Docstoc

rx Hemic

Document Sample
rx Hemic Powered By Docstoc
					                                                      1
                                       £r&/rx/9A(S 3 ^ . |




                                 LIB/TRANS-554

        CLOSED CIRCUIT ENERGY SUPPLY


                      by
    Prof. R. Schulten and Dr. H. Barnert


Translated from the German by Dr. U. Engelbert
                January 1975
                 AUSTRALIAN ATOMIC ENERGY COMMISSION
                                 NUCLEAR SCIENCE AND TECHNOLOGY BRANCH
                   RESEARCH ESTABLISHMENT, NEW ILLAWARRA ROAD. I.UCAS HEIGHTS
TELEGRAMS  ATOMRE. SYDNEY
TELEX:     2456 2                                                          ADDRESS ALL MAIL TO:
TELEPHONE: 5 3 1 - 0 1 1 1
                                                                       AAEC RESEARCH ESTABLISHMENT
IN R E P L Y P L E A S E QUOTE                                       PRIVATE MAIL BAG. SUTHERLAND 2232
                                                                              N.S.W. AUSTRALIA




                                     AUSTRALIAN ATOMIC ENERGY COMMISSION
                                             LIB/TRANS SERIES


                       i
         Translations i i this series were prepared as working documents for the
    use of research scientists at the Australian Atomic Energy Commission.

         In order that they might be made available with the least possible
    delay, no attempt has been made to edit them, nor have all typing errors
    necessarily been identified and corrected.

         Copies of translations in this series are made available to interested
    organizations and individuals only on the express understanding that they
    nay be imperfect and do not aim to meet the standards of a published docu­
    ment. The Commission will not be held responsible for any inaccuracies in
    the translated text or for any errors resulting therefrom.

          If any further reproduction of this translation is made by the recipient
     thereof, thi-- note must be reproduced together with the text of the trans­
     lation.
                                                 LIB/TRANS-554




AUSTRALIAN ATOMIC ENERGY COMMISSION RESEARCH ESTABLISHMENT




              CLOSED CIRCUIT ENERGY SUPPLY



                            by

          Prof. R. Schulten and Dr. H. Barnert

               (VDI Reports No. 224, 1974)




     Translated from the German by Dr. U. Engelbert

                      January 1975
  Mil K t p o , t .-, !•,.. I. . , 1M/-..

  Closed Circuit              Kneigy S u p p l y •
         J
  by ! t o f . k . S. tin! t e n and ' v . . !!. H a r n e t t ,                 Juliih

  brief        Fxi I.I. t

             The minci <l o i l            c r i s i s has made e v i d e n t             the n e c e s s i t y   t o employ
 in     !UJ1' tnuii;y         t o an i n c r e a s i n g d e g r e e         in t do power s u p p l y of               the non-
 i [n.tricdl          nuiikc'.             For t h i s p u r p o s e       it. i s n e c e s s a r y        to convert      nuclear
 energy         i n t o I i a n s p o i t a b Ie anil r e a d i l y a c c e s s i b l e          forms of e n e r g y .           This
 can l>e a c h i e v e d !.y t h e c o n v e r s i o n of n u c l e a r e n e r g y i n t o t h e                      chemical
 e n e r g y of a l a t e n t h e a t i n g gas c i r c u l a t i n g , between t h e n u c l e a r                      power
 plants         and tlie consumers ot e n e r g y .                        The n u c l e a r h e a t s o u r c e of         this
 energy         supply s y s t e m , d e s c r i b e d         in a b b r e v i a t e d     tonn a s " N u c l e a r      Long
 l>!.,tanc.e L i ' e i g y " Ls tlie h i g h t e m p e r a t u r e               leader.

 ! .         Tnt rodin- t i o n

             For t h e [ o v u l a t i o n of         i n d u s t ra 1 \ sod c o m m i e s e n e r g y i s o t             outstand-
 \ •••-,; i m p o r t a n c e .        The p o l i t i c a l       and s o c i o l o g i c a l    effects         of    volume
 i cuuc t i o n s ant! . . r i c e r i s e s         i n t h e p r i m a r y e n e r g y comtiiod i t y , m i n e r a l           oil,
 in ! he autumn of                 \')1 "S have d r a m a t i c a l l y d e m o n s t r a t e d         this      importance.
The p r i c e       increases,            for     instance         t h e " t a x p a i d c o s t ; , " by a f a c t o r oi >
and more w e r e to a l a r ^ u e x t e n t                    p o s s i b l e b e c a u s e of       the     large     dependence
<t     t h e European C o u n t r i e s and J a p a n                          on m i n e r a l o i l        supplies.            The

p ' i i n a r y e n e r g y s u p p l y of        t h e Get man F e d e r a l R e p u b l i c          in 1972         consisted
to approximately                   'J 17. of m i n e i a l     oil.        From a n a t i o n a l e c o n o m i c a l       point
c r view i t         is     reasonable            to r e d u c e     t b i s d e c r e e of      dependence.
         From s t u d i e s of           r e s t i v e and c o n s u m p t i o n d a t a         it    i.i known t h a t        ttie
p - ' i m a r y t-m-i/y i . i r r i e t . s ot ' f o s s i l       origin      i . e . mineral          oil    and      natural
gas w i l l       be u..ed up w i t h i n a t cW d e c a d e s .                    Thus the t a s k e x i s t s           to
substitute.          the.-,c c a r r i e r s of p i i t m u y e n e r g y by a new e n e r g y                     source,
' I b i s aim tnuot be p r i m a r i l y a c b i e v e d by n u c l e a r e n e r g y .                       All other pro­
p o s e d s o u r c e s of e n e r g y          'or future          c o n s u m p t i o n such a s f u s i o n          energy,
s o l a r e n e r g y and g e o t h e r m l c e n e r g y s t i l l           require significant                      developmental
efiort.            An a d e q u a t e a n i r e l i a b l e e n e r g y s u p p l y i s n o t based s o l e l y on
the a v a i l a b i l i t y       of a d e i p u i t e < | i i a n t t t J e s o f p r i m a r y e n e r g y b u t a l s o on th«
l u i i o d u c L i r . i l of ii /^r/aliial and t r o u b l e           fme      t r a n s i t p h a s e between an o M
in.I u new eiieigy                :upp!y        system.          'therefore         t h e t i m e l y d e v e l o p m e n t of     an
a.i.pi.ible        and ' O i p a t i b l e       s y s t e m of e n e r g y s u p p l y b a s e d on n u c l e a r          energy
i • u i gi nl 1 y i e>i.. • i ed ,
            .'.       Tin.           -
                                I'I < ..en < K n o i i . y                            Snpp!-,'

                        Hie           jlal                eiieigy              effort                  of        I he f e d e r a l     Republic                ot      Germany            was

        apj> t o x i i u a l e 1 y                        V'O x            !0         Luib of                    black      coal       equivalent                    in     1970.            The

            Nil l o w i n g p i Unary e n e r g y                                      sGuice                    supplying            this       effort           are       quoted           below

            lifting            the          approximate                              pe r c e i i t a g e o f              each        source:-                Mineral             Oil:       52"/,;

        P! .iv U d i a l :                  J ' . ' „ ; Brown C o a l :                                in'/.;         Natural      Gas:          57.; H y d r o           Power:           27. a n d

        '.'i< ' e a r         I'.iu-1 i.y:                     \'L.            1'iiccj                 for        primary        energy              s o u r c e s of         fossil          origin

            in    the    fed., i i!                       Hiniil.Mc of                          Gentiany a t               the     b e g i n n i n g of              19 74 a r e           listed

        U l..w:-

                     H r u w n <;>• i :              !
                                                                           ') -         7 h e n t ji.'it: M a i k / C c . i !                    at     t!ie      mine

                     l.'atlllal               i:.<3                        "• -       10 I ' e t i t . s t l . e         Maik/Gcal               free        at      border

                     Bl.uk            C M !:                              II     -    16 D e n t s c h c                 Mark/Gcai               at     the        mire

                     Mi ik'i',11 u : !                                Jl         -    2'i D e u t s c h e                Maik/Cca!               free        at      h.arder
    !
        -!wie        t h a n '!'>"'.. ..f m i n e r a l                               oil              is        inputted.             Be-tore              the      oil      crisis          cost

    ol            miiu-ra,!           oil                 : u'u       at         the        border                 was     lowei       by a f a c t o r               of      1-4.           At     the

    pics, at                  tine           a           large            portion                  of        natural            gas    is        imported             I rotn       the

    '•'.i -t i.e r La!id;>.                                   '.i f u t u r e          it         wilt            hive      to be b r o u g h t                i n !._,      sea        cargo       in

        • iipietied               lorn .                         Only            brown co.i!                       arid b l a c k c o a l             id a v a i l a b l e          in      the
                                                 :
    rtVcr.i!              Hejitih! 'c                          in     larger             qu.iiit i ! i e s ,                sufficient                 to     last         for     100       or

c.i.re y e a r s                      at         i '...,.• p r e s e n t                rate                of    consumption.                        I t must            be r i o t e d     however

    that            tlie iiridei ,•,! iiund m i n i n g of                                                  bla.k        coat     is    relatively                   expensive                for

    in . t a i i r e           a p p r o \ hxi t e 1 y 4                              to          'i t i, ic s tttore e x p e n s i v e                     than        coal       of      equivalent

<j:;a !)' ».y i n                     ' he \'                    .t,.\.
                          ;
                    Mak         .' a! 1 u . , a n < e
                                  ;                                            for      losses                    i ri c o n v e r s i o n       processes,                 in     particular

the                generation                            of     electricity,                                and       subtracting            export               and       non-energetic

utilisation                                the            secondary                    energy                    consumption            in       the         Federal           Republic             in

!''/U amounted                                to approximately                                              2 JO x 10           tons        of       black         coal          equivalent.
                                       r
!n . i l l              secto s                      of         erieia.y c o n s u m p t i o n                           i.e.    domestic               and        small         users,

industry                      and           tra'.fic,                      mineral                     oil        today      assumes a predominant                                 position              as
        :
i            I U.i t I a t t .i        ill           I- I k.M, r e         1 .



                                                                                                        Enorgieverbrauch BRD1970
                                                                                       ra               Sekundar - Energre in 10 t SKE/a         6




                                                                                            i      i

                                                                                                                          Ml             I";           Ri1
                                                                                                                                                             11 -
                                                                                                                                             ;
                                                                                       i _ ;*- LJ                UJ       L5il£iiIU'
                                                                                                                            90                              40
                                                                                                 100                       Industry                   Verhenr
                                                                                        Haothalt                                                        r,,,...
                                                                                                '.,,.. vt.i

                              Con - u n o t i o n o f s e c o n d a r y e n e r g y I n * h e F e d e r a l R e p u b l i c o f G e r m a n y
                              in t h e yi ii 1 9 / 0 .              A r e a s a r t : d o m e s t i c a n d srtia I ! c o n s u m p t i o n ,
                              M i . l u . t i y .mil t r i l f i i .         I h e u n i t i s 1 0 ^ t of b l a c k CO<*l e q u i v a l e n t
                          tar              i -i n a i n ,
         !'!n       . e1 11 i n            !.     I •••«,' j • t" i e nt" m i n e r a l               oil      p r o d u c L 5, p r i o r              lo     the o i l c 1I^ i ^

         !i-n!u-.|              i n ••!'• ' . i n n i n g             a m.ukiL               shale          o f a p p I U S i u u Lc-! y t,•.'"'. i n                    industry

     an.:           i i i | i r o > i i : : i i t i ly V b . i n d w i ' t s l i i ' c o n -,11111111. i 011.                       ! n t h e LO- l o r o f                     d.-::>t- s i ! o

     .,..,; o t . h e i          .-.uuil!          1 mi -iiiim.-1 s l i j i ' i L           hejliiu; o'I                in i i a i t i t i i K u             ! m      beco(;ic            'he

   t.'aill           pleidin          I     tt-Cl!     lol        the      c ' e l l e l a I j Oil    lit     hot      Wii I C V    1 O I"      I •>• • "II H J . l t i r . j , .         ill

         ' i!i!:l .: '. I V I K ' . I V V        b i l l i n g     u i !     is      t be     p l e U r i e d          product            for        'he       g t 11C T J ' •' O:'.

   ...           • • i • H i. •.- = h e a l ,                'ihus        the primary                 energy            iuu t , c        s u b s t i ' . . f1:i^, o i l i: •_•:.!,

   .d.•••..- a ! ! , b o                    capable           of     utilisation                     in t h e hc.il             a-m-iji-i;                   market.

         '..         'iiii'liMi             KII- i ••',• ,    t lit- I ' l i i i ' . n y    Kitet              f     t h e JMi t l i r e

                     i.idiy        .ihi' ill I he i m m e d i a t e                        future           ivjcle.tr         ilR        y     \.'i! ! he            used

  .. .-.. i . , , i v i l y               ill t h e g e n e r a t i o n             of e l e o t r i , i l > ' .                On Ll.i.j ':.,.(il'.et l i m 1 e.< :"

     I i . o i m l ui.y/           li.i . lii.d-MMi               through           t o e.oiioiiiic                viability             by' t ' ' e         ! i ^liL Wat. r

     le.it. l o t .                   !'u       l.i.di        t empe I".-. I u i'e 1 ' e a i . t o r ,                 leaetor           u!       tie        >o i . a - . l c l

          ....ml         eye!,., i .1 ' i • .. ,wi M a l s o                    till I !i»T !y b e used,                      l o ;.;etu i a I o e i i. i "t I" i I i ! y .
     1                            :
          I;.-     o,',!.!";              , •' '. . l o l l e d      lo     I lit- t h i e s h o b . i        of b r e a k i n g             i r'i' 'J t h e l l t i i r k t t . .
                                                                                                                                                                                              :
          •oie        t h e !•!'.'. n ' l ' t '".i e n e r g y                 i n I be f o n n o f                  h i jilt teli;|)e l a t o r         c     i b e J i n : ^ i b ' ' '.,

  .,'            i • >. u s e      j 'I ' b e          c e l l o r a t i oil • '           process           Ileal      LLi       tfilai'jlr.

                    i.iiii:pa i i •.• ' . . ' i ! i       idle p r b c i            for       fossil           fuels;         n u d e ir etiiivy                     La a           very

  ... . . . l . i t i v e                 :••.•.•.' '. of        primary           . net',',','.            The ro.il             for        tun l e a f         energy             i.t

  • !;.           bit!!! iii              t b e : •••. a . i l Cabl e lte.it                lull t e n t       in      the icactoi: inulaiiL                              !:c!i;:m

 ,,:: . o u t . ,          Lo ' ) - . . b<. II ;. s i h e M a i h / G c . i l .                      I'llis     luit          relates            to a         icictor               s i /.C

 o!             the oidei                  of     ',''(b) MWlh a •> Mini i Hi; a l o a d i n g                            l.n'lor         ot       ,">,. a n d a

 i -..liven t i on.i ! a l l o w in< e                             tor" a m o r t i z a t i o n .                  The upper                 tbaiire              S
                                                                                                                                                              o f I lint

            ,
  (• ! i; i • Lo t h e y e a t                           b-t'-o'i t a k i n g        account            of         inflation.                    I'be ( O i t            includes

 tin ! l y c i i t o ; i ii.iiyt",                           of     2- i b M / o c a l          which           in t h e m s e l v e s              include             coi> e t i -

 iiate               charges                >.t a [ i p i oxitiia t c Ly 0 . ' < D M / C c a l                     c o r r e s p o n d i n ^ t o v b / l b U.j(> .

                     Accoidiio; io                       ! be c u r r v i o t        Knowledge of u r a n i u m o i e                               r n e n t s             relatively

 i f,c,t|> u r a i i i u i : d e i u i s i t s                    are       1'kely           t o be e x h a u s t e d               in       a I • w decades.                         Thi.>

situation                     doe , n o t              affect,            the u s e f u l n e s s             of      the      hljjh         i < tnpera t u t e               reactor

inijuoe                   (!)         it        i . feasible               to u t i l i s e           expensive ores                      and        (2)        it       is

po.-.-. i hi e t o b r e i d                         new t i i e l .              Mecause ot                  L he      relative               insignificance                        of

in e IOLJILD iii                          the- t o t a l          cost,      .stiuclure               the use            if     expensive                 uranium               ores

I. or o n l y a an,a I I o v e r a l l                               effect            on c o s t           increase.                  Relatively                    ic»-

i-|.en jive                   on:           lesurves will                    be s t r e u . h e d            out       by      Lhe a d d i t i o n             of      new          fuel

'i                b r e e d I iii-, ( p e r u l . i o n s .                  Ihis          is achieved                 by ( 1 )        operating                   t h e HTR

••>..          i "bijOi         iiticieiicy                   c^civeitei" with                       a conveiilon                   factor             of      90-957.

(..ml p o s i i l i l y                    in, i i )     and       (2)      amalgamating                      the      fuel        cyclb          of        t h « H'l'R w' t h

tie              hie 1 v y c l e             of      future          fast         breeding             reuctors.                    Thu p r o g n o t i a                 foi

: b-             federal           l',,-puMj(                t o be        s u p p l i e d wi ih              lb.:     fuel        u r a n i u m and               the        breeding
            !».. .       Ihioiii.i               i -i i o n . i d e r e d       l o b e po.> i t i Vc , s i n c e           Ihcat         3li!)il.j!ki S -                 i.l

            i.aiti.ist            to iiiiui.il                 oil     •• o c c u r     f ii in.my m o t e          geographic J ! [i.culiuiii                         arid

            .;!i-      t . . i n ^ mined               in I U U H I I i t s w i t h         stable          political           c o n d i I i on j .

                         rim-. nii< !.„-.ir e n e i g y                   i s a ve i y e c o n o m i c a l            and i n a d d i t i o n             environ-

            ' . . i - i , ! l y ili j i i j l l u           source          ul primary             energy.              Howevt-r          the      generate.!

            . • • ; ./,' l a ' i u i . l .        I; •• t r a n s m i t t e d     in t h e form o t               the       apparent               UmpcCutuie

            ..'      ! hi.- r i . o t o i           io.jl.nit        Helium.               Fur i b i s        icdioll       Ule c i m v c r s i u U o f               the

            : . ' Mini hu.it            t.miii'.t              into a        11 a i i s p o i t a b l e    am! i t . n l y - l o - i i J i '     form      is

            i • ij<i i r e d .          A possible                   LIIIIVI l i i m i      process           t.> a c h i e v e      this        i c q u i rt-.in<_ii t i s

            I l.i.' " N i u l e a r          I.inn, iii.-.tdlict; E n e r g y " .                   T h i s p r o c e s s may h e d e s c r i b e d                    as

            t he l u n v t i a i u i i •/( u n c l e a r                  eiieigy          into     the l a t e n t        chemical              energy         \ji    a

            l.-'i-nt        heat        t..iiier               g a s used         for energy              t r a n - . p o r t a t i otl f o l l o w e d        t»y t h e

            u liVL-l'.iiuli o f                   'hi:, latent            eiieigy          iato     t h e elic 1 ey o f h o t w a t e r                   Or    st'jairt

            i • .pec l i v e l y .

                        1'r i in • i p I • . o' fcnergy Supply                                     :
                                                                                               in • Closed '.iicuit

                        In addition to the primaiy conversion and the production of a

            ii-.idily ,ic. eo.-. i h! e form of energy                                       the subject of energy supply embraces

         .I'mve a!! : he tasks of transportation and distribution of energy                                                                                      to the

            i
         i ' d user.                   'hi 'il.iir these                  tasks have been largely achieved by the trans-

         p.illation and d i: i i i bit t ion technologies of electricity and specially

         :.,.;.and enci./v carriers.                                            Energy distribution by hot water exists to

        1
        . .mail extent, this is the energy supply                                                            system for long distance

         -.t
        h - i i ng.

                       An j l u i n . i l i v f              to     the s o l u t i o n       of     t h e piohletii           is     the t r a n s p o r t           and

        di          ' iihiiLii.it        of c h e m i c a l l y             reactive          systems            in a closed              circuit.                    In

         this          r a . c the energy                      is    t ransi>or leil          i n t h e ( u r n of             laietit          chemical              energy,

        tor          i n . . 1.1 rice a s t h e r e a c t i c M i e n t h a l p y                  of a c h e m i c a l l y          reactive              system.
                                                                                                                                                                 *i
        I hi -j m e t h o d           of e n e r g y              t nmsmission              has been            developed            at        t h e KKA J u l i c h

        a     lew y e a r s           a>;> a n d h a s r e c e n t l y                 become of              interest          U.VUM.               It    's
    i
        identified                 by            the    tollowing               characteristics:-

    {   (:)            The d i r e c t i o n              of      the chemical              reaction            between           the     reaction              partnera
    1
                       is    reversible                   and       runs "forward"                 under        specific            eruditions             *nd

    t                 "reverse"                   under        alternative              conditions.

        ( .')         D e p e n d i n g on t h e d i r e c t i o n                    of    the reaction                pro ceases             heat       energy

                      is e i t h e r              received           or     produced.

        ( \)          No c h e m i c a l               reaction(s)              occurs       during           the     time when t h e                currier

                      i s be i ng                t ran .por t e d .

J
I
\
;                                            I
                         ;
         A c hemic.i         crjilion   i s called reversible if           the produces ot          the
 " i . v c i s t " ctji'. i on aie identical villi the i n i t i a l         substances of the
 "ioiward" l t . i c i i j i i .   The c r i t e r i a of r e v e r s i b i l i t y of chemical    reactions
 within the eliei-iical energy system must be met to a veiy high degree,
 otherwise i be <JIII i.' I mien t in non-reversible reaction pawners w i l l cause
 problems.           If a iion-reve-sibi e reaction partner is generated provisions
 for i t s removal and replenishment of the systems must ho made.

         Tlie d i i e i i i o i i in which chemicil       reactions run is defined by the
 position of ili'j |>.jint of chemical equilibrium' which is a function of
 temperature, pressure and coc-nosi Lion.
         In theisubaric condition              of     a   process the he.it transfer               associated
 with the chciiii.jL reactions is defined by the reaction enthalpies.
 Impending on the d i r e c t i o n of                        a reversible chemical               reaction
 beat energy of the magnitude of ihe reaction enthalpy is absorbed or
 given off       in ,JII isobaric process.            The erthalpy of a chemical reaction
 is defined as i he product of the reaction enthalpy of each formulation
change and the lotal formulation change or more s p e c i i i c , the degree of
 total formulation change.                 For economical reasons the energy density
  .uuld be as hi.',h as possible, t h i s means that the enthalpy of each
 formulation change am' the-total                   formulation change in the chemical
 teaction should be as large as possible.                        In the majority of cases the
reaction enthalpy             is purely a function of the chemical system, not of
 temperature, pressure or composition.                      However the a t t a i n a b l e       transfer
is a function of the position of the chemical equilibrium, i . e .                                the
lonlrolled conditions of temperature,pressure and composition.

        The transport condition for the chemical energy system is                                 character­
ised by r e l a t i v e l y low temp'e i a t u r e s , for instance ambient temperature
arul - under certain c i rcumstai.ces - elevated pressures.                            If possible
no chemical reaction should take place during the transportation phase.
       Chemical reactions proceed at the speed of zero, if                           the system i s
in the s t a t e of equilibrium or if               the system i s not in chemical
equilibrium, but " s t a b l e " .         The reaction Inertia of a stable sytterc,
which i s not in t hemic* I etuil 1 Ibrium, I* overcome by c a t a l y s t s .
       For tut tin'c* 1 and economic reasons reaction partner* i n the chenlcel
em igy sy.il.in ore transported from producer to consumer end from coQluewr
 to producer „i the same tempera turn i . e . ambient temperature*    fhii
 Implies thut ac UaaL in one of the two transport direction* the systeM
i!,ust be in a .-.laic of chemical non-equilibrium and must be transported
in     i hat       tunn.            h r t.lie cJiciiiic.il               reactions         a n d t o r t h e I-.-CCI u l i o i i o f

l raiiipoi I the physical                          form o f t h e r t j c t i u i i          partners         is important.               If

tin.- r e a c t i o n       partners             a r e predominan! 1 y                  i n a gaseous         st.i'e         t h e chemical

ciieigy        system         c.nilil         d>r i n s t a n c e       he c a l l e d     latent      heat     J;I_,.

 •>.      The        KVA/AI>AM Transpo; t                      Sy.liin

          Among 1 he tii-my p o s s i b l e                    ihetuicaL           energy      systems        l ie " S y n t h e s i s    gas/

Me l l i . m e "    system          features             tht: fact         that        t h e component        itc[ia         of i t s

 implementation                    a r e known .JIHJ w i d e l y              applied        technology.               This        offers

advantages              when a n e n e r g y              system of t h i s              nature     needs      I. > h e a p p l i e d

without            delay.-..            I'.ec.ause o f t h i s            advantage          and i n order          to         illustrate

energy         t raii.ipo't           i n .1 c l o s e d       1. i r c n i t m o r e     lully     this      system w i l l be

discussed             iielo.v       i n some             detail.

          J . 1         ' I ! n:    s t I IIC t III e I )_f_   t l If    s V s U III

          I he      latent          heat       gas "Synthesis                 gjs/Methiite"           i s a n.txliire            of methane

ga s ''II a n d - . . . i t e r         s t e a m II 0 o n o n e h a n d                 iiid h y c i i o g e n L'.IS II- a n d c a r b o n
        4                                           . g                                                                I
monoxide            g i s <A> o n t h e o t h e r .                     A small        amount o f carbon            dioxide         g a s CO,

is     also        present          due t o a secondary                     reaction.             Theestahlislwient                 of a

ihetnical           ei|ii i ! i hi i inn b e t w e e n         these        reaction         partners       c a n be d e s c r i b e d by

I he    tollowlng              'wo ehemic.L                I e n t i olis .

                              t.:     Cll .11 0           < JII »C0           1
                                                                             1 -•49,8           kll/»ol
                                          H      J. jj         *               *                                         *

                              .'. : c a . ! | 0           t H *C>>           II, - - 9 , 8 kc«". / n o t
                                             i i             I                *


The double ain.us between the reactions indicate that the reactions are
revelsib'e ;on the right                                 the reaction enthalpies for each formulation
<badge are <|uo!ed.                            In the first reaction methane and water vapour react
to produce hydro;,• •> and carbon monoxide.                                                 This reaction is endothermic
(All, > C ) .            A portion of the carbon monoxide thus produced reacts in the
second reaction with water vapour to form hydrogen ar.d carbon dioxide.

The second reaction is exothermic.                                             The predominant reaction is No. 1,
In terms of the throughput of participating water vapour it accounts for
more than WL.                        This means that reaction No. 2 is a minor reaction of
small significance.                             The second reaction causes the reaction heat per
me-1 of Cll, to be a little less than the reaction enth. .phy AH..                                                                      The
degree of this reduction corresponds to the share in the transformations.
Fin titer, rear 1 i on No. 2 causes the presence of carbon dioxid«* in low
com entration in the latent heat gat.                                                  Tho concentration varies between
J and V/..              To simplify matters the second reaction is not specifically
(lealth with in the following discussions, because its influence ie
tonsldend              t o be         insignificant.
                                                             r




         Tin; EVA/ADAM T r a n s p o r t System of* t h e e n e r g y s u p p l y                         system
 "Vim l e i '   Long D i s t a n c e E n e r g y " i s    illustrated            in r i g .        2.


                          HTR EVA          Irunsporl                ADAM

                                            3H»*    CO                     HE A S -   •••"   ••"'-•••••




                                       f t ! , . ' ! / ) - 3Hj*C0

 Kig. J.         ;     hi
                .> !K i. I i c presentation of tlie energy sapply system "Nuclear
                Long Distance Energy" incorporating the system EVA/ADAM for
                 the transport of           latent chemical tllt-rgy.

 The- following eiieijjy flow omits:-                        I he primary energy source Nuclear
          -
          >
 Energy i . converted into heat energy in the high temperature reactor.
              i
 Th's heat t l t i y          i ; trans'.erred to the chemical reactor EVA by the
 lector cool,iiit helium.                 In this reactor the heat energy of the reactor
                               itd
 coolant helium is t rails fo i i e by chemical reai tions into latent chemical
 energy in the latent heat gas.                           'y
                                                         L. way of the latent heat gas the latent
 chemical, energy is transported to the chemical reactor ADAM.                                                     Here the
energy is converted by chemical reaction in'o the heat energy of hot water
or steam.           The heat energy of hot. Water or steam is regarded as a
 readily usable ftinu o. energy.                      At this point the transformation of
tun U a r encigy inio a transportable form, the transport of this energ-
and finally it:- conversion into a readily usable form is completed.
The transport of latent chemical energy by a latent heat gas consists
          i
of (!) t h . transport of hydrogen and carbon monoxide from the EVA -o the
ADA    reactor and (2) the,return of mainly methane from the ADAM to the
EVA reactor.           The transport of these gases is carried out by pipelines.
Methane and water vapour reach the catalyst bed of the EVA reac .or
through the return pipeline and the "forward" reaction takes place at
this point.          The products of the forward reaction are in the main
hy.liogen and carbor monoxide.                     The mixture of the gases is cooled down
by the recoup-jration of heat to ambient temperature for example.                                                     In
that state and at elevated tiinperatuie the mixture reachea the delivery
pipeline.         The forward reaction is endothermic.                                  The necaaaery heating
of the catalyst bed i* carried out by the reactor coolant heliu*.
Emerging from the delivery pipeline the mixture of bydrogen and carbon
monoxide reaches, the catalyst bedof the ADAM reac to.- and react* h a m to
form methane and water vapour.                       This "reverse" reaction is exothermic
and     t h e r e f o r e iiv • .ii t o !.e c>o!e<i.                           W^ter p r o v i d e s        tuis co-ling         forming,
hoi w a U t o r ii-ai.i in tin.- p r o c e s s .                                 The p r o d u c t s of         the       "icvtrse"
reaction,                     . e . me i li.iiie and w^ U r , a r t s e p a r a t e d froi.: t a c h otli< r i n                       the
c o o l i n g p r o c e s s am! m e t h a n e r e a c h e s                    ilie r e t u r n l i n e of t h e p i p e         system.
Tlit: • c i i u n             transport           of       the w a t t r     i s c a r r i e d o u t by the w a t e r c i r c u i t          of
i he b i o s p h e r e .                  of c o u r s e       it       is possible        t o punp t h e r e a c . i o n       water
li.nk ( h r n i i h t h e p i p e l i n e .
                          b                                         EVA .tiui ADAM . --» w o r k i n g names f u r               the
•.heiuical             i t J t i . o r a or      this        transport         system.               he name EVA i s           derived
from "J\i n^e ! - S p a ! t r o h r - V e r s u e i i s - a j i I a g e " ( s i n g l e s l i t                  tube      testing
                                                                                           ••
installation),                             in t h i s i n s t a l l a t i o n a t J u i i c h t h e r e a c t i o n CH, 4- H„0 =
JU     + C o , known !oi' i t s steam r e f o u r i i n g p r o p e r t y , I n s b e e n                                   demonstrated
on ^ l a r g e                fi-ili;'i>.i       idle         with helium h e a t i n g for approximately                         the     last
two     years.

          J
              -~               lh\L. V n r t . i c . I i o n
          ¥ i gil I e           i     i     si r a t e s     the e q u i l i b r i u m e n n o s i t i o n i r. r e l a t i o n s h i p
  o   i !lu        I I'.I;. t H I '         p e t a t u r e and the y i e l d of                the " f o r w a i . i "    reaction,
         I ocelli J                 ill   t'e   tVA        leactor.


                                                EVA.         CH «H;.0— 3H *C0
                                                                    4                  2

                                                                            endothermi^.

                                                       j lOiJu.Olj -VI




Ki        5.              <ii
                         K | i ! i hriuiii composition as a function of the temperature and
                         yield of the "forward" reaction in the EVA reactor at a total
                         pressure of 40 bar and an Initial molar ratio of water vapour :
                         II... th.iii o f 3         : 1.

At curding to the graph/chemical equilibrium is maintained between the
ha ,ic substances methane and water vapour predominantly at low temperature,
while at high temperature the products hydrogen and carbun monoxide reach
ih mical tqullibritim.                                  Therefore with rising reaction temperature and
<on sequent Iy with rising temperature of the heat supply the yield of the
"forward" reaction becomes larger.                                              Consequently the heat supply is
provided at or up to the highest possible temperature in order to achieve
maximum reaction yields.                                      Fur Instance at a heat supply temperature
                .
maximum cf 950 C and under the conditions of pressure and Initial
compost lion quoted In Fig. 3 a maximum yield of approximately 90% In the
"foiwurd" reaction can be *>:'...ved,
          'Mut 11 inpiti:.t t i n e d e p e n d e n c e of t h e e q u i l i b r i u m c u r v e                in F i g . 3 i n d i c a t e s
th.it     t hi       heat       -upply d o e s n o t need t o be p r o v i d e d a t a c o n s t a n t                       temperature,
hut     that a temperature range i s p o s s i b l e                               r>>r t h i s p u i p o s e .        F o r example
this      r.iiif          c o u l d l i e between 550 C a n d 950 C.                           This i l l u s t r a t e s     the f a c t
that      the chemical, r e a c t i o n                i n t h e EVA r e a c t o r i s p e r f e c t Ly m a t c h e d t o t h e
he.it biipp I y of t h e h i g h t e m p e r a t u r e n u c l e a r                      reactor.
          1 lie e q u i l i b r i u m c o m p o s i t i o n of t h e " f o r w a r d " r e a c t i o n i ^ n o t o n l y
d e p e n d e n t on the t e m p e r a t u r e , b u t a l s o on t h e p r e s s u r e and i n i t a l
i i.mposi l i o n .              Wlun c o n s i d e r i n g        the s t o i c h i o m e t r i c c o e f f i c i e n t s   of t h e
" I urwa rd"              ea<tii.<ri i t becomes e v i d e n t                that a large y i e l d i s achieved if
the p i c t u r e             it, k e p t a s low a s p o s s i b l e and i f a l a r ^ i                     over-supply of water
vapour i s a v a i l a b l e .                 i n F i g u r e '.) t h e e q u i l i b r i u m c o m p o s i t i o n i s p l o t t e d
j i t . i i n s t v.ii i o n s     t e m p e r a t u r e s a t a t o t a l p r e s s u r e of /,') b a r s and a t a n
initial             molar      r a t i o of w a t e r v a p o u r t o m e t h a n e of 3 t o 1.                      Thes«;
iondilii>n» r e p r e s e n t              technically              s e n s i b l e compromises,             specifically the
i h o i c e of the t o t a l             p r e s s u r e h a v i n g r e g a r d t o t h e p r e s s u r e of t h e r e a c t o r
c o o l a n t h e l i u m and t h e c h o i c e of t h e i n i t i a l                    molar r a t i o       in c o n s i d e r a t i o n
ol    t h e mass b a l a n c e of t h e EVA r e a c t o r .

          In a d d i t i o n        to p r e v i o u s s t a t e m e n t s a l a r g e s u p p l y of w a t e r v a p o u r
inside          t h e KVA r e a c t o r        is desirable               t o avoid       t h e p r e c i p i t a t i o n of s o o t .
          Kven a t e l e v a t e d           temperature              the "forward" r e a c t i o n does n o t proceed
a . a homogeneous g a s r e a c t i o n ,                     t h u s t h e a p p l i c a t i o n of a c a t a l y s t i s
iiicessary.                  In t h e EVA r<:a e t o r t h e c a t a l y s t e x i s t s             i n t h e form of a
gi aim! iir bed .
          Cj
               •'         Tin; AI iAM r e a c t. i. o n
          The r e l a t i o n s h i p b e t w e e n e q u i l i b r i u m c o m p o s i t i o n ,            tunperafcure of
i c a c t i o n anil y i e l d of t h e " r e v e r s e " r e a c t i o n which p r o c e e d s i n t h e ADAM
II'.H'.IOL',         is    illustrated          in. Fig.       A.



                                       ADAM:              3H +CO—CrVH 0
                                                               2                          2

                                                                       exothermic
                                          100 - p -




                                                iOO   100       X/j          700
                                                        T«mp«fGfurc *C
                                                                                                                                                 i


li).'. t,.            F.qui I Ibrium composition In relationship with temperature and
                      yield of the "reverse" reaction in the ADAM leactor at a total
                      pleasure of 40 bar.
                                           10



        As in the case of the "forward" reaction llie graph shows predominantly

methane ;-nd wat«.v vapour in equilibrium at low temperature anti hydrogen

ami carbon mono:--' ie in equilibrium at high temperatures.            However in

contrast      to the forward    leaction hydrogen and carbon monoxide are the

original     substances in this case and methane and water vapour are the

|iu'diu is of    i hi- "reverse" reaction.        ft foJ lows tint L!U gas mixture ot

hydrogen and carbon monoxide which is cooled down to ambient             temperature

iu<- the transport      in the supply   line of the pipe system, is in a state of

.icn-equi1ibr[am at this point.          However this non-equilihrium is stable,

meaning      that the speed of the "reverse-" reaction within the range of the

.xisting                                                         >
              tempera! u re and in the absence of any catalyst t • zero.

        This fact is of paramount       importance to the technical feasibility of

        ;
i in i i y transport by the means of a la.ent heat gas.           if one supposes that

i In- products hydiogen and carbon monoxide generated in the EVA reactor

would not. remain in a stable non-equilibrium when being cooled down to

ambient temperature, the cooling process would have to tu abandoned and

ih    products would hav^- to be pumped back at high temperature which would

 Iliit
. ' . / m to economic nonsense within the framework of existing energy            technology.

        It is known from large scale technological applications that a mixture

 !
> hydrogm        and carbon monoxide    remains in stable non-equilibrium and does

not react even at very high temperatures.               .
                                                       fn particular this knowledge has

Li en gathered     in the handling of town gas which consists mainly of hydrogen

 ii
a - l carbon monoxide.         Storage of this gas, even fur very long periods, does

not   lead   lo chemical    changes.

        In order to overcome the stable non-equilibrium i.e. to set into

nation    the "reverse" reaction in the ADAM reactor the application of a

  i
i , t a I y sL is reqn i red.

        In the stationary condition of the EVA/ADAM transport system the

yield -in the AbAM reactor is identical           to that in the EVA reactor, in

oider    to comply with the requirements of mass balance.            Thus, according

to Fig. A the maximum temperature at the exit of the ADAM reactor is 500 C .

I he temperature relationship of the equilibrium composition of the               latent

 i
l - a L gas shown in Fig. A indicates that by counter flow methods heat of

higher temp      .attire, i.e. in excess of 800 C can be produced.         Upon the

a, plication of Increased        total pressure    the ADAM reactor is favourable

i > higher yields.         This characteristic can be exploited for the heet

piodiicflon of even higher temperatures.             However It should be noted

Mai     th.: maximum   temperature of the produced heat is not only e function
111 t h e e q u i l i b r i u m       l i n e c l u i ac t »*•. i s t i c   for   the " r e v e t s e " r e a c t i o n ,   t>u L
tluil     i t a l s o . k p c i . d s upon the max i 1111..1! w o r k i n g value- f o r                  Hie   catalyst,
bed.
          Ln toward              >
                               1 v t l i t t o t . j I e n e r g y b i l a n c e of    the tr,.>nsnoit s y s t e m             it
s h o u l d be n o t e d        t h a t water        in l i q u i d and v a p o u r torn! e x i s t s           in the p r o c e s s .
lln r u f i i n ;     the                                                                  >
                             l a t e n t h e a t of e vapo 1 i sa t ion f o r w a t e r mn : t be p r o v i d e d                        and,
undi 1 ii.i t a i n c i 1 cuius t a i i c e s , can a l s o be u t i l i s e d .                   The r e a c t i o n      enthalpy
,,:   1 he f i r s t        t'predominant)            r e a c t i o n with water ( l i q u i d )          ia'Afl,      = 60 K c a l / m o i

          'j..',       R e a l i s a t i o n of t h e KVA/Al'AM t r a n s p o r t          s y s l . 1n
         A probably s i g n i f i c a n t             a d v a n t a g e of t h e KVA/AIJAM t r a n s p o r t            sy-.tem
      1
V.IK 1 compared w i 1 !i o i l i e r p o s s i b l e s y s t e m s l i e s i n t h e f a c t                    that     all
 1
11 1 jur' component               s t e p s for i t s        i m p l e m e n t a t i o n a r e known and i n v o l v e much
u t i I i sed t iri'liiui I ogy .
         'I lie "l uiw.11 d" r e a c t i o n         in t h e KVA r e a c t o r       i s known in t h e            separation
U . i l m o l o g y of m e t h a n e o r a s s t e a m r e f o r m i n g p r o c e s s .              In l a r g e      scale
t-.chnology            this process            i s used f o r        the p r o d u c t i o n of h y d r o g e n      from
:n. t h a n e o r o t h e r       hydrocarbons.                 fn the s t a g e of c o a i g a s i f i c a t i o n          for
hydration             the p r o c e s s s e r v e s     t o f• • •". t h e c o u p l i n g l i n k w i t h n u c l e a r        heat.
It b i s l o r         that     reason that           the KFA J u l i c h         installed        the s i n g l e s l i t          tube
testing            r i g a few y e a r s a g o .            In t h i s r i g t h e n u c l e a r h e a t i n p u t was
s i m u l a t e d wit.!i e l e c t r i c a l l y      heated helium.                This experimental plant                         is
specifically                designed       to demonstrate              t h e l i n k a g e of n u c l e a r h e a t w i t h a
cliMiiical p r o c e s s .             For the p a s t 2 y e a r s t h e p l a n t h a s worked w i t h good
siii ce s s .
         'I he " r e v e r s e " r e a c t i o n which p r o c e e d s            in the ALtAM r e a c t o r i s known
as " m e t h a n e s y n t h e s i s " o r i s m e t h a n i z a t i o n .            T h i s r e a c t i o n has       frequently
In eii used for              t h e me t h a n i z a t i o n of     the c a r b o n monoxide component of                       town
ga.-..        Ai the p r e s e n t         t i m e , t h e p r o c e s s i s used i n t h e U . S . A .          predominantly
Iwi i lie p r o d u c t i o n o f " h i g h b t u "           gases.
         The d e l i v e . y p i p e l i n e of           t h e EVA/ADAM t r a n s p o r t        s y s t e m can be compared
w i t h a town g a s l i n e w h e r e a s              the r e t u r n p i p e l i n e i s s i m i l a r       to a n a t u r a l
g a s 1i n e .
         From t h i s J t becomes e v i d e n t                  t h a t the s e n s i b l e combination of                  largely
different            technologies in the f i e l d                   of modern gas d i s t r i b u t i o n produce*
the new e n e r g y s u p p l y c o n c e p t of                t h e c l o s e d c i r c u i t , c a l l e d EVA/ADAM.
Ujinpaied with other energy bupply systems the main advantage of the
   AA A
1 V / U M transport system relates to the fact that In principle no new
Mih.-.tatue I* consumed or generated in the process.  Fundamentally this
                                                                    12



..iisiites t h e fe a s i hi ! i ty of an e n e i j y s u p p l y cum t j i l which i s                            fully
i -winp.it ,ili I e w i t h e n v i r o n m e n t a l        control.
           Kv.-iise .1 r e l a t i v e l y           high e f f i c i e n c y     factor    is achieved          and b e c a u s e
,i Ilea t-powi- r ' O t i p l i n g l i n k           i s employed o n l y v e r y l i t t l e w u ^ t e h e a t            is
p 1 ndllCed .

          Taking into account                    t h e well. Known c o s t s of             the m e i h a n e      splitting
.i-id uie l iian i .-a t i on p r o t e a s e s i t          i s e v i d e n t • I liu Li ausfwriiiat i o n of        energy
into a Iran poitilile                   fonii and l a t e r           into a ready-to-nse               form s u c h a s
!:i/t. w.i I e r o r steam i s e t o n o m i c a l even where                       lo.-.d f a c t o r s a r e   small.
I he ( o > l : : of e n e r g y t r a n s p o r t           in l a t e n t e n e r g y gas a r e h i g h e r       than     the
njii       t o ti.in->pt>rt n a t u r a l            g a s , because        the l a t e n t e n e r g y gas c a r r i e s a
.-.ma I l e r e n e r g y c o n t e n t      per u n i t of volun'.:.                However t tie e n e r g y        transport
vi.-         lent     e n e r g y gas i s IIHK.1I wore e c o n o m i c a l             than eneigy         t r a n s p o r t by
i.'.. an :. o I hw t Wa l e r .
                                                 ;
          All       in a l l    to.,1. s t u . l e s i n d i c a t e       that    the e n e r g y .supply f o r          house
!u a t i n g , lnii w i t e r p r o d u c t i o n and i n d u s t r i a l            p i o c e s s h e a t Can be p r o v i d e d
a i i he-ape f t o s t          t h a n if     i he s u p p l y i s b a s e d on l i g h t o r heavy                heatiig
w i 1 .-, <i t    their    iMe.sellt      pi    ices.

.'•niiiiiM i y


      f~ In o n h . r to e n s u r e an e c o n o m i c a l ,               sufficient       and r e l i a b l e     energy
 aipply          in t h e f u t u r e n u c l e a r e n e r g y must he made a v a i l a b l e               t o an
iin n a m i n g d e g r e e p a r t i c u l a r l y          to the m a r k e t of h e a t i n g e n e r g y .             This
:.(|uires          tin- t ran A orma l i on of n u c l e a r e n e r g y i n t o r e a d y - t o - u s e              forms.
'I he KV'A/AfiAM s y s t e m i s a s u i t a b l e                transiarmalion concept                  for    this      purpose.
hi t h i s s y s t e m n u c l e a r e n e r g y i s t r a n s p o r t e d a s l a t e n t c h e m i c a l            energy
...id is t i ails formed             ii:to r e a d i l y u s a b l e energy forms, i . e .               h o t w a t e r and
.•.team.           I lie e n e t g y t r a n s p o r t     in the system occurs                In a c l o s e d c i r c u i t .      \ n /
!' i scussii> 1
              1                                . ,                                                                                           *}
'ng.      W. Mi n g ;          "ilow much time i s s t i l l                required before            it will       be
iiossihlc          to o p e r a t e s a f e l y an "/\\).\u"             unit as i n d u s t r i a l    power p l a n t w i t h
a      t h r o u g h p u t of    1 >0 t ot s t e a m p e r hour and a                      power o u t p u t of 25MW f o r
e,-      pic;"
          S-i)
Pint. K. . t l i 1 t en:                  "If la of considerable                      Impor ance to energy policy
 i
i i it all parts of the proposed energy supply sy> em EVA/ADAM                                                   represent
./ill known and frequently applied technology.                                             ft follows that only
                                  i
vi-1 y little developmental work l t yet to be done - f.e. work involving
                                                                                                                                                  * Si   '*:.u ;
iii. i mi I nt; In of s c W r u l plant parts to bach other - and that the
       i
i wii -t rue t Ion of the first plant could commence soon.                                                One can assume




                                                                                                                                                  mm
                                                                                ' i



iiut           .! time iiiii.rv.il                   of a p p r o x i m a t e l y 2 y e a r s wiLI           ho . . ' ' ' . t i r e d f o r   general
    .iinlio.-j,            t ho t i - n s t r u c t i o n of s m a l l d e m o n s t r a t i o n r i g s ,           and d e s i g n w o r k ,
         i ll.at         ' h o c o n s t r u c t i o n of a l a r g e r p l a n t c o u l d f o r e.-.amp! e b e g i n i n 1977.
I; ono c o n s i d e r s                     the u s u a l      c o n s t r u c t i o n p e r i o d s f o r n u c l e a r power               stations-
tor         o.-:,iii,|j I o i n < XCOJS of t> y e a r s - i t c o u l d bo a r g u e d                               th.it a s y s t e m of            the
kind d e s c r i b e d                   i n t h i s p i p e r con!,I c e r t a i n l y coruiiciK.- o p e r a t i o n                   before
l"o."
                   (             :
' ' ' • ^ • ' ' ' '"'                   "Would yo:i |)!c.lse comment on ! !io l o c a t i o n of                                energy
•.' ' u.tin; j ng eon I re s ? "
'        "'•    I' • Selni I I • ii:               "l     s e e a d v a n t a g e s i n con 11 a ! i sod e n e r g y              production.
Apart            I i 'urn p o s s i b l e            reductions in c o s t ,               t h i s a r r a n g i merit would           increase
the s n i e l ,                 a - , p e e l s oi      h a n d l i n g nin l e a r fin I s and . a d i o a c t i v e             materials.
Mi an cue-icy pre.hie t i on c e n t r e a f a b r i c a t i o n                                   plant     and a r e - p i o c e s s i n g
plant           would . e i v o a y u b s t a n t i . i l                 number of n u c l e a r r e a c t o r s .                 Safety
p r o b l e m s aa-joc i a l oil w i t h the t r a n s p o r t , of u n c l e a r                           fin.-1 and          radioactive
ii. i l < i i a 1 .. would lie r e d u c e d                       t o a in! n iiituin.

               In some p l a c e s                 the opinion            i s, s t a t e d    that     Ltio open sea i s               suitable
In          the- l o c a l ion of n u c l e a r e n e r g y p r o d u c t i o n C e n t r e s .                          However t h i s          is
not. an j d t a l                     s o l u t i o n m a i n l y b e c a u s e of p o s s i b l e e f f e c t s on t lie q u a l i t y
    ;l     the sea w a t e r .                   When c o n s i d e r i n g      t h e l o c a t i o n of e n e r g y           production
e, u i r o s             i t s ii.-e-.i      i m p o r t a n t aim s h o u l d he to s e p a r a t e             these          centres
lomplelely                      from t h e w a t e r c y c l e of               t h e b i o s p h e r e which i s SO i m p o r t a n t
I o       III.Ill" .

Hi n I . - I n g . It. Hot iin.iiiii:                       "Tin: AlJAM/KVA c o n c e p t i n c o m b i n a t i o n wil.li an IITR i s
a remarkable s o l u t i o n ,                           s p e c i a l l y of    the e n e r g y       t r a n s p o r t problem.               The
    p t a k e r must l»e c o n g r a t u l a t e d                   f o r h i s work.               S u r e l y one or two dt l"i i 1 s
mid            t o ho c l a r i f i e d              yet.        On c l o s e examina11 on t h e s u c c e s s f u l                     execution
1.1 t h e p r o j e c t may depend on t h i s .                                       f.n t h i s c o n t e x t t h e f i r s t       question
II ' a t . e s t o the c h a n c e s t o r e a l i s e                       the high temperature beat                           transfer
.Milium rc-ipiiied f o r t h e i:VA r e a c t o r .                                     The p r o b l e m s h e r e would be                  reactor
    ...lety,             s l r e i i g L h of      tire n a t e r i a l    o v e r l o n g p e r i o d s of t i m e and h i g h
111,'pi.-r a t ui e c o r r o s i o n c a u s e d by t h e CII./1L0 m i x t u r e .

               The e n e r g y s u p p l i e d               t o I he ADAM r e a c t o r           is said       to produce a
                                                                                                                            a
i.iipeiaturo                         n i v e a u of 6iO°Ct           at          T
                                                                           tiro M U t h l j          level     Is 950 C.                 Therefore
a gas i u rli hie w h i c h i s d i r e c t l y d r i v e n by t h e h o t h e l i u m p l u s a combined
Mtiain p l a n t                     installed          behind     the t u r b i n e w i l l p r o d u c e H t h e r m a l               efficiency
t.-'toi                J')'/ h i , ' . t a r .       This- would r e s i ' t             In d e c r e a s e d c a p i t a l      costs.
i    ,.1 n !                                          l.t
| , -,1 I . • ievc - this is the bucont! iiutstion - i i i i he system proposed
    in              .l
b> ) < c m economi i i I y compete with that act of eoud i t i oris, bearing in
 :i,
i , i l that "IK. of the critical COIISIIM tion parts (UVA b'gh temperature
 i. 1
l e 1. U\in:it\r thulium, besides catalysts) wi ! 1 not be needed in that ca>e?
       The luibtiii't iim of huge energy and heat centres is also questioned,
    i e ul-
i! u i c l . ; ide rs grid demands and possibilities of shut-downs.     The
. I.M..I met i on of nuclear pu,. r stations in the vicinity of power consumption
• , nties .should iheiefore be considered.        In this context •the excavation
 i.
, . ! installation of pits of adequate depth can be regarded as technically
leasible and would allow our children one dav to have the radioactive
..in lelc ruins remived, at least from sight".
 'u"
I r t . K. Si hu 1 ten:   "I would like to answer your first question as follows:
 (h
' ' e teeljnologic.il 1-nowledge available today allows the realisation on
an industrial si.ilt of heat transfer media suitable fur the high temperatures
em. ountered in the KVA reactor.       This   . tatement is based on the following
le.isons:      (1) the EVA reaction is identical with the Steam Reforming process
i.hiili is known lor a long time.       Ni this process the beat supply is
i ..nierl by smoke gases.       (2) In order to demonstrate the coupling of HTR
 i-t
L - J into a chemical process KVA was erected at Julich approximately 2
y e n s ago.      This is a single split-tube-experimental plant, in which the
lite.mi Reforming process is heated with helium.       This helium is at a
U literature of 1000 C maximum and a pressure of 50 bar maximum, it is
electrically heated.        The dimensions of the single split tube are those
common in industry.        All technological aspects associated with the coupling-
       llK
in of i'' heat have been and are being studied in EVA.          (3) In addition
projects to study diffusion and corrosion problems arc being conducted at
pi'.sent a=; Well as detailed investigations into questions of reactor
      ;
: M" i t y .

       The following can he stated fn answer to your second question:         You
• iin,pate an HTK helium turbine for the generation of electricity with an
 i't
l:i KVA/AlMM system designed to supply heat energy.         Evidently yt.
assume that the electricity generated by high temperature helium turbine*
• on!,I also be used for heating either via Olun's resistances or via heat
pumps.         In this area the HTR EVA/ADAM system designed to produce heating
(iicrgy - for instance for house heating-, will easily win the competition.
As in the past the production of the high quality energy carrier
electrlcity Is today still relatively expensive.         Thus the application
of electricity to heat houses is only economically sensible in the
specialised urea of off-peak power.
         !!..\u:vi i" 'lie (i»!i|)ai'i O'MI made b / you d o e s i.-t iick.d t o be made i n                                              that
I..! :n .ii . i i ! .               R e a s o n s f o r t h i s ait: as f o l l o w s              ( I ) "flu.- n u r k u t f o r h-.;at
incrgv            i s mi. !i l a r g e r       than t h a t        for e l e c t r i c i t y         and {':}     shortages          in
e n e r g y s u p p l y . l u r i n g Lite o i l             c r i s i < appeared a l t e r               a l l m a i n l y on t h e
i.'.ai d u i i i v i i a i L r t .             'tin; i ha 11e n ;>• t lie i t fa r<i i s t o u t i l i z e               nuclear
,.u. i gy I D .HI i i i d u - i s i n i ; d e g r e e , c e r t a i n l y                 f\.r    the (;CIL • r u t i o n of
• l i i t i i i ity        ('.. ii!> a c c e l e r a t e d    i n c r e a s e ) , hut. a l s o to | i u « ! u . : t         heating
• n e r . i y a-, an a' t e n t a t i v e m a i n l y              to m i n e r a l         oil".
!a-. K. flitsc!:''- :                     " S m a l l . nsumers ( h o u s e h o l d s ) have o n l y                   an
i ill e riui t t eiit K in. ind for
                            (                     h a t i n g energy.                 T h i s demand f l u c t u a t e s on a
d a i l y or         sea.-.oiia I b a s i s .          Therefore           t h e d e g r e e of u t i l i s a t i o n          for    such
plant         i.-: v. i\         :,!n.11 1 .     11. i.s t h i s    f e a t u r e been taken i n t o a c c o u . ' t when
                                                                                      ;
i'>it    figure.;               for    beat it.g energy a t             the | > ; i t            ot con..uuipt i on were q u o t e d

in   you r         p i p e ' .' "

."i of . Si I II I I I •-II :           "When c a l c u l a t i n g      the c o s t s            t h i s a s p e c t lias i n d e e d b e e n
tally consitk-ied.                         The s o l u t i o n of p r o b l e m s a s s o c i a t e d w i t h a low
i :i l i g a t i o n       factor         i s a s y s t e m i n w h i c h power in low and medium demand
periods            i s siipp! ied by n u c l e a r means and peak l o a d s a r e met by                                       fossil
         i?
p'lWel        .

t i j . <','rad. ) C. Zel <k:
  i                                                     "The title of the conference is "Unconventional
Knergy System.-.".                        However i have got the i.npressioti that the focus of
'lie presented papers is nuclear energy and energy carry iiig systems which
are in one way or another coupled with nuclear energy.                                                             Several papers
ami several contributions to discussions sounded as if no alternative
to nuclear energy could be seen for the future.                                                         In my view even the
piper of Dr. Voss was based in the same premise.                                                          it would not be wrong
in ptincip!.: to focus on a specific type of primary energy production
t<r the future if we knew today for certain that this primary energy
loim was capable of solving all problems of the future, including those
which at. the present are still considered marginal.                                                          However can wa
 .i
; . y this today of nuclear energy, irrespective of the method by which
It is produced?                         You mention in your paper that w e have to face today
very giave derisions in the energy sector, because our high state of
advancement .is well as the considerable investment requirement* conmit
it. to a fl.tcd toad for at least 50 years.                                                  However according to present
predictions we will,In M ) years enter a period in which it will b«
                                                               t



decided If mankind can coma to grips with exponentially growing p r o b l e m *
or If the i,inn,in race will collapse.                                       In as little a period as 35 years
                        .
i i v.iu IH.W w. :-ni • i count O R a p o p u l a t i o n of H x 10 p e o p ' e .         In 50 y e a r s
we could i-oii:-i.lcr o u r s e l v e s lucky if by e v e n t s w h i c h could c o n s i d e r a b l y
  .
: < ! >>     t    i.
                 t n - p>'(Mi Lit ion growth hut cannot be clearly seen today a number
or hi to I J x lo           was not exceeded.           At t.lut time the temperature
ii.ciea.se u( ilic environment caused by the energy producing activities
            l
u! man coul > b.ive become a major problem.                     The influence of CO, carried
n; I he .itiiio^i.l.c le on the environmental temperature has been illustrated
la the paper 'y Mr. NUTiaus.                 This effect is reduced by H far rtac.'iiii                  6



,:i,!i3iitui!oti of fossile tne'j by nuclear energy.                      However what
t einpei a-tur e will be produced in the environment by the generation of
piiiuaiy energy            itself/        i'L of this constitutes a source of
eiivironnieiit.il heat in addition to the solar energy and geothennic energy
ii aching the earth surface.               This aspect was not placed under scrutiny
in Mr. Niehau-j' paper, nor was it mentioned in any other paper.                                If
i lie- assume:; ! h.'t. the yearly world wide production of primary energy
will rise by a factor of 'SO (it could of course be lO(i), the additional
(iiiantity of he-at of approximately 1.85 x 10                   Kcal could heat up the air
o! the atmosphere of approximately 5.13 x 10                        tonnes by approximately
\.'j   <',       To this the temperature increase due to CO, needs to be added.
Ai. cording to Mr. Miehau's paper this increase will be 1 C by the middle
of the next i-.eutury assuming a maximum increase of nuclear power,                                  A
>imp Iificd calculation of this nature can of course not be considered
at, absolute proof, however it indicates our tendency to move In the field
of energy production towards orders of magnitude which would influence
Hie beat budget of the earth and thus introduce noticeabi' climatic
ihanges.           In the view of experts an increase of 1-5 C in the environmental
U'rnperjtiire around the earth w'll introduce irreversible changes in
climatic conditions.             Two examples of irreversible events caused by
(ihikitic changes are quoted below:

        The water mark of the global seas will rise by approximately 7m if
the Gtonlarid ice complex melts.                 The water level will increase by 54 cm
if the polar ice caps melt.                In the total global heat budget the pole
caps act as heat sinks.
        If these considerations are correct, nuclear energy cannot be
regarded •/,        the solution to our energy problems.                  In this case no final
decision should bu allowed favouring energy supply system* which art
(Irmly coupled with nuclear energy, for instance the EVA/ADAM concept
I ropostul by you.           Instead systems should be developed which « M capable
i •:' . a ' c e p t i ng .HI.! d i a i" r i !'ii t i tig l . e s i . i - s                 imclur             energy           OI'.LV forms              ol

, •; h . M i y I-IU-I'LI.V , bin h J S p r i m a i y                           and       jccoiidary            solar          energy,           geotheiiuic

I.eat        suuri'ts            "i" t i d a l          t-iit: i g y .         The open            liyi! r o g t n       cycle        appears           to    otter

(ionise             tor      ibis            purpose.                In       thij      process             the primary               e n e r g y w h i c h u:dy

l.i- ,ii'.i i l.jtilc-           in        far    away         p'aic-s         i s l o n v c i till          in    situ         i n t . ) I!        which        fills

tin         lole      of     i in i gy           .:aiiict.                TII-J I!., i s s h i p p e d             ill t a n k e r s           as    liquid        or

i(     io pumped                 a:,       hydrogen            L>I s '>y p i p e l i n e           to       the    consume r ,             e s p e c i ..1 l y     in

hi.\ii ions             <•',' c a n c u t r a t e d               demand.              'The s y s t e m p e r m i t s                the       storage        arid

Lettering               d u r i i.;.:. i n t e i m i t t e n t p r o d u c t i o n                 periods             liy     liqucficaliou.

Ihiil          solar        energy               is     applied           .-.a a      I .i rge     scale          as     s.mici:         oi     piimary          energy

(in         UJ y e a r s         at        the    latest)            this          o p e n II      cy< I e w i l l            have       la     he    pre-

a., .in i n a i i t I y s u p p l i e d           with         nuclear             energy.

             li. l o r e     a        linal           h;C.isioil         is    taken       which            Way     to       inuvo    in       the     energy

.-. c t' I i • >n -        and            I b e l i e v e you w i l l               have a s t r o n g v o i c e                 in      that        decision           -

:t     i .-j in my v i e . j o f                  paramount                importance,               above a l l              i OiMiie r e i a I       interests,

in aj,.iin            listen               to    Ihe m e t e o r o l o g i s t s .                 Perhaps             you      could use             your

inline-nee,                Professor                  Schulten,               or    persuade your                   institute,                 that     initially
                                      1
ahli:        data        .-.hoii .!          ;it;iin        he.    evaluated.              Tilt:        A   pertS        and     tin.:     public        COuld          be

ip... i i k I y i n f o r m e d              about- t h e          results            ut' s u c h e v a l u a t i o n             for      instance           via

: he VI) I n e w s .

!'• o f .      .'>' Ini I I i - n :          Fui" s c v e i a !          y e a r s we- o p e r a t e          a systems               i:<ta L y s i s     group

in     i h e KKA,            ibis            group        is      looking methodically                            at     questions              raised        by

you.             in     other              re-search           institutes               similar             groups e x i s t             also.           In       totu

we     t:y       to     research                 the p o s s i b i l i t i e s           of      the        future           energy        market        as

methodically                     and         thoroughly             as        possible.

				
DOCUMENT INFO
Shared By:
Categories:
Tags:
Stats:
views:5
posted:8/9/2011
language:Norwegian
pages:20