References Singh et al

Document Sample
References Singh et al Powered By Docstoc
					Singh et al

1.      Pancreatic Cancer [database on the Internet]. WebMed. 2009 [cited 2010]. Available
2.      Landis SH, Murray T, Bolden S, et al. Cancer statistics, 1998. CA Cancer J Clin.
3.      Fisher WE, Berger DH. Angiogenesis and antiangiogenic strategies in pancreatic cancer.
Int J Gastrointest Cancer. 2003;33(1):79-88.
4.      Hruban RH, Goggins M, Parsons J, et al. Progression model for pancreatic cancer. Clin
Cancer Res. 2000;6(8):2969-72.
5.      Almoguera C, Shibata D, Forrester K, et al. Most human carcinomas of the exocrine
pancreas contain mutant c-K-ras genes. Cell. 1988;53(4):549-54.
6.      Tada M, Omata M, Kawai S, et al. Detection of ras gene mutations in pancreatic juice
and peripheral blood of patients with pancreatic adenocarcinoma. Cancer Res.
7.      Klimstra DS, Longnecker DS. K-ras mutations in pancreatic ductal proliferative lesions.
Am J Pathol. 1994;145(6):1547-50.
8.      Rozenblum E, Schutte M, Goggins M, et al. Tumor-suppressive pathways in pancreatic
carcinoma. Cancer Res. 1997;57(9):1731-4.
9.      Campbell SL, Khosravi-Far R, Rossman KL, et al. Increasing complexity of Ras
signaling. Oncogene. 1998;17(11 Reviews):1395-413.
10.     Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer.
11.     Matsuo Y, Campbell PM, Brekken RA, et al. K-Ras promotes angiogenesis mediated by
immortalized human pancreatic epithelial cells through mitogen-activated protein kinase
signaling pathways. Mol Cancer Res. 2009;7(6):799-808.
12.     Fleming JB, Shen GL, Holloway SE, et al. Molecular consequences of silencing mutant
K-ras in pancreatic cancer cells: justification for K-ras-directed therapy. Mol Cancer Res.
13.     Ji B, Tsou L, Wang H, et al. Ras activity levels control the development of pancreatic
diseases. Gastroenterology. 2009;137(3):1072-82, 82 e1-6.
14.     Whitcomb DC, Pogue-Geile K. Pancreatitis as a risk for pancreatic cancer. Gastroenterol
Clin North Am. 2002;31(2):663-78.
15.     Guerra C, Schuhmacher AJ, Canamero M, et al. Chronic pancreatitis is essential for
induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell.
16.     Hezel AF, Kimmelman AC, Stanger BZ, et al. Genetics and biology of pancreatic ductal
adenocarcinoma. Genes Dev. 2006;20(10):1218-49.
17.     Omer CA, Kohl NE. CA1A2X-competitive inhibitors of farnesyltransferase as anti-
cancer agents. Trends Pharmacol Sci. 1997;18(11):437-44.
18.     Van Cutsem E, van de Velde H, Karasek P, et al. Phase III trial of gemcitabine plus
tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J Clin Oncol.
19.     Singh A, Greninger P, Rhodes D, et al. A gene expression signature associated with "K-
Ras addiction" reveals regulators of EMT and tumor cell survival. Cancer Cell. 2009;15(6):489-

Singh et al

20.     Scholl C, Frohling S, Dunn IF, et al. Synthetic lethal interaction between oncogenic
KRAS dependency and STK33 suppression in human cancer cells. Cell. 2009;137(5):821-34.
21.     Lee SH, Lee SJ, Jung YS, et al. Blocking of p53-Snail binding, promoted by oncogenic
K-Ras, recovers p53 expression and function. Neoplasia. 2009;11(1):22-31, 6p following
22.     Schmidt RL, Park CH, Ahmed AU, et al. Inhibition of RAS-mediated transformation and
tumorigenesis by targeting the downstream E3 ubiquitin ligase seven in absentia homologue.
Cancer Res. 2007;67(24):11798-810.
23.     Rejiba S, Wack S, Aprahamian M, et al. K-ras oncogene silencing strategy reduces tumor
growth and enhances gemcitabine chemotherapy efficacy for pancreatic cancer treatment. Cancer
Sci. 2007;98(7):1128-36.
24.     Shi XH, Liang ZY, Ren XY, et al. Combined silencing of K-ras and Akt2 oncogenes
achieves synergistic effects in inhibiting pancreatic cancer cell growth in vitro and in vivo.
Cancer Gene Ther. 2009;16(3):227-36.
25.     Jasinski P, Zwolak P, Terai K, et al. Novel Ras pathway inhibitor induces apoptosis and
growth inhibition of K-ras-mutated cancer cells in vitro and in vivo. Transl Res.
26.     Lee SH, Lee SJ, Chung JY, et al. p53, secreted by K-Ras-Snail pathway, is endocytosed
by K-Ras-mutated cells; implication of target-specific drug delivery and early diagnostic marker.
Oncogene. 2009;28(19):2005-14.
27.     Lu X, Xu T, Qian J, et al. Detecting K-ras and p53 gene mutation from stool and
pancreatic juice for diagnosis of early pancreatic cancer. Chin Med J (Engl). 2002;115(11):1632-
28.     Berthelemy P, Bouisson M, Escourrou J, et al. Identification of K-ras mutations in
pancreatic juice in the early diagnosis of pancreatic cancer. Ann Intern Med. 1995;123(3):188-
29.     Boadas J, Mora J, Urgell E, et al. Clinical usefulness of K-ras gene mutation detection
and cytology in pancreatic juice in the diagnosis and screening of pancreatic cancer. Eur J
Gastroenterol Hepatol. 2001;13(10):1153-9.
30.     Olsen CC, Schefter TE, Chen H, et al. Results of a phase I trial of 12 patients with locally
advanced pancreatic carcinoma combining gefitinib, paclitaxel, and 3-dimensional conformal
radiation: report of toxicity and evaluation of circulating K-ras as a potential biomarker of
response to therapy. Am J Clin Oncol. 2009;32(2):115-21.
31.     Serrano J, Goebel SU, Peghini PL, et al. Alterations in the p16INK4a/CDKN2A tumor
suppressor gene in gastrinomas. J Clin Endocrinol Metab. 2000;85(11):4146-56.
32.     Sherr CJ. Parsing Ink4a/Arf: "pure" p16-null mice. Cell. 2001;106(5):531-4.
33.     Goldstein AM, Fraser MC, Struewing JP, et al. Increased risk of pancreatic cancer in
melanoma-prone kindreds with p16INK4 mutations. N Engl J Med. 1995;333(15):970-4.
34.     Whelan AJ, Bartsch D, Goodfellow PJ. Brief report: a familial syndrome of pancreatic
cancer and melanoma with a mutation in the CDKN2 tumor-suppressor gene. N Engl J Med.
35.     Goldstein AM, Struewing JP, Chidambaram A, et al. Genotype-phenotype relationships
in U.S. melanoma-prone families with CDKN2A and CDK4 mutations. J Natl Cancer Inst.
36.     Lynch HT, Brand RE, Hogg D, et al. Phenotypic variation in eight extended CDKN2A
germline mutation familial atypical multiple mole melanoma-pancreatic carcinoma-prone

Singh et al

families: the familial atypical mole melanoma-pancreatic carcinoma syndrome. Cancer.
37.     de Snoo FA, Bishop DT, Bergman W, et al. Increased risk of cancer other than melanoma
in CDKN2A founder mutation (p16-Leiden)-positive melanoma families. Clin Cancer Res.
38.     Chen J, Li D, Wei C, et al. Aurora-A and p16 polymorphisms contribute to an earlier age
at diagnosis of pancreatic cancer in Caucasians. Clin Cancer Res. 2007;13(10):3100-4.
39.     Hustinx SR, Leoni LM, Yeo CJ, et al. Concordant loss of MTAP and p16/CDKN2A
expression in pancreatic intraepithelial neoplasia: evidence of homozygous deletion in a
noninvasive precursor lesion. Mod Pathol. 2005;18(7):959-63.
40.     Gerdes B, Ramaswamy A, Kersting M, et al. p16(INK4a) alterations in chronic
pancreatitis-indicator for high-risk lesions for pancreatic cancer. Surgery. 2001;129(4):490-7.
41.     Fukushima N, Sato N, Ueki T, et al. Aberrant methylation of preproenkephalin and p16
genes in pancreatic intraepithelial neoplasia and pancreatic ductal adenocarcinoma. Am J Pathol.
42.     Ohtsubo K, Watanabe H, Yamaguchi Y, et al. Abnormalities of tumor suppressor gene
p16 in pancreatic carcinoma: immunohistochemical and genetic findings compared with
clinicopathological parameters. J Gastroenterol. 2003;38(7):663-71.
43.     Bardeesy N, Aguirre AJ, Chu GC, et al. Both p16(Ink4a) and the p19(Arf)-p53 pathway
constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci U S A.
44.     Tsiambas E, Karameris A, Gourgiotis S, et al. Simultaneous deregulation of p16 and
cyclin D1 genes in pancreatic ductal adenocarcinoma: a combined immunohistochemistry and
image analysis study based on tissue microarrays. J BUON. 2007;12(2):261-7.
45.     Salek C, Benesova L, Zavoral M, et al. Evaluation of clinical relevance of examining K-
ras, p16 and p53 mutations along with allelic losses at 9p and 18q in EUS-guided fine needle
aspiration samples of patients with chronic pancreatitis and pancreatic cancer. World J
Gastroenterol. 2007;13(27):3714-20.
46.     Bian Y, Matsubayashi H, Li CP, et al. Detecting low-abundance p16 and p53 mutations
in pancreatic juice using a novel assay: heteroduplex analysis of limiting dilution PCRs. Cancer
Biol Ther. 2006;5(10):1392-9.
47.     Jeong J, Park YN, Park JS, et al. Clinical significance of p16 protein expression loss and
aberrant p53 protein expression in pancreatic cancer. Yonsei Med J. 2005;46(4):519-25.
48.     Klump B, Hsieh CJ, Nehls O, et al. Methylation status of p14ARF and p16INK4a as
detected in pancreatic secretions. Br J Cancer. 2003;88(2):217-22.
49.     Talar-Wojnarowska R, Gasiorowska A, Smolarz B, et al. Usefulness of p16 and K-ras
mutation in pancreatic adenocarcinoma and chronic pancreatitis differential diagnosis. J Physiol
Pharmacol. 2004;55 Suppl 2:129-38.
50.     Halloran CM, Ghaneh P, Shore S, et al. 5-Fluorouracil or gemcitabine combined with
adenoviral-mediated reintroduction of p16INK4A greatly enhanced cytotoxicity in Panc-1
pancreatic adenocarcinoma cells. J Gene Med. 2004;6(5):514-25.
51.     Schulz P, Scholz A, Rexin A, et al. Inducible re-expression of p16 in an orthotopic mouse
model of pancreatic cancer inhibits lymphangiogenesis and lymphatic metastasis. Br J Cancer.

Singh et al

52.     Spillare EA, Okamoto A, Hagiwara K, et al. Suppression of growth in vitro and
tumorigenicity in vivo of human carcinoma cell lines by transfected p16INK4. Mol Carcinog.
53.     Rocco JW, Li D, Liggett WH, Jr., et al. p16INK4A adenovirus-mediated gene therapy for
human head and neck squamous cell cancer. Clin Cancer Res. 1998;4(7):1697-704.
54.     Chen F, Li Y, Lu Z, et al. Adenovirus-mediated Ink4a/ARF gene transfer significantly
suppressed the growth of pancreatic carcinoma cells. Cancer Biol Ther. 2005;4(12):1348-54.
55.     Hosotani R, Miyamoto Y, Fujimoto K, et al. Trojan p16 peptide suppresses pancreatic
cancer growth and prolongs survival in mice. Clin Cancer Res. 2002;8(4):1271-6.
56.     Vousden KH. Switching from life to death: the Miz-ing link between Myc and p53.
Cancer Cell. 2002;2(5):351-2.
57.     Seoane J, Le HV, Massague J. Myc suppression of the p21(Cip1) Cdk inhibitor
influences the outcome of the p53 response to DNA damage. Nature. 2002;419(6908):729-34.
58.     Haupt Y, Maya R, Kazaz A, et al. Mdm2 promotes the rapid degradation of p53. Nature.
59.     Honda R, Tanaka H, Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor
suppressor p53. FEBS Lett. 1997;420(1):25-7.
60.     Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature.
61.     Midgley CA, Lane DP. p53 protein stability in tumour cells is not determined by
mutation but is dependent on Mdm2 binding. Oncogene. 1997;15(10):1179-89.
62.     Issaeva N, Friedler A, Bozko P, et al. Rescue of mutants of the tumor suppressor p53 in
cancer cells by a designed peptide. Proc Natl Acad Sci U S A. 2003;100(23):13303-7.
63.     Selivanova G, Wiman KG. Reactivation of mutant p53: molecular mechanisms and
therapeutic potential. Oncogene. 2007;26(15):2243-54.
64.     Shieh SY, Ikeda M, Taya Y, et al. DNA damage-induced phosphorylation of p53
alleviates inhibition by MDM2. Cell. 1997;91(3):325-34.
65.     Scarpa A, Capelli P, Mukai K, et al. Pancreatic adenocarcinomas frequently show p53
gene mutations. Am J Pathol. 1993;142(5):1534-43.
66.     Hainaut P, Hollstein M. p53 and human cancer: the first ten thousand mutations. Adv
Cancer Res. 2000;77:81-137.
67.     Nio Y, Dong M, Uegaki K, et al. Comparative significance of p53 and WAF/1-p21
expression on the efficacy of adjuvant chemotherapy for resectable invasive ductal carcinoma of
the pancreas. Pancreas. 1999;18(2):117-26.
68.     Jinfeng M, Kimura W, Sakurai F, et al. Prognostic role of angiogenesis and its
correlations with thymidine phosphorylase and p53 expression in ductal adenocarcinoma of the
pancreas. Hepatogastroenterology. 2007;54(78):1635-40.
69.     Hermanova M, Karasek P, Nenutil R, et al. Clinicopathological correlations of
cyclooxygenase-2, MDM2, and p53 expressions in surgically resectable pancreatic invasive
ductal adenocarcinoma. Pancreas. 2009;38(5):565-71.
70.     Salek C, Minarikova P, Benesova L, et al. Mutation status of K-ras, p53 and allelic losses
at 9p and 18q are not prognostic markers in patients with pancreatic cancer. Anticancer Res.
71.     Petty RD, Cree IA, Sutherland LA, et al. Expression of the p53 tumour suppressor gene
product is a determinant of chemosensitivity. Biochem Biophys Res Commun. 1994;199(1):264-

Singh et al

72.      Fan S, Smith ML, Rivet DJ, 2nd, et al. Disruption of p53 function sensitizes breast cancer
MCF-7 cells to cisplatin and pentoxifylline. Cancer Res. 1995;55(8):1649-54.
73.      Mueller H, Eppenberger U. The dual role of mutant p53 protein in chemosensitivity of
human cancers. Anticancer Res. 1996;16(6B):3845-8.
74.      Sigal A, Rotter V. Oncogenic mutations of the p53 tumor suppressor: the demons of the
guardian of the genome. Cancer Res. 2000;60(24):6788-93.
75.      Morton JP, Timpson P, Karim SA, et al. Mutant p53 drives metastasis and overcomes
growth arrest/senescence in pancreatic cancer. Proc Natl Acad Sci U S A. 2010;107(1):246-51.
76.      Yan W, Liu G, Scoumanne A, et al. Suppression of inhibitor of differentiation 2, a target
of mutant p53, is required for gain-of-function mutations. Cancer Res. 2008;68(16):6789-96.
77.      Li Y, Prives C. Are interactions with p63 and p73 involved in mutant p53 gain of
oncogenic function? Oncogene. 2007;26(15):2220-5.
78.      Zhou R, Shanas R, Nelson MA, et al. Increased expression of the heterogeneous nuclear
ribonucleoprotein K in pancreatic cancer and its association with the mutant p53. Int J Cancer.
79.      Taghavi MH, Davoodi J. Restoration of p53 functions suppresses tumor growth of
pancreatic cells with different p53 status. Cancer Biother Radiopharm. 2007;22(3):322-32.
80.      Singh PK, Behrens ME, Eggers JP, et al. Phosphorylation of MUC1 by Met modulates
interaction with p53 and MMP1 expression. J Biol Chem. 2008;283(40):26985-95.
81.      Hermanova M, Trna J, Nenutil R, et al. Expression of COX-2 is associated with
accumulation of p53 in pancreatic cancer: analysis of COX-2 and p53 expression in
premalignant and malignant ductal pancreatic lesions. Eur J Gastroenterol Hepatol.
82.      Sui X, Shin S, Zhang R, et al. Hdm2 is regulated by K-Ras and mediates p53-
independent functions in pancreatic cancer cells. Oncogene. 2009;28(5):709-20.
83.      Morton JP, Klimstra DS, Mongeau ME, et al. Trp53 deletion stimulates the formation of
metastatic pancreatic tumors. Am J Pathol. 2008;172(4):1081-7.
84.      Kang R, Tang D, Schapiro NE, et al. The receptor for advanced glycation end products
(RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell
Death Differ. 2010;17(4):666-76.
85.      Ji Q, Hao X, Zhang M, et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-
initiating cells. PLoS One. 2009;4(8):e6816.
86.      Chang TC, Wentzel EA, Kent OA, et al. Transactivation of miR-34a by p53 broadly
influences gene expression and promotes apoptosis. Mol Cell. 2007;26(5):745-52.
87.      Deramaudt TB, Takaoka M, Upadhyay R, et al. N-cadherin and keratinocyte growth
factor receptor mediate the functional interplay between Ki-RASG12V and p53V143A in
promoting pancreatic cell migration, invasion, and tissue architecture disruption. Mol Cell Biol.
88.      Lancaster J, Wooster R, Mangion J, et al. BRCA2 mutations in primary breast and
ovarian cancers. Nature Genet 1996;13:238-40.
89.      Edwards S, Kote-Jarai Z, Meitz J, et al. Two percent of men with early-onset prostate
cancer harbor germline mutations in the BRCA2 gene. J Hum Genet. 2003;72 1-12.
90.      Lawniczak M, Gawin A, Bialek A, et al. Is there any relationship between BRCA1 gene
mutation and pancreatic cancer development? Pol Arch Med Wewn. 2008;118(11):645-9.
91.      Al-Sukhni W, Rothenmund H, Borgida AE, et al. Germline BRCA1 mutations predispose
to pancreatic adenocarcinoma. Hum Genet. 2008;124(3):271-8.

Singh et al

92.      Rajan JV, Wang M, Marquis ST, et al. Brca2 is coordinately regulated with Brca1 during
proliferation and differentiation in mammary epithelial cells. Proc Natl Acad Sci U S A.
93.      Milner J, Ponder B, Hughes-Davies L, et al. Transcriptional activation functions in
BRCA2. Nature. 1997;386(6627):772-3.
94.      Daniels MJ, Wang Y, Lee M, et al. Abnormal cytokinesis in cells deficient in the breast
cancer susceptibility protein BRCA2. Science. 2004;306(5697):876-9.
95.      Sharan SK, Morimatsu M, Albrecht U, et al. Embryonic lethality and radiation
hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature. 1997;386(6627):804-10.
96.      Xia F, Taghian DG, DeFrank JS, et al. Deficiency of human BRCA2 leads to impaired
homologous recombination but maintains normal nonhomologous end joining. Proc Natl Acad
Sci U S A. 2001;98(15):8644-9.
97.      Yang H, Li Q, Fan J, et al. The BRCA2 homologue Brh2 nucleates RAD51 filament
formation at a dsDNA-ssDNA junction. Nature. 2005;433(7026):653-7.
98.      Chen J, Silver DP, Walpita D, et al. Stable interaction between the products of the
BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol Cell.
99.      Hiripi E, Lorenzo Bermejo J, Li X, et al. Familial association of pancreatic cancer with
other malignancies in Swedish families. Br J Cancer. 2009;101(10):1792-7.
100. Shi C, Hruban RH, Klein AP. Familial pancreatic cancer. Arch Pathol Lab Med.
101. Stracci F, D'Alo D, Cassetti T, et al. Incidence of multiple primary malignancies in
women diagnosed with breast cancer. Eur J Gynaecol Oncol. 2009;30(6):661-3.
102. Bartsch DK, Langer P, Habbe N, et al. Clinical and genetic analysis of 18 pancreatic
carcinoma/melanoma-prone families. Clin Genet. 2009.
103. van der Heijden MS, Yeo CJ, Hruban RH, et al. Fanconi anemia gene mutations in
young-onset pancreatic cancer. Cancer Res. 2003;63(10):2585-8.
104. Couch FJ, Johnson MR, Rabe K, et al. Germ line Fanconi anemia complementation
group C mutations and pancreatic cancer. Cancer Res. 2005;65(2):383-6.
105. Dagan E, Shochat T. Quality of life in asymptomatic BRCA1/2 mutation carriers. Prev
Med. 2009;48(2):193-6.
106. Ferrone CR, Levine DA, Tang LH, et al. BRCA germline mutations in Jewish patients
with pancreatic adenocarcinoma. J Clin Oncol. 2009;27(3):433-8.
107. Chalasani P, Kurtin S, Dragovich T. Response to a third-line mitomycin C (MMC)-based
chemotherapy in a patient with metastatic pancreatic adenocarcinoma carrying germline BRCA2
mutation. JOP. 2008;9(3):305-8.
108. James E, Waldron-Lynch MG, Saif MW. Prolonged survival in a patient with BRCA2
associated metastatic pancreatic cancer after exposure to camptothecin: a case report and review
of literature. Anticancer Drugs. 2009;20(7):634-8.
109. Edwards SL, Brough R, Lord CJ, et al. Resistance to therapy caused by intragenic
deletion in BRCA2. Nature. 2008;451(7182):1111-5.
110. Sakai W, Swisher EM, Karlan BY, et al. Secondary mutations as a mechanism of
cisplatin resistance in BRCA2-mutated cancers. Nature. 2008;451(7182):1116-20.
111. Liu F, Pouponnot C, Massague J. Dual role of the Smad4/DPC4 tumor suppressor in
TGFbeta-inducible transcriptional complexes. Genes Dev. 1997;11(23):3157-67.

Singh et al

112. Nakao A, Afrakhte M, Moren A, et al. Identification of Smad7, a TGFbeta-inducible
antagonist of TGF-beta signalling. Nature. 1997;389(6651):631-5.
113. Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to
nucleus through SMAD proteins. Nature. 1997;390(6659):465-71.
114. Robson CN, Gnanapragasam V, Byrne RL, et al. Transforming growth factor-beta1 up-
regulates p15, p21 and p27 and blocks cell cycling in G1 in human prostate epithelium. J
Endocrinol. 1999;160(2):257-66.
115. Luttges J, Galehdari H, Brocker V, et al. Allelic loss is often the first hit in the biallelic
inactivation of the p53 and DPC4 genes during pancreatic carcinogenesis. Am J Pathol.
116. van Heek T, Rader AE, Offerhaus GJ, et al. K-ras, p53, and DPC4 (MAD4) alterations in
fine-needle aspirates of the pancreas: a molecular panel correlates with and supplements
cytologic diagnosis. Am J Clin Pathol. 2002;117(5):755-65.
117. Hahn SA, Schutte M, Hoque AT, et al. DPC4, a candidate tumor suppressor gene at
human chromosome 18q21.1. Science. 1996;271(5247):350-3.
118. Schutte M, Hruban RH, Hedrick L, et al. DPC4 gene in various tumor types. Cancer Res.
119. Hruban RH, Goggins M, Kern SE. Molecular genetics and related developments in
pancreatic cancer. Curr Opin Gastroenterol. 1999;15(5):404-9.
120. Iacobuzio-Donahue CA, Fu B, Yachida S, et al. DPC4 gene status of the primary
carcinoma correlates with patterns of failure in patients with pancreatic cancer. J Clin Oncol.
121. Chow JY, Dong H, Quach KT, et al. TGF-beta mediates PTEN suppression and cell
motility through calcium-dependent PKC-alpha activation in pancreatic cancer cells. Am J
Physiol Gastrointest Liver Physiol. 2008;294(4):G899-905.
122. Zhao S, Venkatasubbarao K, Lazor JW, et al. Inhibition of STAT3 Tyr705
phosphorylation by Smad4 suppresses transforming growth factor beta-mediated invasion and
metastasis in pancreatic cancer cells. Cancer Res. 2008;68(11):4221-8.
123. Xu X, Ehdaie B, Ohara N, et al. Synergistic action of Smad4 and Pten in suppressing
pancreatic ductal adenocarcinoma formation in mice. Oncogene. 2010;29(5):674-86.
124. Bardeesy N, Cheng KH, Berger JH, et al. Smad4 is dispensable for normal pancreas
development yet critical in progression and tumor biology of pancreas cancer. Genes Dev.
125. Hua Z, Zhang YC, Hu XM, et al. Loss of DPC4 expression and its correlation with
clinicopathological parameters in pancreatic carcinoma. World J Gastroenterol.
126. Blackford A, Serrano OK, Wolfgang CL, et al. SMAD4 gene mutations are associated
with poor prognosis in pancreatic cancer. Clin Cancer Res. 2009;15(14):4674-9.
127. Ali S, Cohen C, Little JV, et al. The utility of SMAD4 as a diagnostic
immunohistochemical marker for pancreatic adenocarcinoma, and its expression in other solid
tumors. Diagn Cytopathol. 2007;35(10):644-8.
128. Yasutome M, Gunn J, Korc M. Restoration of Smad4 in BxPC3 pancreatic cancer cells
attenuates proliferation without altering angiogenesis. Clin Exp Metastasis. 2005;22(6):461-73.
129. Shen W, Tao GQ, Li DC, et al. Inhibition of pancreatic carcinoma cell growth in vitro by
DPC4 gene transfection. World J Gastroenterol. 2008;14(40):6254-60.

Singh et al

130. Wang H, Han H, Von Hoff DD. Identification of an agent selectively targeting DPC4
(deleted in pancreatic cancer locus 4)-deficient pancreatic cancer cells. Cancer Res.
131. Wang H, Stephens B, Von Hoff DD, et al. Identification and characterization of a novel
anticancer agent with selectivity against deleted in pancreatic cancer locus 4 (DPC4)-deficient
pancreatic and colon cancer cells. Pancreas. 2009;38(5):551-7.
132. Harper JW, Adami GR, Wei N, et al. The p21 Cdk-interacting protein Cip1 is a potent
inhibitor of G1 cyclin-dependent kinases. Cell. 1993;75(4):805-16.
133. Chen J, Killary AM, Sen S, et al. Polymorphisms of p21 and p27 jointly contribute to an
earlier age at diagnosis of pancreatic cancer. Cancer Lett. 2008;272(1):32-9.
134. Chen J, Amos CI, Merriman KW, et al. Genetic variants of p21 and p27 and pancreatic
cancer risk in non-Hispanic Whites: a case-control study. Pancreas. 2010;39(1):1-4.
135. Ahrendt SA, Brown HM, Komorowski RA, et al. p21WAF1 expression is associated with
improved survival after adjuvant chemoradiation for pancreatic cancer. Surgery.
136. Li X, Hui A, Takayama T, et al. Altered p21(WAF1/CIP1) expression is associated with
poor prognosis in extrahepatic bile duct carcinoma. Cancer Lett. 2000;154(1):85-91.
137. Nio Y, Dong M, Iguchi C, et al. Expression of Bcl-2 and p53 protein in resectable
invasive ductal carcinoma of the pancreas: effects on clinical outcome and efficacy of adjuvant
chemotherapy. J Surg Oncol. 2001;76(3):188-96.
138. Cheng F, McLaughlin PJ, Verderame MF, et al. The OGF-OGFr axis utilizes the p21
pathway to restrict progression of human pancreatic cancer. Mol Cancer. 2008;7:5.
139. Jia D, Sun Y, Konieczny SF. Mist1 regulates pancreatic acinar cell proliferation through
p21 CIP1/WAF1. Gastroenterology. 2008;135(5):1687-97.
140. Lee SO, Chintharlapalli S, Liu S, et al. p21 expression is induced by activation of nuclear
nerve growth factor-induced Balpha (Nur77) in pancreatic cancer cells. Mol Cancer Res.
141. Wang H, Song X, Logsdon C, et al. Proteasome-mediated degradation and functions of
hematopoietic progenitor kinase 1 in pancreatic cancer. Cancer Res. 2009;69(3):1063-70.
142. Yang Y, Tian X, Xie X, et al. Expression and regulation of hedgehog signaling pathway
in pancreatic cancer. Langenbecks Arch Surg. 2009.
143. Lu CD, Morita S, Ishibashi T, et al. Loss of p27Kip1 expression independently predicts
poor prognosis for patients with resectable pancreatic adenocarcinoma. Cancer.
144. Feakins RM, Ghaffar AH. p27 Kip1 expression is reduced in pancreatic carcinoma but
has limited prognostic value. Hum Pathol. 2003;34(4):385-90.
145. Skalicky DA, Kench JG, Segara D, et al. Cyclin E expression and outcome in pancreatic
ductal adenocarcinoma. Cancer Epidemiol Biomarkers Prev. 2006;15(10):1941-7.
146. Juuti A, Nordling S, Louhimo J, et al. Loss of p27 expression is associated with poor
prognosis in stage I-II pancreatic cancer. Oncology. 2003;65(4):371-7.
147. Hu YX, Watanabe H, Li P, et al. An immunohistochemical analysis of p27 expression in
human pancreatic carcinomas. Pancreas. 2000;21(3):226-30.
148. Rahman A, Maitra A, Ashfaq R, et al. Loss of p27 nuclear expression in a prognostically
favorable subset of well-differentiated pancreatic endocrine neoplasms. Am J Clin Pathol.

Singh et al

149. Shibata K, Tanaka S, Shiraishi T, et al. G-protein gamma 7 is down-regulated in cancers
and associated with p 27kip1-induced growth arrest. Cancer Res. 1999;59(5):1096-101.
150. Kouvaraki MA, Korapati AL, Rassidakis GZ, et al. Potential role of Jun activation
domain-binding protein 1 as a negative regulator of p27kip1 in pancreatic adenocarcinoma.
Cancer Res. 2006;66(17):8581-9.
151. Wei D, Kanai M, Jia Z, et al. Kruppel-like factor 4 induces p27Kip1 expression in and
suppresses the growth and metastasis of human pancreatic cancer cells. Cancer Res.
152. Shiraso S, Katayose Y, Yamamoto K, et al. Overexpression of adenovirus-mediated
p27kip1 lacking the Jab1-binding region enhances cytotoxicity and inhibits xenografted human
cholangiocarcinoma growth. Anticancer Res. 2009;29(6):2015-24.
153. Kawa S, Nikaido T, Aoki Y, et al. Vitamin D analogues up-regulate p21 and p27 during
growth inhibition of pancreatic cancer cell lines. Br J Cancer. 1997;76(7):884-9.
154. Kawa S, Nikaido T, Aoki Y, et al. Arotinoid mofarotene (RO40-8757) up-regulates p21
and p27 during growth inhibition of pancreatic cancer cell lines. Int J Cancer. 1997;72(5):906-
155. Charland S, Boucher MJ, Houde M, et al. Somatostatin inhibits Akt phosphorylation and
cell cycle entry, but not p42/p44 mitogen-activated protein (MAP) kinase activation in normal
and tumoral pancreatic acinar cells. Endocrinology. 2001;142(1):121-8.
156. Wiseman DA, Werner SR, Crowell PL. Cell cycle arrest by the isoprenoids perillyl
alcohol, geraniol, and farnesol is mediated by p21(Cip1) and p27(Kip1) in human pancreatic
adenocarcinoma cells. J Pharmacol Exp Ther. 2007;320(3):1163-70.
157. Gansauge S, Gansauge F, Ramadani M, et al. Overexpression of cyclin D1 in human
pancreatic carcinoma is associated with poor prognosis. Cancer Res. 1997;57(9):1634-7.
158. Chang MC, Chang YT, Sun CT, et al. Differential expressions of cyclin D1 associated
with better prognosis of cancers of ampulla of Vater. World J Surg. 2007;31(5):1135-41.
159. Kornmann M, Ishiwata T, Itakura J, et al. Increased cyclin D1 in human pancreatic
cancer is associated with decreased postoperative survival. Oncology. 1998;55(4):363-9.
160. Lebe B, Sagol O, Ulukus C, et al. The importance of cyclin D1 and Ki67 expression on
the biological behavior of pancreatic adenocarcinomas. Pathol Res Pract. 2004;200(5):389-96.
161. Kornmann M, Arber N, Korc M. Inhibition of basal and mitogen-stimulated pancreatic
cancer cell growth by cyclin D1 antisense is associated with loss of tumorigenicity and
potentiation of cytotoxicity to cisplatinum. J Clin Invest. 1998;101(2):344-52.
162. Kornmann M, Beger HG, Link KH. Chemosensitivity testing and test-directed
chemotherapy in human pancreatic cancer. Recent Results Cancer Res. 2003;161:180-95.
163. Biliran H, Jr., Wang Y, Banerjee S, et al. Overexpression of cyclin D1 promotes tumor
cell growth and confers resistance to cisplatin-mediated apoptosis in an elastase-myc transgene-
expressing pancreatic tumor cell line. Clin Cancer Res. 2005;11(16):6075-86.
164. Deharvengt SJ, Gunn JR, Pickett SB, et al. Intratumoral delivery of shRNA targeting
cyclin D1 attenuates pancreatic cancer growth. Cancer Gene Ther. 2009.
165. Ito Y, Takeda T, Wakasa K, et al. Expression and possible role of cyclin D3 in human
pancreatic adenocarcinoma. Anticancer Res. 2001;21(2A):1043-8.
166. Yarden Y. The EGFR family and its ligands in human cancer. signalling mechanisms and
therapeutic opportunities. Eur J Cancer. 2001;37 Suppl 4:S3-8.
167. Olayioye MA, Neve RM, Lane HA, et al. The ErbB signaling network: receptor
heterodimerization in development and cancer. EMBO J. 2000;19(13):3159-67.

Singh et al

168. van Heek NT, Kuhlmann KF, Scholten RJ, et al. Hospital volume and mortality after
pancreatic resection: a systematic review and an evaluation of intervention in the Netherlands.
Ann Surg. 2005;242(6):781-8, discussion 8-90.
169. Fong Y, Gonen M, Rubin D, et al. Long-term survival is superior after resection for
cancer in high-volume centers. Ann Surg. 2005;242(4):540-4; discussion 4-7.
170. Yeo CJ, Cameron JL, Sohn TA, et al. Pancreaticoduodenectomy with or without
extended retroperitoneal lymphadenectomy for periampullary adenocarcinoma: comparison of
morbidity and mortality and short-term outcome. Ann Surg. 1999;229(5):613-22; discussion 22-
171. SEER Cancer Statistics Review, 1975-2002, National Cancer Institute. [database on the
Internet]. Surveillance Research Program, NCI. 2005 [cited 2010]. Available from:
172. Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell
Biol. 2006;7(7):505-16.
173. Ogiso H, Ishitani R, Nureki O, et al. Crystal structure of the complex of human epidermal
growth factor and receptor extracellular domains. Cell. 2002;110(6):775-87.
174. Burgess AW, Cho HS, Eigenbrot C, et al. An open-and-shut case? Recent insights into
the activation of EGF/ErbB receptors. Mol Cell. 2003;12(3):541-52.
175. Hubbard SR. EGF receptor inhibition: attacks on multiple fronts. Cancer Cell.
176. Burris H, 3rd, Rocha-Lima C. New therapeutic directions for advanced pancreatic cancer:
targeting the epidermal growth factor and vascular endothelial growth factor pathways.
Oncologist. 2008;13(3):289-98.
177. Ebert M, Yokoyama M, Kobrin MS, et al. Induction and expression of amphiregulin in
human pancreatic cancer. Cancer Res. 1994;54(15):3959-62.
178. Kobrin MS, Funatomi H, Friess H, et al. Induction and expression of heparin-binding
EGF-like growth factor in human pancreatic cancer. Biochem Biophys Res Commun.
179. Ito Y, Higashiyama S, Takeda T, et al. Expression of Heparin-Binding Epidermal Growth
Factor-like Growth Factor in Pancreatic Adenocarcinoma. Int J Gastrointest Cancer.
180. Zhu Z, Kleeff J, Friess H, et al. Epiregulin is Up-regulated in pancreatic cancer and
stimulates pancreatic cancer cell growth. Biochem Biophys Res Commun. 2000;273(3):1019-24.
181. Kawaguchi M, Hosotani R, Kogire M, et al. Auto-induction and growth stimulatory
effect of betacellulin in human pancreatic cancer cells. Int J Oncol. 2000;16(1):37-41.
182. Funatomi H, Itakura J, Ishiwata T, et al. Amphiregulin antisense oligonucleotide inhibits
the growth of T3M4 human pancreatic cancer cells and sensitizes the cells to EGF receptor-
targeted therapy. Int J Cancer. 1997;72(3):512-7.
183. Kolb A, Kleeff J, Arnold N, et al. Expression and differential signaling of heregulins in
pancreatic cancer cells. Int J Cancer. 2007;120(3):514-23.
184. Yokoyama M, Funatomi H, Kobrin MS, et al. Betacellulin, a member of the epidermal
growth factor family, is overexpressed in human pancreatic cancer. International Journal of
Oncology. 1995;7:825-9.
185. Safran H, Steinhoff M, Mangray S, et al. Overexpression of the HER-2/neu oncogene in
pancreatic adenocarcinoma. Am J Clin Oncol. 2001;24(5):496-9.

Singh et al

186. Graber HU, Friess H, Kaufmann B, et al. ErbB-4 mRNA expression is decreased in non-
metastatic pancreatic cancer. Int J Cancer. 1999;84(1):24-7.
187. Friess H, Yamanaka Y, Kobrin MS, et al. Enhanced erbB-3 expression in human
pancreatic cancer correlates with tumor progression. Clin Cancer Res. 1995;1(11):1413-20.
188. Thybusch-Bernhardt A, Beckmann S, Juhl H. Comparative analysis of the EGF-receptor
family in pancreatic cancer: expression of HER-4 correlates with a favourable tumor stage. Int J
Surg Investig. 2001;2(5):393-400.
189. Ueda S, Ogata S, Tsuda H, et al. The correlation between cytoplasmic overexpression of
epidermal growth factor receptor and tumor aggressiveness: poor prognosis in patients with
pancreatic ductal adenocarcinoma. Pancreas. 2004;29(1):e1-8.
190. Harsha HC, Jimeno A, Molina H, et al. Activated epidermal growth factor receptor as a
novel target in pancreatic cancer therapy. J Proteome Res. 2008;7(11):4651-8.
191. Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N Engl J Med.
192. Schwenger P, Bellosta P, Vietor I, et al. Sodium salicylate induces apoptosis via p38
mitogen-activated protein kinase but inhibits tumor necrosis factor-induced c-Jun N-terminal
kinase/stress-activated protein kinase activation. Proc Natl Acad Sci U S A. 1997;94(7):2869-73.
193. Morgan MA, Parsels LA, Kollar LE, et al. The combination of epidermal growth factor
receptor inhibitors with gemcitabine and radiation in pancreatic cancer. Clin Cancer Res.
194. Patra CR, Bhattacharya R, Wang E, et al. Targeted delivery of gemcitabine to pancreatic
adenocarcinoma using cetuximab as a targeting agent. Cancer Res. 2008;68(6):1970-8.
195. Jaganathan S, Yue P, Turkson J. Enhanced sensitivity of pancreatic cancer cells to
concurrent inhibition of aberrant Stat3 and EGFR or Src. J Pharmacol Exp Ther. 2010.
196. Massague J. TGF-beta signal transduction. Annu Rev Biochem. 1998;67:753-91.
197. Sporn MB, Roberts AB. Transforming growth factor-beta: recent progress and new
challenges. J Cell Biol. 1992;119(5):1017-21.
198. Massague J. Transforming growth factor-alpha. A model for membrane-anchored growth
factors. J Biol Chem. 1990;265(35):21393-6.
199. Wrana JL, Attisano L, Wieser R, et al. Mechanism of activation of the TGF-beta
receptor. Nature. 1994;370(6488):341-7.
200. Friess H, Yamanaka Y, Buchler M, et al. Enhanced expression of transforming growth
factor beta isoforms in pancreatic cancer correlates with decreased survival. Gastroenterology.
201. Lu Z, Friess H, Graber HU, et al. Presence of two signaling TGF-beta receptors in human
pancreatic cancer correlates with advanced tumor stage. Dig Dis Sci. 1997;42(10):2054-63.
202. Kleeff J, Maruyama H, Ishiwata T, et al. Bone morphogenetic protein 2 exerts diverse
effects on cell growth in vitro and is expressed in human pancreatic cancer in vivo.
Gastroenterology. 1999;116(5):1202-16.
203. Levy L, Hill CS. Smad4 dependency defines two classes of transforming growth factor
{beta} (TGF-{beta}) target genes and distinguishes TGF-{beta}-induced epithelial-
mesenchymal transition from its antiproliferative and migratory responses. Mol Cell Biol.
204. Chow JY, Quach KT, Cabrera BL, et al. RAS/ERK modulates TGFbeta-regulated PTEN
expression in human pancreatic adenocarcinoma cells. Carcinogenesis. 2007;28(11):2321-7.

Singh et al

205. Chow JY, Ban M, Wu HL, et al. TGF-beta downregulates PTEN via activation of NF-
kappaB in pancreatic cancer cells. Am J Physiol Gastrointest Liver Physiol. 2010;298(2):G275-
206. Ottaviano AJ, Sun L, Ananthanarayanan V, et al. Extracellular matrix-mediated
membrane-type 1 matrix metalloproteinase expression in pancreatic ductal cells is regulated by
transforming growth factor-beta1. Cancer Res. 2006;66(14):7032-40.
207. Subramanian G, Schwarz RE, Higgins L, et al. Targeting endogenous transforming
growth factor beta receptor signaling in SMAD4-deficient human pancreatic carcinoma cells
inhibits their invasive phenotype1. Cancer Res. 2004;64(15):5200-11.
208. Gaspar NJ, Li L, Kapoun AM, et al. Inhibition of transforming growth factor beta
signaling reduces pancreatic adenocarcinoma growth and invasiveness. Mol Pharmacol.
209. Gadir N, Jackson DN, Lee E, et al. Defective TGF-beta signaling sensitizes human
cancer cells to rapamycin. Oncogene. 2008;27(8):1055-62.
210. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005;69
Suppl 3:4-10.
211. Mandriota SJ, Seghezzi G, Vassalli JD, et al. Vascular endothelial growth factor
increases urokinase receptor expression in vascular endothelial cells. J Biol Chem.
212. Fong GH, Rossant J, Gertsenstein M, et al. Role of the Flt-1 receptor tyrosine kinase in
regulating the assembly of vascular endothelium. Nature. 1995;376(6535):66-70.
213. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med.
214. Shibuya M. Structure and function of VEGF/VEGF-receptor system involved in
angiogenesis. Cell Struct Funct. 2001;26(1):25-35.
215. Veikkola T, Karkkainen M, Claesson-Welsh L, et al. Regulation of angiogenesis via
vascular endothelial growth factor receptors. Cancer Res. 2000;60(2):203-12.
216. Neufeld G, Cohen T, Gengrinovitch S, et al. Vascular endothelial growth factor (VEGF)
and its receptors. FASEB J. 1999;13(1):9-22.
217. Ai KX, Lu LY, Huang XY, et al. Prognostic significance of S100A4 and vascular
endothelial growth factor expression in pancreatic cancer. World J Gastroenterol.
218. Sandblom G, Granroth S, Rasmussen IC. TPS, CA 19-9, VEGF-A, and CEA as
diagnostic and prognostic factors in patients with mass lesions in the pancreatic head. Ups J Med
Sci. 2008;113(1):57-64.
219. Liang QL, Wang BR, Chen GQ, et al. Clinical significance of vascular endothelial
growth factor and connexin43 for predicting pancreatic cancer clinicopathologic parameters.
Med Oncol. 2009.
220. Wey JS, Fan F, Gray MJ, et al. Vascular endothelial growth factor receptor-1 promotes
migration and invasion in pancreatic carcinoma cell lines. Cancer. 2005;104(2):427-38.
221. Yang AD, Camp ER, Fan F, et al. Vascular endothelial growth factor receptor-1
activation mediates epithelial to mesenchymal transition in human pancreatic carcinoma cells.
Cancer Res. 2006;66(1):46-51.
222. Von Marschall Z, Scholz A, Stacker SA, et al. Vascular endothelial growth factor-D
induces lymphangiogenesis and lymphatic metastasis in models of ductal pancreatic cancer. Int J
Oncol. 2005;27(3):669-79.

Singh et al

223. Ranieri G, Patruno R, Ruggieri E, et al. Vascular endothelial growth factor (VEGF) as a
target of bevacizumab in cancer: from the biology to the clinic. Curr Med Chem.
224. Ko AH, Dito E, Schillinger B, et al. A phase II study evaluating bevacizumab in
combination with fixed-dose rate gemcitabine and low-dose cisplatin for metastatic pancreatic
cancer: is an anti-VEGF strategy still applicable? Invest New Drugs. 2008;26(5):463-71.
225. Kelley RK, Ko AH. Erlotinib in the treatment of advanced pancreatic cancer. Biologics.
226. Yamanaka Y, Friess H, Buchler M, et al. Overexpression of acidic and basic fibroblast
growth factors in human pancreatic cancer correlates with advanced tumor stage. Cancer Res.
227. Yamazaki K, Nagao T, Yamaguchi T, et al. Expression of basic fibroblast growth factor
(FGF-2)-associated with tumour proliferation in human pancreatic carcinoma. Virchows Arch.
228. Hasegawa Y, Takada M, Yamamoto M, et al. The gradient of basic fibroblast growth
factor concentration in human pancreatic cancer cell invasion. Biochem Biophys Res Commun.
229. Niu J, Chang Z, Peng B, et al. Keratinocyte growth factor/fibroblast growth factor-7-
regulated cell migration and invasion through activation of NF-kappaB transcription factors. J
Biol Chem. 2007;282(9):6001-11.
230. Nomura S, Yoshitomi H, Takano S, et al. FGF10/FGFR2 signal induces cell migration
and invasion in pancreatic cancer. Br J Cancer. 2008;99(2):305-13.
231. Ohta T, Yamamoto M, Numata M, et al. Expression of basic fibroblast growth factor and
its receptor in human pancreatic carcinomas. Br J Cancer. 1995;72(4):824-31.
232. Wagner M, Lopez ME, Cahn M, et al. Suppression of fibroblast growth factor receptor
signaling inhibits pancreatic cancer growth in vitro and in vivo. Gastroenterology.
233. Kleeff J, Fukahi K, Lopez ME, et al. Targeting of suicide gene delivery in pancreatic
cancer cells via FGF receptors. Cancer Gene Ther. 2002;9(6):522-32.
234. Walsh CT, Wei Y, Wientjes MG, et al. Quantitative image analysis of intra-tumoral
bFGF level as a molecular marker of paclitaxel resistance. J Transl Med. 2008;6:4.
235. Tassi E, Henke RT, Bowden ET, et al. Expression of a fibroblast growth factor-binding
protein during the development of adenocarcinoma of the pancreas and colon. Cancer Res.
236. Tassi E, Wellstein A. The angiogenic switch molecule, secreted FGF-binding protein, an
indicator of early stages of pancreatic and colorectal adenocarcinoma. Semin Oncol. 2006;33(6
Suppl 11):S50-6.
237. Li YJ, Wei ZM, Meng YX, et al. Beta-catenin up-regulates the expression of cyclinD1, c-
myc and MMP-7 in human pancreatic cancer: relationships with carcinogenesis and metastasis.
World J Gastroenterol. 2005;11(14):2117-23.
238. Tan X, Egami H, Abe M, et al. Involvement of MMP-7 in invasion of pancreatic cancer
cells through activation of the EGFR mediated MEK-ERK signal transduction pathway. J Clin
Pathol. 2005;58(12):1242-8.
239. Yamamoto H, Itoh F, Iku S, et al. Expression of matrix metalloproteinases and tissue
inhibitors of metalloproteinases in human pancreatic adenocarcinomas: clinicopathologic and
prognostic significance of matrilysin expression. J Clin Oncol. 2001;19(4):1118-27.

Singh et al

240. Gurevich LE. Role of matrix metalloproteinases 2 and 9 in determination of invasive
potential of pancreatic tumors. Bull Exp Biol Med. 2003;136(5):494-8.
241. Juuti A, Lundin J, Nordling S, et al. Epithelial MMP-2 expression correlates with worse
prognosis in pancreatic cancer. Oncology. 2006;71(1-2):61-8.
242. Pryczynicz A, Guzinska-Ustymowicz K, Dymicka-Piekarska V, et al. Expression of
matrix metalloproteinase 9 in pancreatic ductal carcinoma is associated with tumor metastasis
formation. Folia Histochem Cytobiol. 2007;45(1):37-40.
243. Nakamura T, Kuwai T, Kim JS, et al. Stromal metalloproteinase-9 is essential to
angiogenesis and progressive growth of orthotopic human pancreatic cancer in parabiont nude
mice. Neoplasia. 2007;9(11):979-86.
244. Yokoyama M, Ochi K, Ichimura M, et al. Matrix metalloproteinase-2 in pancreatic juice
for diagnosis of pancreatic cancer. Pancreas. 2002;24(4):344-7.
245. Mroczko B, Lukaszewicz-Zajac M, Wereszczynska-Siemiatkowska U, et al. Clinical
significance of the measurements of serum matrix metalloproteinase-9 and its inhibitor (tissue
inhibitor of metalloproteinase-1) in patients with pancreatic cancer: metalloproteinase-9 as an
independent prognostic factor. Pancreas. 2009;38(6):613-8.
246. Kuhlmann KF, van Till JW, Boermeester MA, et al. Evaluation of matrix
metalloproteinase 7 in plasma and pancreatic juice as a biomarker for pancreatic cancer. Cancer
Epidemiol Biomarkers Prev. 2007;16(5):886-91.
247. Zervox EE, Franz MG, Salhab KF, et al. Matrix metalloproteinase inhibition improves
survival in an orthotopic model of human pancreatic cancer. J Gastrointest Surg. 2000;4(6):614-
248. Kapischke M, Fischer T, Tiessen K, et al. Characterisation of a novel matrix
metalloproteinase inhibitor on pancreatic adenocarcinoma cells in vitro and in an orthotopic
pancreatic cancer model in vivo. Int J Oncol. 2008;32(1):273-82.
249. Zhi YH, Song MM, Wang PL, et al. Suppression of matrix metalloproteinase-2 via RNA
interference inhibits pancreatic carcinoma cell invasiveness and adhesion. World J Gastroenterol.
250. du Rieu MC, Torrisani J, Selves J, et al. MicroRNA-21 Is Induced Early in Pancreatic
Ductal Adenocarcinoma Precursor Lesions. Clin Chem. 2010.
251. Gironella M, Seux M, Xie MJ, et al. Tumor protein 53-induced nuclear protein 1
expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development.
Proc Natl Acad Sci U S A. 2007;104(41):16170-5.
252. Torrisani J, Bournet B, du Rieu MC, et al. let-7 MicroRNA transfer in pancreatic cancer-
derived cells inhibits in vitro cell proliferation but fails to alter tumor progression. Hum Gene
Ther. 2009;20(8):831-44.
253. Weiss FU, Marques IJ, Woltering JM, et al. Retinoic acid receptor antagonists inhibit
miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology.
2009;137(6):2136-45 e1-7.
254. Li Y, Vandenboom TG, 2nd, Wang Z, et al. miR-146a suppresses invasion of pancreatic
cancer cells. Cancer Res. 2010;70(4):1486-95.
255. Dillhoff M, Liu J, Frankel W, et al. MicroRNA-21 is overexpressed in pancreatic cancer
and a potential predictor of survival. J Gastrointest Surg. 2008;12(12):2171-6.
256. Moriyama T, Ohuchida K, Mizumoto K, et al. MicroRNA-21 modulates biological
functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance.
Mol Cancer Ther. 2009.

Singh et al

257. Park JK, Lee EJ, Esau C, et al. Antisense inhibition of microRNA-21 or -221 arrests cell
cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma.
Pancreas. 2009;38(7):e190-9.
258. Zhang Y, Li M, Wang H, et al. Profiling of 95 microRNAs in pancreatic cancer cell lines
and surgical specimens by real-time PCR analysis. World J Surg. 2009;33(4):698-709.
259. Lee EJ, Gusev Y, Jiang J, et al. Expression profiling identifies microRNA signature in
pancreatic cancer. Int J Cancer. 2007;120(5):1046-54.
260. Wang J, Chen J, Chang P, et al. MicroRNAs in plasma of pancreatic ductal
adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res (Phila
Pa). 2009;2(9):807-13.
261. Greither T, Grochola LF, Udelnow A, et al. Elevated expression of microRNAs 155, 203,
210 and 222 in pancreatic tumors is associated with poorer survival. Int J Cancer.


Shared By: