Document Sample

Systems of Equations-Solve by Graphing, Comparison, and Substitution Solving a system of linear equations means to determine all the points that are common to all the lines in that system of equations. In Grade 10 students learned how to solve a 2x2 system of linear equations by several methods. These methods were: a) comparison b) graphing c) substitution In Grade 11, students will expand these methods to include addition and subtraction (elimination) and the inverse matrix. Before introducing these new methods, a review of the previously learned methods is necessary. Examples: 1. Solve the following system of linear equations by the comparison method. x 4 y 1 4 x 5 y 15 Solution: Solve each equation in terms of the same variable. Usually students will solve the equations in terms of the variable y since they have done this when determining the equation of a line and when graphing. Express each equation in the form y mx b x 4 y 1 x x 4 y x 1 4 x 5 y 15 4y x 1 4 x 4 x 5 y 4 x 15 4 y 1x 1 5 y 4 x 15 1 1 1 5 4 15 4 y x 1 y x 5 5 5 4 1 1 y x 4 4 4 4 y x3 5 1 1 y x 4 4 Since both equations are equal to y, they are equal to each other. Set both mx + b parts equal to each other and solve the linear equation. 1 1 4 x x3 4 4 5 20 1 x 20 1 20 4 x 203 4 4 5 5x 5 16x 60 5x 16x 5 16x 16x 60 11x 5 60 11x 5 5 60 5 11x 55 11 55 x 11 11 x 5 Substitute this value into one of the equations to determine the value of y. 4 y x3 5 y 5 3 4 The common point or the solution is (-5,-1) 5 y 4 3 y 1 2. Solve the following system of linear equations by graphing. 2 2 x 5 y 5 y x 1 Put each equation in the form y mx b 5 4 x 2 y 22 y 2 x 11 Graph both lines on the same axis: The point of intersection of the two lines is the common point or the solution. The solution is (5, 1). 3. Solve the following system of linear equations by using the substitution method. 2 x 3 y 27 4 x y 5 Solution: Solve one of the equations in terms of one of the variables. The process of substitution will involve fewer and simpler computations if one of the variables has a coefficient of 1 or -1. Since the coefficient of y is -1, solve for that variable. 4x y 5 4 x 4 x y 4 x 5 y 4 x 5 1 4 5 y x 1 1 1 y 4x 5 Substitute this expression for y into the other equation wherever the variable y appears. Solve the linear equation. 2 x 3 y 27 2 x 34 x 5 27 2 x 12 x 15 27 14 x 15 27 14 x 15 15 27 15 14 x 42 14 42 x 14 14 x3 Substitute this value into the equation to determine the value of y. y 4x 5 y 43 5 The common point or the solution is (3, 7) y 12 5 y7 Exercises: 1. Solve the following system of linear equations by using the method of comparison. x 3 y 15 0 7 y 3x 21 2. Solve the following system of linear equations by using the method of substitution. x 3 y 11 3x 2 y 30 3. Solve the following system of linear equations by using the method of graphing. 2 x y 7 0 x 2 y 1 0

DOCUMENT INFO

Shared By:

Categories:

Tags:
algebra 2, algebra 1, how to, square root, pre algebra, prentice hall, homework help, linear equations, Top stores, algebraic expressions

Stats:

views: | 10 |

posted: | 7/19/2011 |

language: | English |

pages: | 4 |

OTHER DOCS BY MikeJenny

How are you planning on using Docstoc?
BUSINESS
PERSONAL

By registering with docstoc.com you agree to our
privacy policy and
terms of service, and to receive content and offer notifications.

Docstoc is the premier online destination to start and grow small businesses. It hosts the best quality and widest selection of professional documents (over 20 million) and resources including expert videos, articles and productivity tools to make every small business better.

Search or Browse for any specific document or resource you need for your business. Or explore our curated resources for Starting a Business, Growing a Business or for Professional Development.

Feel free to Contact Us with any questions you might have.