lecture. Prerequisite: consent of instructor. (F) Staff
                                                               connects, 2-D and 3-D display, pattern recognition, and          mended. (F) J. Hildebrand
238A. Thermodynamics of Solids (4)                             image processing. Three hours of lecture. Prerequisite:
                                                               ECE 182 or equivalent, or consent of instructor. (W) S.          245B. Advanced Acoustics II (4)
The thermodynamics and statistical mechanics of
                                                               Fainman                                                          Theory of radiation transmission and scattering of
solids. Basic concepts, equilibrium properties of alloy
systems, thermodynamic information from phase dia-                                                                              sound with special application to ocean acoustics.
                                                               241AL. Lasers and Holography Laboratory (2)                      Three hours of lecture. Prerequisite: ECE 245A or consent
grams, surfaces and interfaces, crystalline defects.           Laser resonator design, construction, alignment, char-
Multiple listed with Materials Science 201A.Three hours                                                                         of instructor. Concurrent registration in ECE 145BL recom-
                                                               acterizations. Operation and evaluation of molecular,
of lecture. Prerequisite: consent of instructor. (F) Staff                                                                      mended. (W) J. Hildebrand
                                                               gas, liquid dye, semiconductor lasers. Spatial and tem-

245C. Advanced Acoustics III (4)                                   251CN. Filter Banks and Wavelets (4)                         Series expansions and applications. Time series analy-
Signal processing in underwater acoustics. Theory and              Fundamentals of multirate systems (noble identities,         sis; probability density, covariance and spectral estima-
hardwave embodiments. Three hours of lecture.                      polyphase representations), maximally decimated filter       tion. Inference from sampled-data, sampling theorems;
Prerequisite: ECE 245B or consent of instructor. Concurrent        banks (QMF filters for 2-channels, M-channel perfect         equally and non-equally spaced data, applications to
registration in ECE 145CL recommended. (S) J. Hildebrand           reconstruction systems), paraunitary perfect recon-          detection and estimation problem. Prerequisite: ECE 153.
                                                                   struction filter banks, the wavelet transform (multireso-    (F,W) E. Masry
246A. Materials for Magnetic Recording (4)                         lution, discrete wavelet transform, filter banks and
Properties of magnetic materials utilized as magnetic              wavelet).Three hours of lecture. Prerequisite: ECE 161B or   257A. Multiuser Communication Systems (4)
recording media and heads; magnetic structure of                   equivalent. (F) B. Rao                                       M/G/1, G1/M/1 queues, imbedded chains. Ergodic the-
oxides and metals; fine particle magnetism: micromag-                                                                           ory of Markov chains, classification, ergodic theorems.
netic analysis; hysteresis and reversal mechanisms of              251DN. Array Processing (4)                                  Multiple access systems, random access protocols,
hard materials; dynamic processes and domain pat-                  The coherent processing of data collected from sensors       capacity, stability, delay and control, reservation and
terns of soft materials; thermal fluctuations; multilayer          distributed in space for signal enhancement and noise        hybrid schemes. Prerequisites: ECE 153 and 159A, or
phenomena: giant magnetoresistance. Prerequisites:                 rejection purposes or wavefield directionality estima-       equivalent. Note: ECE 159A is an integral part of this
undergraduate electromagnetism and solid state physics             tion. Conventional and adaptive beamforming. Matched         course and should be taken in the fall quarter. (W) R. Rao
or consent of instructor. (alternate years) H.L. Luo, N.           field processing. Sparse array design and processing
Bertram                                                            techniques. Applications to acoustics, geophysics, and       257B. Principles of Wireless Networks (4)
                                                                   electromagnetics. Prerequisite: 251AN, ECE 161 or 151A       This course will focus on the principles, architectures,
246B. Analysis of the Magnetic Recording Process (4)               (ECE 161, 162A-B series recently renumbered to ECE           and analytical methodologies for design of multi-user
In-depth analysis of the magnetic recording process.               161A-B-C), or consent of instructor. (F) W. Hodgkiss         wireless networks. Topics to be covered include cellular
Magnetic fields and Fourier transforms of fields and mag-                                                                       approaches, call processing, digital modulation, adap-
netized media and heads; playback process for single and           252A. Speech Compression (4)                                 tive arrays, broadband networks, and wireless packet
multiple transitions. Reciprocity theorem for inductive and        Speech signals, production and perception, compres-          access for multimedia service. Three hours of lecture.
magnetoresistive heads; record process modeling; interfer-         sion theory, high rate compression using waveform            Prerequisites: ECE 159B and 154B. (S) A. Acampora
ences and nonlinearities; medium noise mechanisms and              coding (PCM, DPCM, ADPCM, . .), DSP tools for low rate
correlations; signal to noise ratios. Prerequisites: undergradu-   coding, LPC vocoders, sinusoidal tranform coding,            258A-B. Digital Communication (4-4)
ate electromagnetic theory and mathematical methods or             multi-band coding, medium rate coding using code             Digital communication theory including performance
consent of instructor. (alternate years) N.Bertram                 excited linear prediction (CELP). Prerequisite: ECE 161A     of various modulation techniques, effects of inter-sym-
                                                                   or 161. (W) B. Rao                                           bol interference, adaptive equalization, spread spec-
246C. Magnetic Recording Laboratory (4)                                                                                         trum communication. Prerequisites: ECE 154A-B-C and
Basic measurements in magnetic recording. Fields and               252B. Speech Recognition (4)                                 ECE 254 or consent of instructor. (W,S) L. Milstein
Fourier transforms of head structures using resistance             Signal analysis methods for recognition, dynamic time
                                                                   warping, isolated word recognition, hidden markov            259AN. Algebraic Coding (4)
paper measurements and computer analysis; induc-
                                                                   models, connectedword, and continuous speech recog-          Fundamentals of block codes, introduction to groups,
tance and B-H loop measurements of recording heads
                                                                   nition. Prerequisites: ECE 109, ECE 262A. (S) B. Rao         rings and finite fields, nonbinary codes, cyclic codes
and core materials; recording system calibration and
magnetization pattern investigation utilizing spectral                                                                          such as BCH and RS codes, decoding algorithms, appli-
                                                                   253A. Fundamentals of Digital Image Processing (4)           cations. Three hours of lecture. Prerequisite: consent of
measurements (FFT). Prerequisites: ECE 246B and labora-            Image quantization and sampling, image transforms,
tory experience. (alternate years) N. Bertram                                                                                   instructor. (F) J. Wolf or P. Siegel
                                                                   image enhancement, image compression. Prerequisites:
                                                                   ECE 109, 153, ECE 161 or ECE 161A. (W) P. Cosman             259BN. Trellis-Coded Modulation (4)
250. Random Processes (4)
Random variables, probability distributions and densi-                                                                          Coding theory developed from the viewpoint of digital
                                                                   253B. Digital Image Analysis (4)                             communications engineering, information theoretic
ties, characteristic functions. Convergence in probabil-           Image morphology, edge detection, scene segmenta-
ity and in quadratic mean, Stochastic processes,                                                                                limits for basic channel models, convolutional codes,
                                                                   tion, texture analysis, registration and fusion, feature     maximum-likelihood decoding, Ungerboeck codes,
stationarity. Processes with orthogonal and independ-              analysis, time-varying images. Prerequisite: ECE 253A or
ent increments. Power spectrum and power spectral                                                                               codes based on lattices and cosets, rotational invariance,
                                                                   consent of instructor. (S) P. Cosman                         performance evaluation, applications of modem design.
density. Stochastic integrals and derivatives. Spectral
representation of wide sense stationary processes, har-                                                                         Three hours of lecture. Prerequisites: ECE 154A-B-C, ECE
                                                                   254. Detection Theory (4)
monizable processes, moving average representations.                                                                            259A or 259AN, or consent of instructor. (W)
                                                                   Hypothesis testing, detection of signals in white and
Prerequisite: ECE 153 or equivalent or consent of instruc-                                                                      P. Siegel
                                                                   colored Gaussian noise; Karhunen-Loève expansion,
tor. (F) R. Lugannani                                              estimation of signal parameters, maximum-likelihood          259CN. Advanced Coding and Modulation for Digital
                                                                   detection; resolution of signals; detection and estima-
251AN. Digital Signal Processing I (4)                                                                                          Communications (4)
                                                                   tion of stochastic signals; applications to radar, commu-
Discrete random signals; conventional (FFT based)                                                                               Advanced coding and modulation techniques for
                                                                   nications, and optics. Prerequisite: ECE 153. (F) R.
spectral estimation. Coherence and transfer function                                                                            bandwidth-efficient data transmission and recording;
estimation; model-based spectral estimation; linear                                                                             constellation shaping by regions, Voronoi constella-
prediction and AR modeling. Levinson-Durbin algo-                  255AN. Information Theory (4)                                tions, shell mapping, coding for intersymbol-interfer-
rithm and lattice filters, minimum variance spectrum               Introduction to basic concepts, source coding theo-          ence channels, precoding methods, multilevel coding;
estimation. Three hours of lecture. Prerequisites: ECE 153         rems, capacity, noisy-channel coding theorem. Three          coding for fading channels, applications to wireline and
in addition to either ECE 161 or 161A, or consent of instruc-      hours of lecture. Prerequisite: ECE 154A-B-C or consent of   wireless communications, digital recording.Three hours
tor. (W) W. Hodgkiss and B. Rao                                    instructor. (F) Staff                                        of lecture. Prerequisites: ECE 259A-B or 259AN-BN. (S)
                                                                                                                                P. Siegel
251BN. Digital Signal Processing II (4)                            255BN/CN. Source Coding I, II (4/4)
Adaptive filter theory, estimation errors for recursive            Theory and practice of lossy source coding, vector           260A. VLSI Digital System Algorithms and
least squares and gradient algorithms, convergence                 quantization, predictive and differential encoding, uni-     Architectures (4)
and tracking analysis of LMS, RLS, and Kalman filtering            versal coding, source-channel coding, asymptotic the-        Custom and semicustom VLSI design from the system
algorithms, comparative performance of Weiner and                  ory, speech and image applications. Three hours of           designer’s perspective. VLSI system algorithms, parallel
adaptive filters, transversal and lattice filter implemen-         lecture. Prerequisite: ECE 250 and 259A or 259AN, or con-    processing architectures and interconnection net-
tations, performance analysis for equalization, noise              sent of instructor. (W,S) K. Zeger                           works, and design mapping methodologies will be
cancelling, and linear prediction applications. Three                                                                           emphasized. VLSI computer-aided design (CAD) tools
hours of lecture. Prerequisite: ECE 251AN. (S) W. Hodgkiss         256A-B. Time Series Analysis and Applications (4-4)          will be introduced. Knowledge of basic semiconductor
and J. Zeidler                                                     Stationary processes; spectral representation; linear        electronics and digital design is assumed. Three hours
                                                                   transformation. Recursive and nonrecursive prediction        of lecture. Prerequisites: undergraduate-level semicon-
                                                                   and filtering; Wiener-Hopf and Kalman-Bucy filters.          ductor electronics and digital system design; ECE 165 or
                                                                                                                                equivalent or consent of instructor. (F) P. Chau

260B. VLSI Integrated Circuits and Systems Design (4)           263C. Fault-Tolerant Computing and VLSI Testing II (4)          mechanics). Prerequisites: ECE 174. ECE 273B requires
Computer arithmetic, control and memory structures              Fault tolerance and testability have the common objec-          273A and 273C requires 273B. (F,W,S) A. Sebald
for VLSI implementations at logic, circuit, and layout          tive of improving system reliability. The second part of
level. Computer-aided design and performance simula-            the course emphasizes systemwide design issues.                 275A. Parameter Estimation I (4)
tions, actual design projects for teams of two to three         Topics include fault-tolerant architecture and systems,         Linear last squares (batch, recursive, total, sparse, psue-
students per team. Layout done on CAD workstations              design for testability, and computer-aided reliability          doinverse, QR, SVD); statistical figures of merit (bias,
for project IC chip fabrication. Design projects will be        evaluation. Current research issues in fault-tolerant           consistency, Cramer-Rao lower-bound, efficiency); max-
reviewed in class presentation. Three hours of lecture.         computing and VLSI testing will be addressed.                   imum likelihood estimation (MLE); sufficient statistics;
Prerequisite: ECE 260A. (W) P. Chau                             Prerequisites: ECE 263A-B or consent of instructor. (S) T. T.   algorithms for computing the MLE including the expec-
                                                                Lin                                                             tation maximation (EM) algorithm. The problem of
260C. VLSI Advanced Topics (4)                                                                                                  missing information; the problem of outliers. Prere-
Advanced topics seminar with issues from system the-            264A. CMOS Analog Integrated Circuits and                       quisites: ECE 109 and ECE 153 with grades of C– or better.
ory, to new technologies, to alternative design method-         Systems I (4)                                                   (F) K. Kreutz-Delgado
ologies will be subject for review. Class discussion,           Frequency response of the basic CMOS gain stage and
participation and presentations of projects and special         current mirror configurations. Advanced feedback and            275B. Parameter Estimation II (4)
topics assignments will be emphasized. The testing              stability analysis; compensation techniques. High-              The Bayesian framework and the use of statistical pri-
results of fabricated IC chips from other VLSI design           Performance CMOS amplifier topologies. Switched                 ors; sufficient statistics and reproducing probability dis-
classes will be presented in class and in a final report.       capacitor circuits. Analysis of noise and distortion.Three      tributions; minimum mean square estimation (MSE);
Three hours of lecture. Prerequisite: ECE 260B. (S) P. Chau     hours of lecture, three hours of laboratory. Prerequisites:     linear minimum mean square estimation; maximum a
                                                                ECE 164 and 153 or equivalent courses. (W) I. Galton            posteriori (MAP) estimation; minimax estimation;
261A. Design of Analog and Digital GaAs Integrated                                                                              Kalman filter and extended Kalman filter (EKF) Baum-
Circuits I (4)                                                  264B. CMOS Analog Integrated Circuits and                       Welsh algorithm; Viterbi algorithm. Applications to
Introduction to analytical and computer-aided design            Systems II (4)                                                  identifying the parameters and states of hidden
(CAD) techniques for microwave integrated circuits.             Continuous-time filters: synthesis techniques and               Markov models (HMMs) including ARMA, state-space,
Design of active two-ports using scattering parameters.         CMOS circuit topologies. Switched-capacitor filters: syn-       and finite-state dynamical systems. Applications to
Monolithic realization of low-noise amplifiers using            thesis techniques and CMOS circuit topologies.                  parametric and non-parametric density estimation.
GaAs FETs and HEMTs. Design of monolithic distributed           Overview of CMOS samplers, data converters, mixers,             Prerequisites: ECE 153 and ECE 275A with grades of C– or
amplifiers. Design of monolithic power amplifiers and           modulators, oscillators, and PLLs.Three hours of lecture.       better. (W) K. Kreutz-Delgado
mixers. Three hours of lecture. Prerequisite: consent of        Prerequisites: ECE 264A and 251A or 251AN. (S) I. Galton
instructor. (W) W. Ku                                                                                                           276A-B. Robot Kinematics, Dynamics, and Control (4-4)
                                                                265A. Communication Circuit Design I (4)                        Kinematics of rigid bodies and serial-chain manipula-
261B. Design of Analog and Digital GaAs Integrated              Introduction to noise and linearity concepts. System            tors. The forward and inverse kinematics problem.
Circuits (4)                                                    budgeting for optimum dynamic range. Frequency                  Sufficient conditions for exact solvability of the inverse
Introduction to GaAs digital integrated circuits (IC).          plan tradeoffs. Linearity analysis techniques. Down-            kinematics problem. Joint-space versus tank-space
Design of simple digital GaAs ICs using DCFL. Design of         conversion and up-conversion techniques. Modulation             control. Path/trajectory generation. Newton-Euler and
digital building blocks for complex multipliers, FET but-       and de-modulation. Microwave and RF system design               Lagrangian formulation of manipulatory dynamics.
terfly chips, DDS, and oversampled A/D converters.              communications. Current research topics in the field.           Manipulability measures. Redundancy resolution by
Three hours of lecture. Prerequisite: consent of instructor.    Three hours of lecture. Prerequisites: consent of instruc-      subtask functional optimization and side-constraint
                                                                tor. (F) L. Larson                                              satisfaction. Pseudo-inverse kinematic control of redun-
(S) W. Ku
                                                                                                                                dant manipulators. PID and feedback-linearizing trajec-
                                                                265B. Communication Circuit Design II (4)
262B. RPG of ASSPS (Rapid Prototyping and Generation                                                                            tory and force control. Issues in path planning and
                                                                Radio frequency integrated circuits: impedance match-
of Applications-Specific Signal Processing                                                                                      compliant assembly. Three hours of lecture.
                                                                ing concepts, low-noise amplifiers, AGCs. Mixers, filters.
Systems) (4)                                                                                                                    Prerequisites: ECE 171A-B, ECE 174 must be completed
                                                                Comparison between BJT, CMOS and GaAs technolo-
Introduction to concurrent engineering which can only                                                                           with grades of C– or better. (ECE 174 may be concurrent.)
                                                                gies for radio frequency and microwave applications.
be effectively treated through the employment of a                                                                              (W-S) K. Kreutz-Delgado
                                                                Device modeling for radio frequency applications.
multiprocessing environment. Strategies for partition-
                                                                Design tradeoffs of linearity, noise, power dissipation,        280. Special Topics in Electronic Devices and
ing of signal processing system designs and optimiza-
                                                                and dynamic range. Current research topics in the field.
tion of scheduling of task assignments in a distributed                                                                         Materials (4)
                                                                Three hours of lecture. Prerequisites: ECE 164 and 265A or
computing environment. Introduction to mixed-signal                                                                             A course to be given at the discretion of the faculty at
                                                                consent of instructor. (W) L. Larson
systems and reduced complexity system design.                                                                                   which topics of interest in electronic devices and mate-
Testing of rapid prototyped ASICS. Three hours of lec-          270A-B-C. Neurocomputing (4-4-4)                                rials will be presented by visiting or resident faculty
ture, nine hours of laboratory. Prerequisite: ECE 262A. (S)     Neurocomputing is the study of nonalgorithmic infor-            members. It will not be repeated so it may be taken for
P.Chau                                                          mation processing. This three-quarter sequence covers           credit more than once. Three hours of lecture.
                                                                neurocomputing theory, design, and application,                 Prerequisite: consent of instructor. Staff
263A. Reliable Design of Digital Systems (4)                    including sensor processing, knowledge processing,
Fault tolerance and testability have the common objec-          data analysis, and hands-on training with a neurocom-           281. Special Topics in Radio and Space Science (4)
tive of improving the reliability of computer hardware.         puter. Prerequisite: graduate standing in ECE or CSE, or        A course to be given at the discretion of the faculty at
Knowing the fault models, how faults manifest them-             consent of instructor. (F,W,S) R. Hecht-Nielsen                 which topics of interest in radio and space science will
selves, how to test fault existence, and how to keep sys-                                                                       be presented by visiting or resident faculty members. It
tem functioning when fault exists help the engineers            272A. Stochastic Processes in Dynamic Systems (4)               will not be repeated so it may be taken for credit more
choose different techniques in computing and VLSI sys-          (Not offered 2001/2002.) Diffusion equations, linear and        than once.Three hours of lecture. Prerequisite: consent of
tems designs. Prerequisite: completion of upper-division        nonlinear estimation and detection, random fields,              instructor. Staff
ECE/CE courses or consent of instructor. (F) T. T. Lin          optimization of stochastic dynamic systems, applica-
                                                                tions of stochastic optimization to problems.                   282. Special Topics in Optoelectronics (4)
263B. Fault-Tolerant Computing and VLSI Testing I (4)           Prerequisites: ECE 250. (W,S) D. Sworder                        A course to be given at the discretion of the faculty at
This course will cover all aspects of fault-tolerant com-
                                                                                                                                which topics of interest in optoelectronic materials,
puting and VLSI testing. Topics include fundamental             273A-B-C. Optimization in Linear Vector Spaces (4-4-4)          devices, systems, and applications will be presented by
concepts of fault-tolerant hardware design, test pattern        (Not offered 2001/2002.) Hilbert spaces, Banach spaces,         visiting or resident faculty members. It will not be
generation, signature analysis, system diagnosis and            projection theorem, dual spaces, Hahn Banach theo-
evaluation, and fault tolerance in VLSI-based systems.                                                                          repeated so it may be taken for credit several times.
                                                                rem, hyperplanes, geometric form of H Banach theo-              Three hours of lecture. Prerequisite: consent of instructor.
Prerequisite: ECE 263A or consent of instructor. (W) T.T. Lin   rem, modern statistical optimization routines                   Staff
                                                                (simulated annealing, evolutionary programming),
                                                                approaches to large neural net problems derived from
                                                                the physics literature (chaos, spin glass, basic statistical

283. Special Topics in Electronic Circuits and                the direction of a member of the staff. (S/U grades only.)
Systems (4)                                                   Prerequisite: consent of instructor.
A course to be given at the discretion of the faculty at
which topics of interest in electronic circuits and sys-      299. Research (1-16)
tems will be presented by visiting or resident faculty        (S/U grade only.)
members. It will not be repeated so it may be taken for
credit more than once. Three hours of lecture.                501. Teaching (1-4)
Prerequisite: consent of instructor. Staff                    Teaching and tutorial activities associated with courses
                                                              and seminars. Not required for candidates for the Ph.D.
284. Special Topics in Computer Engineering (4)               degree. Number of units for credit depends on number
A course to be given at the discretion of the faculty at      of hours devoted to class or section assistance. (S/U
which topics of interest in computer engineering will         grade only.) Prerequisite: consent of department chair.
be presented by visiting or resident faculty members. It
will not be repeated so it may be taken for credit more
than once.Three hours of lecture. Prerequisite: consent of
instructor. Staff

285. Special Topics in Robotics and Control Systems (4)
A course to be given at the discretion of the faculty at
which topics of interest in robotics and control systems
will be presented by visiting or resident faculty mem-
bers. It will not be repeated so it may be taken for credit
more than once. Three hours of lecture. Prerequisite:
consent of instructor. Staff

287A,B. Special Topics in Communication Theory and
Systems (4)
A course to be given at the discretion of the faculty at
which topics of interest in information science will be
presented by visiting or resident faculty members. It
will not be repeated so it may be taken for credit more
than once.Three hours of lecture. Prerequisite: consent of
instructor. Staff

288. Special Topics in Applied Physics (1-8)
Topics of interest in applied physics. Topics will vary
from quarter to quarter. May be repeated for credit not
more than three times.

290. Graduate Seminar on Current ECE Research (2)
Weekly discussion of current research conducted in the
Department of Electrical and Computer Engineering by
the faculty members involved in the research projects.

292. Graduate Seminar in Radio and Space Science (2)
Research topics in radio astronomy, space plasmas, and
solar system physics. (S/U grades only.) B. Rickett

293. Graduate Seminar in Communication Theory and
Systems (2)
Weekly discussion of current research literature. Staff

294. Graduate Seminar in Applied Solid State Physics
Research topics in applied solid state physics and quan-
tum electronics. H-L. Luo

295. Graduate Seminar in Computer Engineering (2)
Biweekly discussion of research topics in computer
engineering. Computer engineering is currently the
most impacted field both in industry and academia.
Computer engineering is the science of searching for
an optimum within constraints of available methods
and resources. Three hours of seminar. Prerequisite: con-
sent of instructor. (F,W,S) T. T. Lin

296. Graduate Seminar in Optical Signal Processing (2)
Research topics of current interest in holography. S. Lee

298. Independent Study (1-16)
Open to properly qualified graduate students who wish
to pursue a problem through advanced study under


Shared By: