DNA Based Biosensors - PowerPoint

Document Sample
DNA Based Biosensors - PowerPoint Powered By Docstoc
					      Biosensors



    Christopher Byrd

            ENPM808B
University of Maryland, College Park
         December 4, 2007
Outline

   Introduction

   4 Specific Types of Biosensors
       Electrochemical (DNA)
       Carbon nanotube
       BioFET
       Whole Cell
   Basic functionality
   Benefits/Challenges
   Summary
   References
         Introduction

     Biosensor:

  Incorporation of a biomolecule in order to
     detect something
                 Filter
                     Recognition
  Species to be detected           Transducer   Electronics        Signal
         (analyte)      Layer




Introduction   E-DNA      Carbon N-T      BioFET      Whole Cell   Summary
         Introduction

       Biosensors ~ $3B
       90% → Glucose testing
       8% - 10% increase in industry per year




Introduction   E-DNA   Carbon N-T   BioFET   Whole Cell   Summary
         Electrochemical DNA Sensors

              Harnesses specificity of DNA
              Simple assembly
              Customizable
              Vast uses for small cost




Introduction     E-DNA   Carbon N-T   BioFET   Whole Cell   Summary
          DNA Structure

         DNA structures---double
          helix
         4 complementary
          bases:
           Adenine (A), Guanine (G),
           Thymine (T), and Cytosine (C)




Introduction    E-DNA     Carbon N-T       BioFET   Whole Cell   Summary
          DNA Specificity
              Hydrogen bonding between base pairs




              Stacking interaction between bases along axis
               of double-helix
              Animation



Introduction     E-DNA     Carbon N-T   BioFET   Whole Cell   Summary
              Principles of DNA biosensors
                      Nucleic acid hybridization

                        (Target Sequence)




                                        (Hybridization)

     ssDNA (Probe)                                            (Stable dsDNA)
Source: http://cswww.essex.ac.uk



Introduction                 E-DNA   Carbon N-T     BioFET   Whole Cell   Summary
        E-DNA Sensor Structure




                                “Stem-loop”




                                    s




                              Gold electrode


Introduction   E-DNA   Carbon N-T       BioFET   Whole Cell   Summary
        E-DNA Sensor Structure
                                                 Target




                                “Stem-loop”




                                    s




                              Gold electrode


Introduction   E-DNA   Carbon N-T       BioFET     Whole Cell   Summary
               E-DNA Sensor Structure


                                                                            (Open, extended)




                                                                               (Stem-loop)




Source: Ricci et al., Langmuir, 2007, 23, 6827-6834



 Introduction                  E-DNA                  Carbon N-T   BioFET   Whole Cell         Summary
        Carbon Nanotube Biosensor




                Image: www.cnano-rhone-alpes.org




Introduction   E-DNA            Carbon N-T         BioFET   Whole Cell   Summary
        Carbon Nanotube Biosensor
          One atom thick
          One nanometer diameter
          Ability to be functionalized

          Electrical conductivity as high
           as copper, thermal
           conductivity as high as
           diamond


Introduction   E-DNA   Carbon N-T   BioFET   Whole Cell   Summary
                CNT Biosensor Structure


                                       Succinimidyl ester




Source: Chen et al., 2001



 Introduction               E-DNA   Carbon N-T      BioFET   Whole Cell   Summary
        CNT Uncoated vs. Coated




        Source: Chen et al., 2001




Introduction          E-DNA         Carbon N-T   BioFET   Whole Cell   Summary
                CNT Biosensor Signal Detection

                                                   Glucose
                                          O2
                                                                   Gluconic Acid
                                   H2O2
                                                              e-




Source: Besteman et al., 2003



 Introduction                   E-DNA     Carbon N-T         BioFET          Whole Cell   Summary
                CNT Biosensor Signal Detection



                                             e-          e-     e-



                                        e-



                                   Effectively increases electrical current


Source: Besteman et al., 2003



 Introduction                   E-DNA             Carbon N-T   BioFET    Whole Cell   Summary
                CNT Biosensor Results

                                                          160 mM




                                                              60 mM




                                                          20 mM

                                                          0 mM




Source: Besteman et al., 2003



 Introduction                   E-DNA   Carbon N-T   BioFET           Whole Cell   Summary
          BioFET
          Draws upon versatility of common electronic
           component (Field-Effect Transistor)
          Well understood expectations/results




Introduction   E-DNA   Carbon N-T   BioFET   Whole Cell   Summary
         FET
                                          +

                                                                            -

                       Drain                      Gate
                                                              Insulator   Source
                                      + +         + +
                                   (Not conductive enough)
                                      (Electron Channel)


                               -              -                  -
                                      -                  -




Introduction   E-DNA       Carbon N-T                        BioFET         Whole Cell   Summary
         FET
                                     +

                                                               -
                               Threshold Voltage
                       Drain             Gate
                                                 Insulator   Source
                                  + +    + +




Introduction   E-DNA       Carbon N-T           BioFET         Whole Cell   Summary
         FET
                                         +

                                                                           -

                       Drain                     Gate
                                                             Insulator   Source
                                     ++ +++ + ++
                                   - - - -     - -
                                     -                  -
                               -             -                  -
                                     -                  -




Introduction   E-DNA       Carbon N-T                       BioFET         Whole Cell   Summary
                 BioFET




Source: Im et al., 2007



 Introduction             E-DNA   Carbon N-T   BioFET   Whole Cell   Summary
                 BioFET




Source: Im et al., 2007



 Introduction             E-DNA   Carbon N-T   BioFET   Whole Cell   Summary
                 BioFET Results
                                                              Gate (before)




Source: Im et al., 2007



 Introduction             E-DNA   Carbon N-T   BioFET   Whole Cell    Summary
                 BioFET Results
                                                                    Gate
                                                               (w/Gate
                                                                   complete
                                                          (after etch, w/biotin)
                                                               Biomolecule)




                                                                                   d




Source: Im et al., 2007



 Introduction             E-DNA   Carbon N-T   BioFET   Whole Cell     Summary
                Whole Cell Sensors




Source: http://www.whatsnextnetwork.com/technology/media/cell_adhesion.jpg



 Introduction                E-DNA                Carbon N-T                 BioFET   Whole Cell   Summary
          Whole Cell Sensors
          Harness normal genetic processes
          May detect dozens of pathogens
          Modifiable/customizable
          Reports bioavailability

          Temperature/pH sensitive
          Short shelf-life


Introduction   E-DNA   Carbon N-T   BioFET   Whole Cell   Summary
                 Whole Cell Sensors




Source: Daunert et al., 2000



 Introduction                  E-DNA   Carbon N-T   BioFET   Whole Cell   Summary
                Action-Potential Biosensor




Source: Tonomura et al., 2006



 Introduction                   E-DNA   Carbon N-T   BioFET   Whole Cell   Summary
                Action-Potential Biosensor




                                              (Side view)


Source: Tonomura et al., 2006



 Introduction                   E-DNA   Carbon N-T     BioFET   Whole Cell   Summary
                Action-Potential Biosensor




                                                Suction

Source: Tonomura et al., 2006



 Introduction                   E-DNA   Carbon N-T        BioFET   Whole Cell   Summary
                Action-Potential Biosensor




                                                Suction

Source: Tonomura et al., 2006



 Introduction                   E-DNA   Carbon N-T        BioFET   Whole Cell   Summary
                Action-Potential Biosensor




Source: Tonomura et al., 2006



 Introduction                   E-DNA   Carbon N-T   BioFET   Whole Cell   Summary
          Summary
          Use of biomolecules in sensors offers:
              Extreme sensitivity
              Flexibility of use
              Wide array of detection
              Universal application




Introduction   E-DNA   Carbon N-T   BioFET   Whole Cell   Summary
          Summary
          But still maintains challenges of:
              pH/Temperature sensitivity
              Degradation
              Repeatable use



          Regardless of challenges:
              Biosensors will permeate future society




Introduction   E-DNA    Carbon N-T   BioFET   Whole Cell   Summary
      References
   K McKimmie. “What’s a Biosensor, Anyway?”, Indiana Business Magazine, 2005, 49, 1:18-23.
   N Zimmerman. “Chemical Sensors Market Still Dominating Sensors”, Materials Management in Health Care, 2006, 2, 54.
   K Odenthal, J Gooding. “An introduction to electrochemical DNA biosensors”, Analyst, 2007, 132, 603–610.
   S V Lemeshko, T Powdrill, Y Belosludtsev, M Hogan, “Oligonucleotides form a duplex with non-helical properties on a positively
    charged surface”, Nucleic Acids Res., 2001, 29, 3051–3058.
   F Ricci, R Lai, A Heeger, K Plaxco, J Sumner. “Effect of Molecular Crowding on the Response of an Electrochemical DNA
    Sensor”, Langmuir, 2007, 23, 6827-6834.
   M Heller. “DNA Microarray Technology”, Annual Review of Biomedical Engineering, 2002, 4, 129-153.
   E Boon, D Ceres, T Drummond, M Hill, J Barton, “Mutation Detection by DNA electrocatalysis at DNA-modified electrodes”, Nat.
    Biotechnol. 2000, 18, 1096-1100.
   S Timur, U Anik, D Odaci, L Gorton, “Development of a microbial biosensor based on carbon nanotube (CNT) modified
    electrodes”, Electrochemistry Communications, 2007, 9, 1810-1815.
   K Besteman, J Lee, F Wiertz, H Heering, C Dekker. “Enzyme-Coated Carbon Nanotubes as
   Single-Molecule Biosensors”, Nano Letters, 2003, 3, 6: 727-730.
   R Chen, Y Zhang, D Wang, H Dai. “Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein
    Immobilization”, J. Am. Chem. Soc., 2001, 123, 16: 3838 -3839.
   K Balasubramanian, M Burghard. “Biosensors based on carbon nanotubes”, Anal. Bioanal. Chem., 2005, 385, 452-468.
   Hayes & Horowitz, Student Manual for the Art of Electronics, Cambridge Univ. Press, 1989.
   I Hyungsoon, H Xing-Jiu, G Bonsang, C Yang-Kyu. “A dielectric-modulated field-effect transistor for biosensing”, Nature
    Nanotechnology, 2007, 2, 430 – 434.
   D Therriault. “Filling the Gap”, Nature Nanotechnology, 2007, 2, 393 - 394.
   S Daunert, GBarrett, J Feliciano, R Shetty, S Shrestha, W Smith-Spencer. “Genetically Engineered Whole-Cell Sensing Systems:
    Coupling Biological Recognition with Reporter Genes”, Chem. Rev. 2000, 100, 2705-2738.
   T Petänen, M Romantschuk. “Measurement of bioavailability of mercury and arsenite using bacterial biosensors”, Chemosphere,
    2003, 50, 409-413.
   F Roberto, J Barnes, D Bruhn. “Evaluation of a GFP Reporter Gene Construct for Environmental Arsenic Detection.”, Talanta.
    2002, 58, 1:181-188.
   W Tonomura, R Kitazawa, T Ueyama, H Okamura, S Konishi. “Electrophysiological biosensor with Micro Channel Array for
    Sensing Signals from Single Cells”, IEEE Sensors, 2006, 140-143.
   R Leois, J Rae. “Low-noise patch-clamp techniques”, Meth. Enzym. 1998, 293: 218-266.
   [1] A Vikas, C S Pundir. “Biosensors: Future Analytical Tools”, Sensors and Transducers, 2007, 2, 935-944.
         Questions?




Introduction   E-DNA   Carbon N-T   BioFET   Whole Cell   Summary

				
DOCUMENT INFO
Shared By:
Categories:
Tags:
Stats:
views:330
posted:7/31/2011
language:English
pages:38