Name CHM 152 – Kinetics Ch 12 Reaction Rates 1 Write the rate expression for the reaction N2 3 H2  2 NH3 2 According to the following unba

Document Sample
Name CHM 152 – Kinetics Ch 12 Reaction Rates 1 Write the rate expression for the reaction N2 3 H2  2 NH3 2 According to the following unba Powered By Docstoc
					Name: __________________________________
CHM 152 – Kinetics (Ch. 12)

Reaction Rates
1.     Write the rate expression for the reaction N2 + 3 H2  2 NH3

2. According to the following unbalanced reaction, if the rate of appearance of oxygen gas is 4.00 x 10-2 M/s,
what is the rate of disappearance of KClO3 (g)? KClO3(g)  KCl(g) + O2(g) (high Temp rxn)

       a. 2.67 x 10-2 M/s     b. 6.00 x 10-2 M/s    c. 2.00 x 10-2 M/s    d. 3.00 x 10-2 M/s   e. 5.33 x 10-2 M/s

Rate laws
3. What is the general rate law for this reaction? H3BO3 + 3 HCl  BCl3 + 3 H2O _________________

4. What is the rate law for a zero order overall reaction? ________________
5. Name one factor that can increase the success of reactant collisions. Explain how it increases the reaction

6. The rate constant for the reaction HNO3 + NH3  NH4NO3 is 14.5 1/M.s If the concentration of nitric acid
is 0.050 M and the concentration of ammonia is 0.10 M and both reactants are first order, what will the rate of
this reaction be?

7. The rate law for the following reaction is rate = k[H2][F2]. If the rate is 3.15 x 10-4 M/s when [H2] = 0.084
M and [F2] = 0.25 M, calculate the rate when [H2] = 0.039 M and [F2] = 0.099 M. (Hint: find the rate
constant k)

Initial Rates / Rate constant (k)
8. If the concentration of a reactant is doubled and the corresponding rate quadruples, what is the order with
respect to that reactant? __________

9. What are the units for the rate constant if the rate law is: rate = k[A][B]2[C]?
      a. 1/s b. 1/Ms c. 1/M2s d. M/s e. 1/M3s

CHM 152                                               Kinetics                                      Page 1 of 5
Name: __________________________________
10. When two compounds, A and B, are mixed together, they form compound C, by a reaction that’s not well
      understood. Fortunately, the following rate information was experimentally determined, as shown

                      Experiment     [A] (mol/L)     [B] (mol/L)    Rate (mol/L.sec)
                          1             0.050           0.050          4.0 x 10-3
                          2              0.10           0.050          8.0 x 10-3
                          3             0.050            0.10          1.6 x 10-2

       a)      Determine the rate law for this reaction.

       b)      Determine the rate constant for this reaction.

11. The following data were collected for the reaction of BF3(g) + NH3(g)  F3BNH3(g):
        Experiment [BF3] (M)             [NH3] (M)          Rate (M/s)
        1             0.250              0.250              0.2130
        2             0.250              0.125              0.1065
        3             0.200              0.100              0.0682
        4             0.350              0.100              0.2384
        5             0.175              0.100              0.0596

       a) What is the overall rate law for this reaction? ___________________________

       b) What is the overall order of the reaction? _______________

       c) What is the value of the rate constant (with correct units)? ___________________________

Integrated Rate Laws
12. To graphically find the rate constant for a first order reaction you should plot _______ versus time. For a
second order reaction? ________ For a zero order reaction? _________

CHM 152                                              Kinetics                                     Page 2 of 5
Name: __________________________________
Half life
13. What percentage of a sample would remain after 8 half lives? ____________________________

14. What percentage of a sample remains after 5 half lives? ________________

15. What is the half-life for a first order reaction if the initial concentration of reactant is 1.25M and after 69.2
    seconds the concentration has dropped to 0.955M?

16. What is the reactant concentration after 78.9 seconds for a second order reaction with a half-life of 3.l0
    minutes if the initial concentration was 0.555M?

17. A researcher at GCC is running a new chemical reaction that obeys first order kinetics and discovers that
    after 24 hours only ½ of the reactants are turned into products. How long will it take in hours for 90% of
    the reactants to be reacted? (Hint: how much is remaining when 90% is reacted?)

18. The slow step in a mechanism is also called the ______________________ step.

19. If an elementary step has two reactants, what is its molecularity? ______________________

20. For this reaction: 2 NO(g) + Cl2(g)  2 NOCl(g) the real rate law is rate = k [NO] [Cl2]
    If the following steps are the mechanism, which one must be the rate determining step? _________

   What is the intermediate in this mechanism? _____________

   What is the overall order? _______

             NO(g) + Cl2(g)  NOCl2(g)                 step one
             NO(g) + NOCl2(g)  2NOCl(g)               step two

CHM 152                                                Kinetics                                        Page 3 of 5
Name: __________________________________
21. For the following reaction, the rate law is found to be Rate = k[Ce4+][Mn2+].
                2 Ce4+ + Tl+  2 Ce3+ + Tl3+

One mechanism for this reaction, containing the following elementary steps, is shown below:
             1. Ce4+ + Mn2+ ---> Ce3+ + Mn3+
             2. Ce4+ + Mn3+ ---> Ce3+ + Mn4+
             3. Tl+ + Mn4+ ---> Tl3+ + Mn2+
      a. There is no catalyst and no intermediate.
      b. There is no catalyst, but Mn2+ is the intermediate.
      c. Mn3+ is the catalyst and there is no intermediate.
      d. Mn2+ is the catalyst and Mn3+ and Mn4+ are the intermediates.
      e. Mn4+ is the catalyst and Mn2+ and Mn3+ are the intermediates.
      f. Ce3+ is the catalyst and Tl+ and Mn4+ are the intermediates.

22. Which of the following equations represents the rate law for the following elementary process: A + B 
C + D?
       a. Rate = k[C][D]
       b. Rate = k[A]
       c. Rate = k[A][B]2
       d. Rate = k[A][B]
       e. Rate = k[B]

23. Below is a possible mechanism for the oxidation of bromide ions by hydrogen peroxide in aqueous acid
solution. What is the overall reaction equation for this process?
        H+ + H2O2  H2O+-OH (rapid equilibrium)
       H2O+-OH + 2Br-  HOBr + H2O (slow)
       HOBr + H+  Br2 + H2O (fast)

       a.   2 H+ + H2O2 + Br- + HOBr  H2O+--OH + Br2 + H2 O
       b.   H2O+--OH + H++ Br-  Br2 + H2O
       c.   2 H+ + H2O2 + 2 Br-  Br2 + 2 H2O
       d.   2 H2O+--OH + 2 Br-  H2O2 + Br2 + 2 H2O

Arrhenius Equation
24. If a reaction has a rate constant of 3.7 x 10-3 s-1 at 25 oC, and an activation energy of 43.6 kJ/mol, what
will be the rate constant for this reaction at 75 oC ?
        a. 3.0 x 10 -4 s-1
        b. 4.6 x 10 -2 s-1
        c. 3.7 x 10 -3 s-1
        d. 4.8 x 10 -3 s-1

CHM 152                                               Kinetics                                       Page 4 of 5
Name: __________________________________
25. A second order reaction whose rate constant at 700 oC was found to be 4.0 x 10-3 L/mol.s has an
activation energy of 35.0 kJ/mol. What is the rate constant for this reaction at 850 oC?
        a. 7.1 x 10-3 L/mol·s
        b. 5.25 x 10-6 L/mol·s
        c. 5.78 x 10-2 L/mol·s
        d. 1.8 x 10-3 L/mol·s
        e. 1.0 x 10-3 L/mol·s

26. A catalyst increases the rate of a reaction by
       a. increasing the enthalpy of the reaction
       b. decreasing the enthalpy of the reaction
       c. lowering the activation energy of the reaction
       d. raising the activation energy of the reaction

27. A catalyst is effective because
       a. it supplies energy to the reactant molecules, allowing more of them to achieve energies in excess of
             the activation energy for the reaction
       b. it increases the temperature of the molecules in the reaction mixture
       c it increases the number of collisions between molecules
       d. it lowers the activation energy of the reaction by providing a lower energy mechanism or pathway

28. The reaction H2(g) + I2(g) ----> 2 HI(g) is exothermic and has the following rate law at 298K:
rate = [H2][I2]. Addition of a catalyst would
        a. increase the rate of the forward reaction
        b. increase the rate of both the forward and reverse reactions
        c. increase the rate of the reverse reaction
        d. cause no increase or decrease in the rate of the reaction
        e. None of the above

CHM 152                                             Kinetics                                     Page 5 of 5

Shared By:
Description: Rate of Reaction Worksheets document sample