Mobile Portal For RFID Applications - Patent 7667573

Document Sample
Mobile Portal For RFID Applications - Patent 7667573 Powered By Docstoc
					


United States Patent: 7667573


































 
( 1 of 1 )



	United States Patent 
	7,667,573



 Ehrman
,   et al.

 
February 23, 2010




Mobile portal for RFID applications



Abstract

A mobile portal for RFID applications includes an RFID reader for reading
     identifications of proximately located RFID tagged items in the
     environment. A communicator is coupled to the RFID reader to receive the
     read identifications and then communicate the received read
     identifications over the wireless interface, through one of the gateways,
     to the central data processing system. Each mobile portal may be actuated
     for RFID read operations in response to information sensed concerning
     operation of the mobile asset/vehicle. Additionally, the central data
     processing system may issue instructions concerning mobile asset/vehicle
     operation, with those instructions communicated over the wireless
     interface to the mobile portal. Responsive to implementation of those
     instructions, the mobile portal actuates the RFID reader and compares the
     read identifications to identifications of certain RFID tagged items to
     be manipulated which were identified in the received instruction.


 
Inventors: 
 Ehrman; Kenneth S. (Upper Saddle River, NJ), Ehrman; Michael L. (New York, NY), Jagid; Jeffrey M. (Closter, NJ) 
 Assignee:


I.D. Systems, Inc.
 (Hackensack, 
NJ)





Appl. No.:
                    
11/276,470
  
Filed:
                      
  March 1, 2006

 Related U.S. Patent Documents   
 

Application NumberFiling DatePatent NumberIssue Date
 60657655Mar., 2005
 

 



  
Current U.S. Class:
  340/10.1  ; 340/13.26; 340/568.1; 340/572.4; 700/214; 700/225; 700/236
  
Current International Class: 
  H04Q 5/22&nbsp(20060101)
  
Field of Search: 
  
  
















 340/10.1,3.51,505,825.28,825.72,825.69,5.61,5.64,10.4,568.1,572.4 700/236,225,214,213 235/385 343/713
  

References Cited  [Referenced By]
U.S. Patent Documents
 
 
 
3705976
December 1972
Platzman

4303904
December 1981
Chasek

4338587
July 1982
Chiappetti

4398172
August 1983
Carroll et al.

4438491
March 1984
Constant

4549264
October 1985
Carroll et al.

4603390
July 1986
Mehdipour et al.

4656463
April 1987
Anders et al.

4688026
August 1987
Scribner et al.

4908500
March 1990
Baumberger

4918425
April 1990
Greenberg et al.

4937581
June 1990
Baldwin et al.

4979170
December 1990
Gilhousen et al.

5086389
February 1992
Hassett et al.

5089974
February 1992
Demeyer et al.

5101200
March 1992
Swett

5119104
June 1992
Heller

5151684
September 1992
Johnsen

5166872
November 1992
Weaver et al.

5192954
March 1993
Brockelsby et al.

5204670
April 1993
Stinton

5204675
April 1993
Sekine

5206643
April 1993
Eckelt

5218344
June 1993
Ricketts

5231584
July 1993
Nimura et al.

5253162
October 1993
Hassett

5257393
October 1993
Miller

5281859
January 1994
Crane

5287353
February 1994
Buda et al.

5289369
February 1994
Hirshberg

5295244
March 1994
Dev et al.

5303343
April 1994
Ohya et al.

5321584
June 1994
Matheny

5327144
July 1994
Stilp et al.

5347274
September 1994
Hassett

5396215
March 1995
Hinkle

5426425
June 1995
Conrad et al.

5514967
May 1996
Zelm

5682142
October 1997
Loosmore et al.

5691980
November 1997
Welles, II et al.

5715905
February 1998
Kaman

5794174
August 1998
Janky et al.

5822309
October 1998
Ayanoglu et al.

5886634
March 1999
Muhme

5892441
April 1999
Woolley et al.

6006148
December 1999
Strong

6104712
August 2000
Robert et al.

6141610
October 2000
Rothert et al.

6150921
November 2000
Werb et al.

6240365
May 2001
Bunn

6330499
December 2001
Chou et al.

6430488
August 2002
Goldman et al.

6476763
November 2002
Allen, Jr.

6496806
December 2002
Horwitz et al.

6505106
January 2003
Lawrence et al.

6507786
January 2003
Flick

6539393
March 2003
Kabala

6600418
July 2003
Francis et al.

6609082
August 2003
Wagner

6614349
September 2003
Proctor et al.

6677852
January 2004
Landt

6710738
March 2004
Allen, Jr.

6898493
May 2005
Ehrman et al.

6924748
August 2005
Obradovich et al.

6941202
September 2005
Wilson et al.

6977612
December 2005
Bennett et al.

7151979
December 2006
Andersen et al.

7155304
December 2006
Charych

7256682
August 2007
Sweeney, II

7336163
February 2008
Fujii

2001/0005178
June 2001
Stewart

2002/0065698
May 2002
Schick et al.

2002/0184062
December 2002
Diaz

2003/0055666
March 2003
Roddy et al.

2003/0056113
March 2003
Korosec

2003/0074244
April 2003
Braxton

2003/0130913
July 2003
Ehrman et al.

2003/0171939
September 2003
Yagesh et al.

2003/0195825
October 2003
Ehrman et al.

2003/0216976
November 2003
Ehrman et al.

2003/0225707
December 2003
Ehrman et al.

2004/0015419
January 2004
Ehrman et al.

2004/0022227
February 2004
Lynch et al.

2004/0204867
October 2004
Smith et al.

2004/0254759
December 2004
Kubach et al.

2005/0237184
October 2005
Muirhead

2005/0241548
November 2005
Muirhead



 Foreign Patent Documents
 
 
 
0851701
Jul., 1998
EP

1113628
Jul., 2001
EP

406068104
Mar., 1994
JP

WO01/05175
Jan., 2001
WO

WO2004/112403
Dec., 2004
WO



   
 Other References 

International Search Report dated Oct. 18, 2005. cited by other
.
General Motors OnStar; Darden Graduate School of Business Administration; University of Virginia; 2000; pp. 1-11. cited by other
.
Vetronix Corporation; 15 Years of Excellence; On-Line Information; Apr. 10, 2000; pp. 1-7. cited by other
.
The OBO II Home Page; Jun. 15, 1999; pp. 1-4. cited by other
.
Int'l Search Report & Witten Opinion for related PCT Application No. PCT/US2006/07142 dated Mar. 7, 2007. cited by other
.
International Search Report Dated Sep. 20, 2007. cited by other.  
  Primary Examiner: Brown; Vernal U


  Attorney, Agent or Firm: Troutman Sanders LLP
Schutz; James E.
Kowalewski; Filip A.



Parent Case Text



CROSS-REFERENCE TO RELATED APPLICATIONS


This application claims the benefit of U.S. Provisional Application No.
     60/657,655, filed 1 Mar. 2005.

Claims  

What is claimed is:

 1.  A mobile RFID portal, comprising: an RFID reader mountable to a mobile asset/vehicle;  a motion sensor coupled to the mobile asset/vehicle, the motion sensor detecting
movement of the mobile asset/vehicle;  a communicator, mountable to the mobile asset/vehicle, coupled to the RFID reader, the communicator actuating the RFID reader to read identifications of proximately located RFID tagged items, receive the read
identifications, and communicate the received read identifications over a wireless interface;  and an interface for connection to the motion sensor, the communicator actuating the RFID reader to read identifications of proximately located RFID tagged
items a first time in response to an indication received from the motion sensor that the mobile asset/vehicle is moving and a second time after the mobile asset/vehicle has moved a predetermined distance.


 2.  The portal of claim 1 further comprising sensors for sensing mobile asset/vehicle operations and wherein the communicator further comprises an interface for connecting to those sensors, the communicator actuating the RFID reader to read
identifications of proximately located RFID tagged items in response to sensing of mobile vehicle/asset operation by the sensors.


 3.  The portal of claim 1 wherein the communicator further stores read identifications of proximately located RFID tagged items for subsequent communication over the wireless interface.


 4.  The portal of claim 1 wherein the communicator bi-directionally communicates over the wireless interface and receives an instruction for the mobile asset/vehicle to perform a certain function comprising the manipulation of certain RFID
tagged items, the communicator actuating the RFID reader to read identifications of proximately located RFID tagged items in response to mobile asset/vehicle manipulation and comparing the read identifications to identifications of the certain RFID
tagged items identified in the instruction.


 5.  The portal of claim 1 further comprising: a mobile asset/vehicle RFID tagged item manipulation sensor;  wherein the communicator further includes an interface for connecting to the mobile asset/vehicle motion sensor and the mobile
asset/vehicle RFID tagged item manipulation sensor, the communicator actuating the RFID reader to read identifications of proximately located RFID tagged items in response to input from the mobile asset/vehicle RFID tagged item manipulation sensor
indicative of a manipulation of certain RFID tagged items and the communicator subsequently actuating the RFID reader to read identifications of proximately located RFID tagged items in response to input from the mobile asset/vehicle motion sensor
indicative of mobile vehicle/asset movement, the communicator further processing the read identifications of proximately located RFID tagged items in comparison to identify the certain RFID tagged items which were manipulated.


 6.  A system, comprising: a mobile RFID portal for attachment to a mobile asset/vehicle, the mobile RFID portal including an RFID reader for reading identifications of proximately located RFID tagged items and a communicator coupled to the RFID
reader to receive the read identifications and communicate the received read identifications over a wireless interface;  a motion sensor coupled to the mobile asset/vehicle, the motion sensor detecting whether the mobile asset/vehicle is traveling;  a
central data processing system coupled to the wireless interface to receive the read identifications communicated from the communicator in the mobile RFID portal, wherein the communicator of the mobile RFID portal operates in an autonomous manner to
control RFID reader operation without instruction or control being exercised by the central data processing system, and wherein the communicator includes an interface for connecting to the motion sensor, the communicator actuating the RFID reader to read
identifications of proximately located RFID tagged items a first time in response to an indication received from the motion sensor that the mobile asset/vehicle has begun traveling and a second time after the mobile asset/vehicle has traveled a
predetermined distance.


 7.  The system of claim 6 further including a gateway node connected to the central data processing system and operable to wirelessly communicate with the communicator in the mobile RFID portal.


 8.  The system of claim 6 further including sensors for sensing mobile asset/vehicle operations and wherein the communicator further includes an interface for connecting to those sensors, the communicator actuating the RFID reader to read
identifications of proximately located RFID tagged items in response to sensing of mobile vehicle/asset operation by the sensors.


 9.  The system of claim 6 wherein the communicator further stores read identifications of proximately located RFID tagged items for subsequent communication over the wireless interface.


 10.  The system of claim 6 wherein the mobile RFID portal further includes: a mobile asset/vehicle RFID tagged item manipulation sensor;  wherein the communicator further includes an interface for connecting to those sensors, the communicator
actuating the RFID reader to read identifications of proximately located RFID tagged items in response to input from the mobile asset/vehicle RFID tagged item manipulation sensor indicative of a manipulation of certain RFID tagged items and the
communicator subsequently actuating the RFID reader to read identifications of proximately located RFID tagged items in response to input from the mobile asset/vehicle motion sensor indicative of mobile vehicle/asset movement, the communicator further
processing the read identifications of proximately located RFID tagged items in comparison to identify the certain RFID tagged items which were manipulated.


 11.  A system, comprising: a mobile RFID portal for attachment to a mobile asset/vehicle, the mobile RFID portal including an RFID reader for reading identifications of proximately located RFID tagged items and a communicator coupled to the RFID
reader to receive the read identifications and communicate the received read identifications over a wireless interface;  a motion sensor coupled to the mobile asset/vehicle, the motion sensor detecting movement of the mobile asset/vehicle from a first
location to a second location;  a gateway node operable to wirelessly communicate with the communicator in the mobile RFID portal over the wireless interface and receive the communicated read identifications, wherein the communicator includes a data
processing functionality programmed to control when and where the RFID reader is actuated to read identifications of proximately located RFID tagged items, and wherein the communicator further includes an interface for connecting to the motion sensor,
the data processing functionality actuating the RFID reader to read identifications of proximately located RFID tagged items a first time at the first location in response to an indication received from the motion sensor that the mobile asset/vehicle is
moving and a second time at the second location.


 12.  The system of claim 11 further including sensors for sensing mobile asset/vehicle operations and wherein the communicator further includes an interface for connecting to those sensors, the data processing functionality actuating the RFID
reader to read identifications of proximately located RFID tagged items in response to sensing of mobile vehicle/asset operation by the sensors.


 13.  The system of claim 11 wherein the gateway node transmits an instruction to the mobile RFID portal for the mobile asset/vehicle to perform a certain function, the instruction communicated over the wireless interface to the communicator in
the mobile RFID portal.


 14.  The system of claim 13 wherein the certain function specified by the instruction comprises the manipulation of certain RFID tagged items, the communicator actuating the RFID reader to read identifications of proximately located RFID tagged
items in response to mobile asset/vehicle manipulation and comparing the read identifications to identifications of the certain RFID tagged items identified in the instruction.


 15.  The system of claim 11 wherein the communicator of the mobile RFID portal operates in an autonomous manner to control actuation of the RFID reader without the need to receive any instructions from over the wireless interface.
 Description  

BACKGROUND OF THE INVENTION


1.  Technical Field of the Invention


The present invention relates to the field of radio frequency identification (RFID) systems.


2.  Description of Related Art


Conventional RFID technology is focused on techniques for scanning items (such as pallets, baggage, products, and the like) using either passive or active wireless interrogation at distances of between approximately 2-10 feet.  Such a wireless
interrogation process serves to replace the need of prior art bar code scanning systems that manually scan each individual item, with a more efficient process that allows for a one-time remote scan of all included items.  RFID-based scanning thus reduces
the labor associated with manually manipulating items in order to access a bar code label.


A typical RFID system installation places wireless interrogators at fixed locations known as "portals." As tagged items pass through (or just in proximity to) these fixed portals (for example, as carried by a person, vehicle or machine), the
associated RFID tag for the item is wirelessly interrogated to obtain item identification information.  This identification information is then associated with information relating to the identity and/or position of the fixed portal that made the read. 
The collected information is then reported to a central data processing system where the information can be viewed and stored for purposes of later query and manipulation.


The successful deployment of such RFID systems has heightened industry's awareness of the potential for a truly fully automated data tracking and monitoring system.  With this emerging technology comes unique concepts for its use in productivity
monitoring.


Therefore, it can be seen that a need yet exists for an enhanced RFID system that provides superior functionality and usefulness over conventional RFID-based systems.  It is to such a mobile portal for RFID applications that the present invention
is primarily directed.


BRIEF SUMMARY OF THE INVENTION


Briefly described, in its preferred form, the present invention is a mobile RFID portal that is associated with a mobile asset, such as vehicle.  An RFID interrogator is positioned on the mobile asset and operates to wirelessly interrogate for
proximately located RFID tags attached to items.  A wireless radio frequency (RF) communications transmitter also positioned on the mobile asset is coupled to the RFID interrogator and functions to establish a data communications link with a central data
processing system.  The RFID interrogator captures "captured item identification information" from proximately located RFID tags (either passive or active tags), and the RF communications transmitter transmits the captured item identification information
over the data communications link to the central data processing system.


As a further enhancement, the RF communications transmitter may further include functionality for determining information regarding the mobile asset, "mobile asset identification information", preferably being location information.  The RF
communications transmitter can then transmit both the captured item identification information and the mobile asset identification information over the data communications link to the central data processing system.


The captured item identification information and the mobile asset identification information may then be associated with each other by the central data processing system, thus allowing for the determination of not only what items were present,
but also where those items were located when their RFID tags were read.


In one preferred embodiment, the mobile RFID portal of the present invention is associated with a mobile asset such as a forklift.  As the operator of that mobile asset moves about an environment, such as a warehouse, moving items, the mobile
RFID portal uses its wireless interrogator to identify items being handled by that mobile asset, and further uses its RF communications transmitter to transmit the captured item identification information, along with the mobile asset identification
information, to the central data processing system over the data communications link.


In another preferred embodiment, the mobile RFID portal further determines the mobile asset location at each wireless interrogation, and includes the mobile asset identification information, being location information, along with the captured
item identification information in the RF communication to the central data processing system.  Advantageously, this allows for the monitoring of the mobile asset operator and asset location while efficiently, cost-effectively and reliably tracking the
identification of items being moved.  This concept essentially creates a "mobile" RFID portal operable to track tagged items, and the mobile assets that manipulate those items, in real-time throughout the supply chain.


In another preferred embodiment, the mobile RFID portal comprises an RFID reader mountable to a mobile asset/vehicle and a communicator associated with the RFID reader for actuating the RFID reader to read identifications of proximately located
RFID tagged items when predetermined mobile asset/vehicle operational data is identified.


In yet another preferred embodiment of the present invention, a system is provided, and comprises a mobile RFID portal for attachment to a mobile asset/vehicle.  The mobile RFID portal includes an RFID reader for reading identifications of
proximately located RFID tagged items, and a communicator coupled to the RFID reader to receive the read identifications, and communicate the received read identifications over a wireless interface.  A central data processing system is coupled to the
wireless interface to receive the read identifications communicated from the communicator in the mobile RFID portal.


Another preferred embodiment of the present invention comprises a system provided with a mobile RFID portal for attachment to a mobile asset/vehicle.  The mobile RFID portal includes an RFID reader for reading identifications of proximately
located RFID tagged items, and a communicator coupled to the RFID reader to receive the read identifications, and communicate the received read identifications over a wireless interface.  A gateway node is operable to wirelessly communicate with the
communicator in the mobile RFID portal over the wireless interface and receive the communicated read identifications.


In another preferred embodiment of the present invention, a mobile RFID portal is provided, and comprises an RFID reader for mounting to a mobile asset/vehicle, and a communicator connected to the RFID reader.  The communicator actuates the RFID
reader to read identifications of proximately located RFID tagged items, receives the read identifications, and communicates the received read identifications over a wireless interface.


In accordance with yet another preferred embodiment, a system of the present invention comprises a central data processing system and a plurality of gateways each connected to the central data processing system and each supporting communications
over a wireless interface.  A plurality of mobile RFID portals are also included, with each mobile portal attached to a mobile asset/vehicle.  Each mobile portal includes an RFID reader for reading identifications of proximately located RFID tagged
items, and a communicator coupled to the RFID reader to receive the read identifications and communicate the received read identifications over the wireless interface, through one of the gateways, to the central data processing system.


In accordance with yet another preferred embodiment, a system for tracking RFID tagged items comprises a plurality of mobile RFID portals for attachment to a plurality of mobile asset/vehicles.  Each mobile RFID portal includes an RFID reader for
reading identifications of proximately located RFID tagged items, a data storage device for storing read identifications, and a communicator for transmitting read identifications over a wireless interface.  The system may also include a central data
processing system coupled to the wireless interface to receive the read identifications communicated from the communicators in the plurality of mobile RFID portals.  Additionally, the central data processing system maintains records of the location of a
plurality of RFID tagged items present in a predetermined geographic area and it receives data from each of the plurality of mobile RFID portals representative of the RFID tagged items moved by the mobile asset/vehicle associated with the respective
mobile RFID portal.  Furthermore, one or more of the plurality of mobile RFID portals reads the identifications of proximately located RFID tagged items a first time when a first predetermined mobile asset/vehicle operational data is identified and a
second time when a second predetermined mobile asset/vehicle operational data is identified.  The one or more of the plurality of mobile RFID portals may also transmit data representative of the RFID tagged items read the first time and the second time
along with a location at which the second reading was made to the central data processing system.  Finally, the central data processing system stores the data representative of the location at which the second reading was made as a current location for
each of the RFID tagged items that were read both the first time and the second time.


These and other objects, features and advantages of the present invention will become more apparent upon reading the following specification in conjunction with the accompanying drawing figures. 

BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a block diagram of an asset/item monitoring system in accordance with a preferred embodiment of the invention;


FIG. 2 illustrates an implementation configuration for the system of FIG. 1;


FIG. 3 illustrates an operational implementation diagram for a vehicle asset communicator in accordance with a preferred embodiment of the invention; and


FIG. 4 is a functional block diagram illustrating the operation of the system of FIG. 1.


DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS


Referring now in detail to the drawing figures, wherein like reference numerals represent like parts throughout the several views, FIG. 1 illustrates a block diagram of an asset/item monitoring system 10 in accordance with a preferred embodiment
of the invention.


The system 10 includes at least one RFID tag 12.  The RFID tag 12 can be a low cost device of known passive or active design (such as, for example, the tags supplied by Matrics/Symbol Technologies, Inc.) that can be attached to an item 14 to be
tracked.  The item 14 may range in size from a relatively small article (such as a product, package or box) to a relatively large article (such as a pallet, crate or container).


The system 10 further includes a vehicle asset communicator (VAC) 16, which is a device that is installed on preferably each mobile asset (i.e., a vehicle, such as, for example, a forklift, man-lift, truck, trailer, pallet rider, order picker,
loader, handler, airport ground-support vehicle, and the like, which operates to manipulate tagged items).  The vehicle asset communicator 16 is operable to effectuate data communication transmissions over a radio frequency (RF) data communications link
18.


The vehicle asset communicator 16 can further include a peripheral interface 20 through which interconnection for data communication can be made with one or more peripheral data sensing and data capture devices 22.  The information collected by
the peripheral devices 22 is then packaged by the vehicle asset communicator 16 for transmission over the data communications link 18.


At the other end of the data communications link 18, a central data processing system 24 receives and processes the information communicated from the vehicle asset communicator 16.  The processing of the communicated information in the central
data processing system 24 may include displaying the information, storing the information, searching the information, manipulating the information, and the like data processing operations known and understood to those skilled in the art.  Accordingly,
the central data processing system 24 may, in one embodiment, take the form of a server and database.  As an example, the central data processing system may include Windows.RTM.-based software for the purpose of monitoring and tracking the movement of
the items throughout an area or facility both historically and in real-time.  The software could also be used to monitor the productivity of the industrial vehicle/asset operators and equipment, as well as for fleet maintenance scheduling and safety
checking.


Central data processing communication over the data communications link 18 is supported by one or more gateway devices 26.  One or more gateway device(s) 26 are mounted at strategic locations so as to facilitate communication of data between the
vehicle asset communicator 16 and the central data processing system 24.  Gateway devices 26 can possess RF communication capabilities to support wireless data communication over the data communication link 18.


The RF communication over the data communications link 18 is, in a preferred implementation, a very low power link, and a highly secure link (for example, certified for use at military installations).


In a preferred implementation, the vehicle asset communicator 16 is an industrial vehicle monitoring device installed on a mobile asset.  As mentioned previously, the mobile asset functionally operates to manipulate RFID-tagged items 14 (for
example, by moving, lifting, placing, and the like).  The industrial vehicle monitoring device in a preferred implementation is a wireless, intelligent, asset-mounted computer that can be programmed with decision-making capabilities.  Such a device for
the vehicle asset communicator is available from I.D.  Systems, Inc., of Hackensack, N.J.  The asset-mounted computer is interfaced into the vehicle to receive supply voltage.  Additional interfaces allow the computer to receive information concerning
operation of the asset (for example, vehicle motion status, speed and lift or tow status, operational parameters, and the like).  The interface functionality further allows the monitoring device to interface to numerous peripherals for collecting data
about the asset and the environment in which the asset is operating.


As an example, the device 16 uses its interface 20 to connect with the peripheral device 22 in the form of an RFID interrogator/reader 30.  The interrogator/reader 30 via a read link 32 functions to read proximately located RFID tags 12 attached
to items 14.  From the RFID tags 12, the interrogator/reader 30 captures captured item identification information relating to the item(s).  This captured item identification information from the proximately located RFID tags 12 passes through the
interface 20 to the vehicle asset communicator 16 where it is transmitted over the data communications link 18 (via gateway 26) to the central data processing system 24.


Thus, if the mobile asset were moving a certain pallet (i.e., an item 14), the interrogator/reader 30 would read the RFID tag 12 attached to that pallet to obtain its identification, and the vehicle asset communicator 16 would transmit that
pallet identification to the central data processing system 24 over the data communications link 18.  In this way, the system 10 can track item location in connection and association with a mobile asset/moving vehicle.


The system 10 accordingly permits the tracking of a number of pieces of information relating to the items and the assets.  For example, the vehicle asset communicator 16 may include a locator functionality (for example, using GPS, triangulation
or other known location systems) and communicate over the data communications link 18 to the central data processing system 24 the location of the vehicle at a certain time, or in connection with performing a certain activity (such, lifting, placing,
loading, and the like).  The communicated location information can further be associated with other collected information.


The vehicle asset communicator 16 may include a user/operator data input device (such as a keypad or touchscreen) through which that user/operator enters data of interest (for example, access codes, log-in codes, operation codes, maintenance
information, and the like).  The user/operator entered information is then communicated over the data communications link 18 to the central data processing system 24.


The vehicle asset communicator 16 can further utilize the RFID reader 30 to read from the RFID tag 12 the identification of the item being manipulated, and associate that identification with a timestamp indicating when the item was manipulated. 
If the communicator is location enabled, the location where the manipulation occurred is also collected.  All this information may then be communicated over the data communications link 18 to the central data processing system 24 where it can be
processed so as to allow for identification of the item, its route of travel, and the times when it was manipulated.


The vehicle asset communicator 16 can further utilize the collected location data in connection with a data communication report made to the central data processing system 24.  The location data can be processed, in connection with the other
reported time stamped data, so as to allow the system 10 to validate the moves made by the asset/vehicle in the sense of monitoring place and time of movement and confirming asset/vehicle authorization to be at that place at the noted time.


The system 10 uses the peripheral connection 20 support provided by the asset-mounted computer of the vehicle asset communicator 16 to interface with the wireless RFID interrogator 30.  The system 10 accordingly can integrate the RFID reader into
a wireless, intelligent, asset-mounted computer, such that intelligent, automated, accurate interrogations will occur for items being manipulated by the vehicle.  This would enable the reading of RFID tags in any location within or outside a facility,
without the need for a fixed portal infrastructure, by leveraging the processing capabilities of mobile, intelligent, wireless devices (i.e., the vehicle asset communicator).  The communicator and reader accordingly may form a "mobile portal" that allows
for RFID read data to be collected in connection with vehicle operation.  The mobile portal may comprise additional elements such as, but not limited to, a controller for controlling operation of the mobile portal, a data storage device for storing data
captured by the RFID Reader 30, and/or a Mobile Portal Processor.  When the vehicle moves into communication range of the gateway device 26, a data communications link is established between the communicator and the central data processing system to
enable communication of pertinent data.


A number of benefits accrue from use of the system 10 over conventional systems.


Lowest cost device on the item--RFID tags are becoming the standard.  RFID tag readers on vehicles/assets use the lowest possible cost RFID tag system on the numerous items to be tracked.  As RFID tags are proliferated, the system becomes
significantly more comprehensive.


Secure RF system--the RF system on the asset that transmits the RFID tag data to the central database is proven secure (for example, is currently installed on military bases).  The system has been through DITSCAP approval.


Data processing power on the vehicle/asset allows decisions to be made remotely without reliance on a central computer.  The RF device on each vehicle/asset not only identifies the item being manipulated, but also provides instantaneous feedback
to the operator in case there is a mistake (i.e., the operator is told he is manipulating the wrong item in comparison to, for example, a shipping list).  Data from each manipulation is analyzed remotely at the asset without relying on the central
computer.  This lessons the load on the central computer and significantly reduces the response time it takes to convey the validity of each item manipulation to the operator.


Significantly fewer RFID tag readers are required than conventional systems.  Typically, tagged items are identified when they pass through fixed portals.  These fixed portals are limited in number and usually monitor the item twice (once on
their way in and once on their way out).  The location of a particular item is therefore impossible to determine unless portals are installed on nearly every inch of the facility.  Using the system 10, the RFID readers are powered from the vehicle/asset,
thus allowing the assets themselves to function as mobile portals.  As a result, management can determine the precise location of an item whether it is stationary or on the move.  By utilizing the vehicles/assets that move the items as mobile portals,
the installation of much fewer portals throughout the facility is achievable while allowing for essentially an unlimited number of monitoring points.


Another significant benefit of the system is the elimination of the need for real-time network access for the RFID interrogator, especially in a situation where the interrogator must be mobile.  This implementation creates a "nested" RFID tag
system, in which the initial read would transpire at the vehicle, with the interrogated data stored on the mobile, asset-mounted computer, followed by a secondary data transfer between the mobile, asset-mounted computer and its wireless infrastructure. 
For example, by adding tag reading capability to the vehicle-mounted system of an airport baggage handler, the operator of a tug or belt loader can scan and/or verify bags (i.e., items) as they are loaded onto a plane, right at the plane, without
requiring real-time network access for a mobile interrogator or requiring the driver to drive through a portal, both of which might hold up the airplane loading process.  The manifest of bags on the plane would then be stored on the mobile, intelligent,
wireless device.  Additionally, because the mobile, intelligent computer can include vehicle access control authentication, the system can also record the person that loaded the plane and the location and time of the process.  Because the mobile,
intelligent computer can also store a passenger baggage manifest, it can also double check each bag for positive passenger baggage matching.  Because the mobile, intelligent computer can provide for a display, it can notify the driver of the vehicle
about any unexpected baggage scans, such as a bag that is not in the manifest.  When the vehicle device comes back into range of its RF infrastructure, even if not available at the airplane loading point, all verifications and uploads would transpire and
no data would be lost.  In general, this implementation would greatly simplify installation requirements and eliminate a major source of system failure/delay during airplane loading.


Yet another significant benefit of the present system is the automation of the scanning process.  In a conventional system, the scanning process is either constantly performed, such as at a fixed portal, or is initiated via a manual process, such
as pressing a scan button.  In a mobile vehicle environment, such as at a warehouse distribution center, the items (such as pallets) are often in range of a vehicle that is not actually moving the pallet.  As a result, the likelihood for false reads is
significant with a "constant" read approach at the vehicle.  The manual scan process is also flawed in that it requires a vehicle operator to remember to press the scan button to perform a scan, and the scan will only occur once.  The fixed portal
approach is also unreasonable, in that it requires the driver to drive potentially long distances to the nearest portal to perform a read.  In this implementation, the mobile, asset-mounted computer is aware of the vehicle's lift/tug status and/or motion
status (i.e., is it manipulating tagged items).  Throughout the present description, the vehicle's lift/tug status and/or motion status may be referred to as the vehicle's operational status.  However, a vehicle's operational status may include
additional states beyond the lift/tug status and motion status.


Using these inputs to initiate RFID tag scans in an intelligent way provides for an accurate, automated solution for pallet scanning, for example.  The initial read would transpire at the vehicle, at the time the load is first lifted or tugged,
with the interrogated data stored at the vehicle.  Then, while the vehicle is in motion, the system can optionally scan periodically to further validate the resultant list of scanned items against the initial list, to improve scanning accuracy.


For example, if on the initial scan, an item is scanned which is not actually on the forklift, it will not appear again on a subsequent scan after the vehicle has traveled a certain distance.  The list of items would continue to be "honed" until
the vehicle either comes to a stop or drops the load.  At that point, the intelligent, mobile, asset-mounted computer will perform a secondary data transfer of the accurate list of loaded items to its wireless infrastructure.  This solution can, for
example, add accurate tag reading capability to each factory vehicle in a distribution warehouse, without the operator of the forklift or pallet rider actively initiating any scans or driving through a portal, and without requiring real-time network
access for the mobile interrogator which could be nearly impossible in such an uncontrolled environment.  The list of moved pallets would then be stored on the mobile, intelligent, wireless device.  Additionally, because the mobile, intelligent computer
can include vehicle access control authentication, the system can also record the person that moved the items and the location and time of the process.  Because the mobile, intelligent computer can also include a lift weight sensor, it can also transmit
and/or double check each pallet's weight.  When the vehicle device comes back into range of its RF infrastructure, even if not available at every pickup point within the warehouse, all uploads would transpire and no data would be lost.  In general, this
implementation would greatly simplify installation requirements, eliminating the need for each vehicle operator to drive through a fixed portal to perform a scan, which would improve factory efficiency.  Since the mobile asset can determine its location
at all times, the start and end locations can also be transmitted with the final "honed" list of tags, rather than sending the scan location for each intermediate scan attempt.


It will, of course, be understood that the foregoing example relating to validating scan content in the context of airport baggage handling has much broader application to any item manipulation process including the pallet handling examples.


The vehicle asset communicator 16 may further support bi-directional communications over the data communications link 18.  Such communications may, for example, be effectuated using 2-way paging.  With bi-directional communication support, item
manipulation jobs can be downloaded to the vehicle/asset operator.  This would initiate the need to perform an RFID scan.  The job contents/specification can further be used to validate the RFID scan and thus the manipulation of the items identified by
that scan.  Given reported vehicle/asset location information, the downloaded job can be efficiently sent to an available operator (vehicle) which is closest to the currently believed location of the items which are the subject of the job.


In the context of an RFID tagged container (or other item containing device), it will be understood that the RFID tag may include the identifications for items contained in the container and that the item identifications will be communicated to
the central data processing system 24 following a read of the container RFID tag.


Reference is now made to FIG. 2 wherein there is shown an implementation configuration for the system 10.  Each vehicle asset communicator 16 supports multiple sensors with respect to the vehicle/asset to which it is mounted.  The vehicle asset
communicator 16 functions as an autonomous embedded device.  With respect to data communications, the vehicle asset communicator 16 is not provided with an IP address.


The data communications link 18 supports communications between the vehicle asset communicator 16 and the gateways 26.  This link 18 is preferably a bi-directional RF communications link in the 868-928 MHz RF band.  Operationally, the vehicle
asset communicator 16 and gateway 26 support frequency agile access to the link 18, and communications are maintained at low power so as to not interfere with other RF systems.


The gateways 26 are preferably strategically located with respect to the environment within which the system 10 operates.  For example, the gateways can be positioned at critical access points such as entrances and exits.  Multiple gateways 26
are provided so that no single point of failure exists with respect to the data communication path between the vehicle asset communicator 16 and the data processing system 24.


The connection between the gateway 26 and the data processing system 24 is preferably an Ethernet LAN/WAN.  UDP/IP protocols can be used for the data communications.  The data processing system 24 may be configured as a Microsoft.RTM.  SQL Server
having access to a Microsoft.RTM.  SQL Server database.  Windows.RTM.-based services are provided on the server which can be a part of a larger existing computer network if desired (or alternatively operated on a stand-alone basis).  Other computers on
the network run Windows.RTM.-based or Web-based support software.  Communication between other computers and server associated with the system 10 is supported by the Ethernet LAN/WAN and utilize ODBC or SQLOLEDB over TCP/IP.


Reference is now made to FIG. 3 wherein there is shown an operational implementation diagram for a vehicle asset communicator 16.  The vehicle asset communicator 16 is associated with a mobile asset or vehicle (for example, mounted therein) and
receives power 40 from the asset itself (wherein the asset is identified for exemplary purposes herein as a forklift).  Through its peripheral interface 20, the vehicle asset communicator 16 is coupled to a plurality of vehicle sensors 42 that function
to detect certain operational conditions of the vehicle.  For example, the sensors 42 may function to detect whether the forklift vehicle's lift mechanism is moving (and the direction, such as up/down, of that movement).  As another example, the sensors
42 may function to detect whether a load is present on the lift mechanism (and the weight of that load).  Still further, as an example, the sensors 42 may function to detect whether or not the forklift vehicle is moving (and provide information
concerning speed of the vehicle).  Each of the sensors 42 may provide data regarding the operation of the vehicle.  Such vehicle operational data may include, but is not limited to vehicle motion, lift operation, lift direction, load presence, load
weight, vehicle speed, vehicle direction, vehicle location, vehicle type, and vehicle operator.  The vehicle operational data may also be referred to as the vehicle operational status or the vehicle operational characteristics.


Data collected by these sensors 42 is provided to the vehicle asset communicator 16 for processing in the manner described herein.  The vehicle asset communicator 16 can also be coupled to the vehicle's starter or interlock system, which
functions to interrupt and control vehicle use.  This permits the vehicle asset communicator 16 to verify and validate the operator of the vehicle before permitting its use.


Through its peripheral interface 20, the vehicle asset communicator 16 is further coupled to RFID reader/interrogator 30.  As discussed herein, the interrogator 30 reads the identification information from proximately located RFID tags.  The
communicator 16 may control actuation of the interrogator 30.  In one implementation, the interrogator can be turned on whenever the communicator 16 is on.  Thus, RFID reads will occur substantially continuously.  In another implementation, the
interrogator can be selectively turned on at the instruction of the communicator 16.  Thus, RFID reads only occur when desired (for example, as an event driven exercise).  Beneficially, this implementation minimizes spurious read and RF interference due
to reads and can be used to substantially improve read accuracy, since multiple reads can be combined with sensor data to "hone" a tag list.


The vehicle asset communicator 16 supports a number of processor driven functionalities 50 (executed in response to and under the control of an algorithm executed by a processor within the vehicle asset communicator).  One primary function
performed is data storage (for example, through use of a RAM).  Data collected from peripheral devices 22 (vehicle sensors, RFID reader 30, and the like) can be temporarily stored in the data storage memory in the event the communicator 16 does not, or
cannot, communicate that data over the link 18.


The vehicle asset communicator 16 is also an autonomous, intelligent device and accordingly includes processing functionality that governs its actions.  This processing functionality can determine when to take sensor and/or RFID reads and when to
make data communications.  For example, a read or communication may be triggered by identifying the occurrence of an event of interest (such as vehicle movement or item manipulation or location detection).  The vehicle asset communicator 16 still further
includes a radio frequency (RF) communications functionality.  In one implementation, that functionality can be only a transmit operation.  In another implementation, the functionality is a transceiver which supports both transmit and receive operations. Preferably, the RF communications are low power and secured--as an example, communications frequency agile in the 868-928 MHz RF band.


The vehicle asset communicator 16 still further incorporates, or supports the connection to, a visual display and a data entry device.  As an example, both display and entry can be accommodated using a touchscreen.  Separate LED/LCD display and
data entry keypads provide another optional implementation.  Data entered through the data entry device is handled by the processing functionality and stored in the data storage memory.  Additionally, as discussed herein the vehicle asset communicator 16
includes, or supports connection to, a geographic location system such as a GPS receiver or a triangulation system.  Location data is collected at the direction of the processing functionality and stored in the data storage memory.


The vehicle asset communicator 16 configured in the manner described herein allows for the collection of important data in a related manner.  For example, through the vehicle sensors the vehicle asset communicator 16 can determine that an item
manipulation is occurring (for example, a pallet is now on the lift).  Responsive thereto, the processing functionality can order the RFID reader 30 interrogate the RFID tag for the item and collect the associated identification data.  This data can be
stored in the data storage memory and transmitted, when appropriate, using the RF communications functionality over the link 18.


Location data may also be collected and associated with the identification data to provide a record of where the item was manipulated and interrogated.  Monitoring of location can continue as the mobile asset moves about the environment. 
Collected location data can be stored to enable tracking of mobile asset movement in connection with the handling and manipulation of the item.


Through the data entry device, the identification of the mobile asset operator can be obtained with this information also stored in the data storage memory in association with the item being handled.  In this way, a record is kept of who was
involved in data handling and operation of the mobile asset.  All of the foregoing data can be time stamped so as to record when the data was collected.  Again, this time information is stored by the data storage memory in association with the other
data.  Thus a record is kept of when each read or data collection event occurred.


An appropriate processing algorithm can be created within the capabilities of one skilled in the art to govern the operations of the vehicle asset communicator processor.  Some functional operations to be performed by the processor are discussed
in detail herein.


Reference is now made to FIG. 4 wherein there is shown a functional block diagram describing operation of the system of FIG. 1.  The vehicle asset communicator 16 includes an RFID reader/interrogator 30 and further monitors the mobile asset
operation.  Certain operational actions taken by the mobile asset trigger actuation of the RFID reader/interrogator 30 to obtain item identification from proximately located RFID tags 12.  The processing functionality processes the identification data
obtained by the RFID reader 30 in comparison with stored data obtained from the central data processing system 24 which specifies the items to be manipulated by that mobile asset.  The processing functionality can accordingly ensure accuracy in the item
manipulation process.  For example, the central data processing system 24 may specify that certain items are to be moved from one location to another.  When the mobile asset reaches the first location and captures the items, an RFID read is performed to
obtain the identification of the items being captured.  This list of item identifications is then compared by the processing functionality in the vehicle asset communicator 16 to ensure that the proper items have been captured.  If a discrepancy is found
(i.e., too many items, wrong items, not enough items, missing items, and the like), the operator of the mobile asset is notified through the display so that corrective action can immediately be taken.  A discrepancy report can also be formatted by the
vehicle asset communicator 16 for transmission back to the central data processing system 24.


As mentioned before, the RFID read can be triggered by a certain event.  For example, the mobile asset may move about the environment and if the RFID reader were active then many irrelevant identification reads would occur.  With event
triggering, the number of reads can be controlled, thus making the collected data more relevant and accurate.  In one example, as a forklift moves about a warehouse without a load of items, no RFID reads are taken.  This not only eliminates spurious
reads from the forklift's reader, but also prevents interference with adjacent forklifts.  When the forklift stops and drops its lift to access an item, this event acts as a trigger and the RFID reader is activated to check for proximately locate RFID
tags.  The read identifications are then captured and stored by the vehicle asset communicator.  The forklift then drives off with its collected items.  This triggers a second RFID read for proximately located RFID tags.  The currently read
identifications are captured and compared with the previously read and stored identifications.  This comparison functions to confirm that the items identified in the first read are still present on the forklift.  If an item is missing as identified by
the comparison an alert can be generated.  Also, if an item is missing, this could be indicative of the fact that the read item was proximately located to the forklift when the lift dropped, but was not one of the items which was captured and moved;
alternatively, the missing item may indicate a read failure during this scan.  Still further, if a new item is found then this would be indicative of a spurious read (of a proximate but not loaded item) as it is not possible to have captured a new tagged
item while the forklift is in motion, or of a failure rate from a previous attempt.  This new item read can then be ignored.  This process can be repeated periodically throughout the duration of the movement to further validate the list of loaded items,
and resolve discrepancies between RFID read rate issues with non-loaded items.  It will thus be understood that validation of the loaded items can be more accurately made than could otherwise be done with a single scan.


The gateway 26 functions to receive data transmitted from the vehicle asset communicator 16 over the link 18.  The gateway 26 further functions, in implementations where the vehicle asset communicator 16 possesses transceiver RF functionality, to
send data received from the central data processing system 24 to the vehicle asset communicator.  As mentioned herein, this transmitted data may comprise a specification of items to be manipulated by the mobile asset.  The gateway 26 supports
communication with a plurality of vehicle asset communicators 16 and thus functions as a node in a distributed processing system.


The central data processing system 24 supports discontinuous communications connections with the plurality of vehicle asset communicators 16.  No real-time communications link need be established with the vehicle asset communicators 16.  For
example, with respect to the vehicle asset communicator 16, it can store data to be transmitted to the central data processing system 24 and wait for an appropriate time when access to the gateway 26 over the link 18 becomes available.  Similarly, with
respect to the central data processing system 24, it can communicate a message intended for delivery to a certain vehicle asset communicator 16 to one or more of the gateways 26 where the message is queued for later delivery by that gateway when the
addressed vehicle asset communicator comes into communications range.


Importantly, the central data processing system 24 need not make any decisions about the validity of RFID reads or the data it receives from vehicle asset communicators 16.  Instead, the vehicle asset communicators 16 operate as autonomous
devices with processing functionality that allows each communicator to evaluate the validity of its RFID reads and thus communicate validity checked data over the link 18 to the central data processing system 24.  Additionally, the central data
processing system 24 need not micro-manage the operations of the vehicle asset communicators, as the autonomous operation and intelligent processing functionality of the vehicle asset communicators allows the communicators to function with minimal, and
in some instance no, instruction.  In this way, it will be recognized that only necessary data is transmitted and received by the central data processing system 24.  The abilities of the vehicle asset communicator 16 and gateway 26 to engage in decision
making advantageously eliminate the need for middleware, real-time communications links, and unnecessary communication.  Instead, problems can be detected and addressed with the vehicle asset communicator 16 thus obviating the need for the large data
processing capabilities at the central node.


It will of course be understood that the vehicle asset communicator and its associated RFID reader 30 could be installed on a moveable item/asset itself (such as a freight container, a trailer, a railroad freight car, and the like).  Since these
items/assets may not be powered for movement, the vehicle asset communicator 16 must receive power from an alternate power source 60 (see FIG. 3) such as a rechargeable battery.  When in this configuration, the "mobile portal" can read the
identifications of tagged items as they are placed in or removed from the moveable asset/item.  Then, when the moveable asset/item is moved into range of a gateway 26, for example, when a trailer drives off a lot or a container is loaded on a ship, the
read identification information for the current item contents can be communicated through the gateway 26 to the central data processing system 24.


A more complete understanding of the configuration and operation of the system of the present invention may be obtained by consideration of the following operational characteristics.


First, it is recognized that the mobile portal can read and store RFID information in an autonomous manner (i.e., without the use of the wireless gateway or the central processing computer).  In this way, reads can occur regardless of whether a
wireless connection with the central computer exists.  Additionally, one can be assured of the performance of a read, regardless of wireless connection state, since the mobile portal can make the read and store the data until an opportunity arises to
wirelessly communicate with the central computer.  The system is accordingly much more robust and immune to interfering wireless systems.


Second, since the RFID reads can be triggered by events such as vehicle movement and/or lift operation alone, and further does not require the existence of a wireless communication link to the central computer, there is no need in a given
environment for fixed portals.  As discussed herein, such portals are extremely wasteful for drivers to pass through in the course of business (wastes of time and money).


Third, because the mobile portals are intelligent computing devices, the mobile portal can take actions on its own (in accordance with its programming) without commands from a central processing system.  For example, the mobile portal can decide
on its own to shut down in the event of an invalid read or alternatively generate and alert or warning to an operator.  Still further, the mobile portal can monitor for state of completion concerning a designated task and provide status updates to the
operator concerning completion of that task.  Additionally, the mobile portals can "think" in a deductive reasoning capacity with respect to the collected data and then draw necessary conclusions with respect to item manipulation.


Fourth, the intelligent computing device design for the mobile portals further facilitates control over use of the mobile asset.  Again acting in an autonomous or semi-autonomous manner, the mobile portal can exercise control over use of the
mobile asset by requiring an operator to present identification prior to enabling the asset for operation.  In this way, once knowledge of the authorized operator is presented, the mobile portal can associate that operator identification to each RFID
read in an automatic manner.  This information can be saved and remotely reported, and thus allows for tracking of which operator manipulated each item.


Fifth, through use of the locating component, the mobile portal can implement its own continuous vehicle location determination technique (indoors and outdoors) in an automatic fashion.  This allows the mobile portal to associate each RFID read
to a location.  The location information can be coupled by the mobile portal with other data, such as vehicle sensor data, to associate operation locations to RFID tagged items and the movement or manipulation of those items.


Sixth, the collected sensor data can be associated with RFID reads.  For example, an amount of weight lifted, a distance traveled, a length of time controlled, and the like, can all comprise pieces of information that are associated with a read. 
This data becomes even more valuable when further linked to location data as discussed herein.


Seventh, the mobile portal can implement an auto-read algorithm wherein it exercises control over when, where and how often RFID reads are taken.  The algorithm further can intelligently draw conclusions from the reads and the instances of those
reads concerning what, where, when and how items are being manipulated.  For example, the mobile portal can leverage knowledge of lift status and vehicle movement status (including distance traveled) to intelligently cause multiple RFID reads to occur
and the filter out read information which do not "stay" with the vehicle during lift and/or movement so as to provide significantly improved read accuracy.  Thus, RFID reads are not saved with respect to nearby located items since that data will not be
present over the course of the multiple RFID reads displaced over time and/or distance.  In this way, the mobile portal can accurately report only as to those items which actually have been manipulated.


Eighth, since the algorithm is automatically executed (i.e., without need for human interaction and control), and further is initiated by the mobile portal itself (i.e., without need for central computer interaction and control), human error and
environmental communications conditions are eliminated as factors which could adversely affect the read process.


While the invention has been disclosed in its preferred forms, it will be apparent to those skilled in the art that many modifications, additions, and deletions can be made therein without departing from the spirit and scope of the invention and
its equivalents as set forth in the following claims.


* * * * *























				
DOCUMENT INFO
Description: 1. Technical Field of the InventionThe present invention relates to the field of radio frequency identification (RFID) systems.2. Description of Related ArtConventional RFID technology is focused on techniques for scanning items (such as pallets, baggage, products, and the like) using either passive or active wireless interrogation at distances of between approximately 2-10 feet. Such a wirelessinterrogation process serves to replace the need of prior art bar code scanning systems that manually scan each individual item, with a more efficient process that allows for a one-time remote scan of all included items. RFID-based scanning thus reducesthe labor associated with manually manipulating items in order to access a bar code label.A typical RFID system installation places wireless interrogators at fixed locations known as "portals." As tagged items pass through (or just in proximity to) these fixed portals (for example, as carried by a person, vehicle or machine), theassociated RFID tag for the item is wirelessly interrogated to obtain item identification information. This identification information is then associated with information relating to the identity and/or position of the fixed portal that made the read. The collected information is then reported to a central data processing system where the information can be viewed and stored for purposes of later query and manipulation.The successful deployment of such RFID systems has heightened industry's awareness of the potential for a truly fully automated data tracking and monitoring system. With this emerging technology comes unique concepts for its use in productivitymonitoring.Therefore, it can be seen that a need yet exists for an enhanced RFID system that provides superior functionality and usefulness over conventional RFID-based systems. It is to such a mobile portal for RFID applications that the present inventionis primarily directed.BRIEF SUMMARY OF THE INVENTIONBriefly described, in its preferred