CH07 by langbavibo

VIEWS: 15 PAGES: 17

									                                                     1




Chæång 7:                 NGÀÕN MAÛCH KHÄNG ÂÄÚI XÆÏNG



I. KHAÏI NIÃÛM CHUNG:

      Ngoaìi ngàõn maûch 3 pha âäúi xæïng, trong hãû thäúng âiãûn coìn coï thãø xaíy ra ngàõn
maûch khäng âäúi xæïng bao gäöm caïc daûng ngàõn maûch 1 pha, ngàõn maûch 2 pha, ngàõn
maûch 2 pha chaûm âáút. Khi âoï hãû thäúng veïctå doìng, aïp 3 pha khäng coìn âäúi xæïng
næîa.
      Âäúi våïi maïy phaït, khi trong cuäün dáy stato coï doìng khäng âäúi xæïng seî xuáút
hiãûn tæì træåìng âáûp maûch, tæì âoï sinh ra mäüt loaût soïng haìi báûc cao caím æïng giæîa räto
vaì stato: soïng báûc leî åí stato seî caím æïng sang räto soïng báûc chàôn vaì ngæåüc laûi. Biãn
âäü caïc soïng naìy phuû thuäüc vaìo sæû âäúi xæïng cuía räto, räto caìng âäúi xæïng thç biãn
âäü caïc soïng caìng beï. Do âoï thæûc tãú âäúi våïi maïy phaït turbine håi vaì turbine næåïc
coï caïc cuäün caín doüc truûc vaì ngang truûc, caïc soïng haìi báûc cao coï biãn âäü ráút nhoí, coï
thãø boí qua vaì trong tênh toaïn ngàõn maûch ta chè xeït âãún soïng táön säú cå baín.
      Tênh toaïn ngàõn maûch khäng âäúi xæïng mäüt caïch træûc tiãúp bàòng caïc hãû phæång
trçnh vi phán dæûa trãn nhæîng âënh luáût Kirchoff vaì Ohm ráút phæïc taûp, do âoï ngæåìi
ta thæåìng duìng phæång phaïp thaình pháön âäúi xæïng. Näüi dung cuía phæång phaïp naìy
laì chuyãøn mäüt ngàõn maûch khäng âäúi xæïng thaình ngàõn maûch 3 pha âäúi xæïng giaí
tæåíng räöi duìng caïc phæång phaïp âaî biãút âãø giaíi noï.

II. PHÆÅNG PHAÏP THAÌNH PHÁÖN ÂÄÚI XÆÏNG:

      Phæång phaïp naìy dæûa trãn nguyãn tàõc Fortesene - Stokvis. Mäüt hãû thäúng 3
         .    .     .
veïctå F a , F b , F c khäng âäúi xæïng báút kyì (hçnh 7.1) coï thãø phán têch thaình 3 hãû
thäúng veïctå âäúi xæïng:
                                                                        .   .   .
                        - Hãû thäúng veïctå thæï tæû thuáûn : F a1 , F b1 , F c1
                                                                        .   .       .
                        - Hãû thäúng veïctå thæï tæû nghëch: F a 2 , F b 2 , F c 2
                                                                        .   .       .
                        - Hãû thäúng veïctå thæï tæû khäng : F a 0 , F b 0 , F c0
      Theo âiãöu kiãûn phán têch ta coï:
                                           .     .       .      .
                                          F a = F a1 + F a 2 + F a 0
                                           .     .       .          .
                                          F b = F b1 + F b 2 + F b 0
                                           .     .       .      .
                                          F c = F c1 + F c 2 + F c 0
                                                    2




                                               Hçnh 7.1

                                        o
      Duìng toaïn tæí pha a = e j120 ta coï:
                              ⎡F ⎤ ⎡                 ⎡. ⎤
                                         1 1 1 ⎤ ⎢F0 ⎥
                                 .
                              ⎢. ⎥ ⎢
                                   a
                                                   ⎥ .
                              ⎢ F b ⎥ = ⎢1   a a ⎥ ⎢ F a1 ⎥
                                              2
                              ⎢. ⎥ ⎢               ⎥ ⎢. ⎥
                              ⎢ F c ⎥ ⎢1     a a 2 ⎥ ⎢Fa 2 ⎥
                              ⎣ ⎦ ⎣                ⎦⎣ ⎦
vaì ngæåüc laûi:
                             ⎡F ⎤
                               .
                                          ⎡1 1 1 ⎤ ⎡ F a ⎤
                                                        .
                             ⎢. ⎥ 1⎢
                                 0
                                                     ⎥ ⎢. ⎥
                             ⎢ F a1 ⎥ = ⎢1    a a 2 ⎥ ⎢F b ⎥
                             ⎢ . ⎥ 3⎢                ⎥ ⎢. ⎥
                             ⎢Fa 2 ⎥      ⎢1  a 2 a ⎥ ⎢Fc ⎥
                             ⎣ ⎦          ⎣          ⎦⎣ ⎦
            .     .     .        .
      Khi F a + F b + F c = 3 F 0 = 0 thç hãû thäúng 3 veïctå laì cán bàòng.
            • Hãû säú khäng cán bàòng: b0 = F0/F1
            • Hãû säú khäng âäúi xæïng: b2 = F2/F1
      Hãû thäúng veïctå thæï tæû thuáûn vaì thæï thæû nghëch laì âäúi xæïng vaì cán bàòng, hãû
thäúng veïctå thæï tæû khäng laì âäúi xæïng vaì khäng cán bàòng.
      Mäüt vaìi tênh cháút cuía caïc thaình pháön âäúi xæïng trong hãû thäúng âiãûn 3 pha:
       Trong maûch 3 pha - 3 dáy, hãû thäúng doìng âiãûn dáy laì cán bàòng.
       Doìng âi trong âáút (hay trong dáy trung tênh) bàòng täøng hçnh hoüc doìng caïc
pha, do âoï bàng 3 láön doìng thæï tæû khäng.
       Hãû thäúng âiãûn aïp dáy khäng coï thaình pháön thæï tæû khäng.
       Giæîa âiãûn aïp dáy vaì âiãûn aïp pha cuía caïc thaình pháön thæï tæû thuáûn vaì thæï thæû
nghëch cuîng coï quan hãû 3:        U d1 = 3U f 1 ; U d2 = 3U f 2
        Coï thãø loüc âæåüc caïc thaình pháön thæï tæû.

III. CAÏC PHÆÅNG TRÇNH CÅ BAÍN CUÍA THAÌNH PHÁÖN ÂÄÚI XÆÏNG:

      Quan hãû giæîa caïc âaûi læåüng doìng, aïp, täøng tråí cuía caïc thaình pháön âäúi xæïng
cuîng tuán theo âënh luáût Ohm:
                                                 3


                                         .       .
                                        U1 = jI1 . X 1
                                              .
                                         .           .
                                        U 2 = jI 2 . X 2
                                              .
                                         .           .
                                        U 0 = jI 0 . X 0
trong âoï: X1, X2, X0 - âiãûn khaïng thæï tæû thuáûn, nghëch vaì khäng cuía maûch.
      Khi ngàõn maûch khäng âäúi xæïng ta xem tçnh traûng maûch nhæ laì xãúp chäöng cuía
caïc maûch tæång æïng våïi caïc thaình pháön âäúi xæïng tuán theo nhæîng phæång trçnh cå
baín sau:
                                    .        .               .
                                   U N1 = E Σ − jI N1 . X1Σ
                                              .
                                    .                    .
                                   U N 2 = 0 − jI N 2 . X 2Σ
                                              .
                                    .                    .
                                   U N 0 = 0 − jI N 0 . X 0 Σ
trong âoï: UN1, UN2, UN0, IN1, IN2, IN0 - caïc thaình pháön thæï tæû cuía doìng vaì aïp taûi
            âiãøm ngàõn maûch.
      Nhiãûm vuû tênh toaïn ngàõn maûch khäng âäúi xæïng laì tênh âæåüc caïc thaình pháön
âäúi xæïng tæì caïc phæång trçnh cå baín vaì âiãöu kiãûn ngàõn maûch, tæì âoï tçm ra caïc âaûi
læåüng toaìn pháön.

IV. CAÏC THAM SÄÚ THAÌNH PHÁÖN THÆÏ TÆÛ CUÍA CAÏC PHÁÖN TÆÍ:

      Tham säú cuía caïc pháön tæí laì âàûc træng cho phaín æïng khi coï doìng, aïp qua
chuïng. Do âoï tham säú thaình pháön thæï tæû cuía caïc pháön tæí laì phaín æïng khi coï hãû
thäúng doìng, aïp thæï tæû thuáûn, nghëch vaì khäng taïc duûng lãn chuïng.
      - Tham säú thæï tæû thuáûn cuía caïc pháön tæí laì caïc tham säú trong chãú âäü âäúi xæïng
bçnh thæåìng âaî biãút.
      - Âäúi våïi nhæîng pháön tæí coï ngáùu håüp tæì âæïng yãn nhæ maïy biãún aïp, âæåìng
dáy ... thç âiãûn khaïng khäng phuû thuäüc vaìo thæï tæû pha, tæïc laì âiãûn khaïng thæï tæû
thuáûn vaì thæï tæû nghëch giäúng nhau (X2 = X1). Âäúi våïi nhæîng pháön tæí coï ngáùu håüp
tæì quay thç X2 ≠ X1. Âiãûn khaïng thæï tæû khäng thç noïi chung laì X0 ≠ X2, X1, træì
træåìng håüp maûch khäng coï ngáùu håüp tæì thç X0 = X2 = X1.
    IV.1. Maïy âiãûn âäöng bäü:
      - Âiãûn khaïng thæï tæû nghëch X2 laì phaín æïng cuía maïy âiãûn do doìng thæï tæû
nghëch taûo tæì træåìng quay ngæåüc våïi váûn täúc 2ω so våïi räto. Trë säú cuía X2 tuìy
thuäüc âäü âäúi xæïng cuía maïy âiãûn, thæåìng ghi trong lyï lëch maïy. Trong tênh toaïn
gáön âuïng coï thãø láúy:
           • Maïy âiãûn khäng cuäün caín:         X2 = 1,45x’d
           • Maïy âiãûn coï cuäün caín:           X2 = 1,22x”d
                                               4



      - Âiãûn khaïng thæï tæû khäng Xo âàûc træng cho tæì thäng taín cuía doìng thæï tæû
khäng:                            Xo = (0,15 ÷ 0,6)x”d
      X1 thay âäøi trong quaï trçnh ngàõn maûch nhæng X2 vaì Xo nãúu khäng xeït âãún
baío hoìa thç coï thãø xem laì khäng âäøi. Tênh toaïn gáön âuïng coï thãø láúy giaï trë trung
bçnh trong baíng 7.1.
         Baíng 7.1:
                          LOAÛI MAÏY ÂIÃÛN                         X2         XO
           Maïy phaït turbine håi < 200MW                        0,15        0,05
           Maïy phaït turbine håi ≥ 200MW                        0,22        0,05
           Maïy phaït turbine næåïc coï cuäün caín               0,25        0,07
           Maïy phaït turbine næåïc khäng cuäün caín             0,45        0,07
           Maïy buì vaì âäüng cå âäöng bäü cåî låïn              0,24        0,08
    IV.2. Phuû taíi täøng håüp:
       Phuû taíi täøng håüp chuí yãúu laì âäüng cå khäng âäöng bäü nãn coï thãø láúy mäüt âäüng
cå khäng âäöng bäü âàóng trë thay thãú cho toaìn bäü phuû taíi âãø tênh toaïn.
       - Âiãûn khaïng thæï tæû nghëch X2 æïng våïi tæì thäng thæï tæû nghëch coï âäü træåüt (2-
s), luïc s=1 (tæïc âäüng cå bë haîm) thç X2 beï nháút, âoï laì træåìng håüp nguy hiãøm nháút
âæåüc tênh toaïn trong thæûc tãú:
                                         X2 = X2(s=1) = XN
trong âoï: XN - âiãûn khaïng ngàõn maûch cuía âäüng cå våïi X*N = 1/I*mm
       Tênh toaïn gáön âuïng láúy:        X2 = X” = 0,35
       - Háöu hãút caïc âäüng cå coï trung tênh caïch âiãûn våïi âáút nãn khäng coï doìng thæï
tæû khäng âi qua chuïng. Do váûy khäng cáön tçm Xo cuía caïc âäüng cå (tæïc Xo ≈ ∞).
    IV.3. Khaïng âiãûn:
     Khaïng âiãûn laì pháön tæí âæïng yãn, liãn laûc vãö tæì yãúu nãn:
                                       Xo ≈ X 1 = X2
    IV.4. Maïy biãún aïp:
      Maïy biãún aïp coï X1 = X2, coìn Xo phuû thuäüc vaìo täø näúi dáy. Täø näúi dáy ∆ chè
coï thãø cho doìng thæï thæû khäng chaûy quáøn trong cuäün dáy maì khäng ra ngoaìi læåïi
âiãûn. Täø näúi dáy Y cho doìng thæï thæû khäng âi qua cuäün dáy chè khi trung tênh näúi
âáút.
         Näúi Yo /∆ :(hçnh 7.2)
                                        xµo >> xII
                                    Xo = xI + xII =X1
                                              5




                                          Hçnh 7.2


       Näúi Yo / Yo :(hçnh 7.3)
     Xo tuìy thuäüc vaìo chãú âäü laìm viãûc cuía âiãøm trung tênh læåïi âiãûn.




                                          Hçnh 7.3


        Näúi Yo / Y :(hçnh 7.4)
                                       X o = x I + x µo




                                          Hçnh 7.4


      Âäúi våïi maïy biãún aïp 2 cuäün dáy gäöm 3 maïy biãún aïp 1 pha hoàûc âäúi våïi maïy
biãún aïp 3 pha 4 truû hay 5 truû thç xµo = ∞, âäúi våïi maïy biãún aïp 3 pha 3 truû thç xµo =
0,3 ÷ 1.
      Âäúi våïi maïy biãún aïp 3 cuäün dáy thæåìng coï 1 cuäün dáy näúi ∆ vç váûy coï thãø boí
qua xµo
         Näúi Yo /∆ /Y :(hçnh 7.5)
                                        Xo = xI + xII




                                          Hçnh 7.5


        Näúi Yo /∆ /Yo :(hçnh 7.6)
                                              6



     Xo tuìy thuäüc vaìo chãú âäü laìm viãûc cuía âiãøm trung tênh læåïi âiãûn.




                                          Hçnh 7.6


        Näúi Yo /∆ /∆ :(hçnh 7.7)
                                    Xo = xI + (xII // xIII)




                                          Hçnh 7.7

    IV.5. Âæåìng dáy:
       IV.5.1. Âæåìng dáy trãn khäng:
           X2 = X1
           Xo phuû thuäüc âæåìng âi cuía doìng thæï thæû khäng, nghéa laì phuû thuäüc vaìo sæû
phán bäú cuía chuïng trong âáút, trong dáy trung tênh, trong nhæîng maûch näúi âáút song
song (dáy chäúng seït). Häù caím giæîa caïc pha laìm giaím X1, X2 nhæng laìm tàng Xo.
              - Âäúi våïi âæåìng dáy âån 3 pha (1 läü): Xo > X1
              - Âäúi våïi âæåìng dáy keïp 3 pha (2 läü), X’o cuía mäüt läü låïn hån âiãûn
khaïng thæï tæû khäng Xo cuía âæåìng dáy âån 3 pha do coï häù caím giæîa 2 maûch song
song:
                                         X’o = Xo + XI-IIo
trong âoï: XI-IIo - âiãûn khaïng thæï tæû khäng häù caím giæîa 2 läü.
      Âiãûn khaïng tæång âæång cuía 1 pha âæåìng dáy keïp laì:
                                  X’’o = X’o/2 = (Xo + XI-IIo)/2
              - Aính hæåíng cuía dáy chäúng seït:
      Dáy chäúng seït thæåìng âæåüc näúi âáút åí mäùi cäüt taûo thaình nhæîng maûch voìng kên
cho doìng caím æïng âi qua khi coï doìng thæï tæû khäng trong caïc pha (âäúi våïi doìng
thæï tæû thuáûn vaì doìng thæï tæû nghëch khäng coï caím æïng vç täøng tæì thäng moïc voìng
do chuïng taûo nãn bàòng khäng).
      Chênh häù caím giæîa dáy chäúng seït vaì caïc pha laìm giaím Xo cuía âæåìng dáy, häù
caím naìy phuû thuäüc vaìo váût liãûu, säú læåüng vaì sæû bäú trê cuía dáy chäúng seït. Trong
tênh toaïn gáön âuïng coï thãø láúy trë säú trung bçnh trong baíng 7.2.
                                                7



          Baíng 7.2:
                        TÊNH CHÁÚT ÂÆÅÌNG DÁY                         TYÍ SÄÚ Xo/X1
           Âæåìng dáy âån khäng coï dáy chäúng seït                         3,5
           Âæåìng dáy âån coï dáy chäúng seït bàòng theïp                   3
           Âæåìng dáy âån coï dáy chäúng seït dáùn âiãûn täút               2
           Âæåìng dáy keïp khäng coï dáy chäúng seït                        5,5
           Âæåìng dáy keïp coï dáy chäúng seït bàòng theïp                  4,7
           Âæåìng dáy keïp coï dáy chäúng seït dáùn âiãûn täút              3
        IV.5.1. Âæåìng dáy caïp:
     Voî caïp thæåìng âæåüc näúi âáút åí 2 âáöu vaì nhiãöu âiãøm trung gian (häüp näúi caïp),
do âoï taûo thaình âæåìng âi âäúi våïi doìng thæï tæû khäng, voî caïp coï aính hæåíng tæång tæû
nhæ dáy chäúng seït cuía âæåìng dáy trãn khäng. Giaï trë ro, Xo cuía dáy caïp thay âäøi
trong phaûm vi räüng. Trong tênh toaïn gáön âuïng, våïi caïp 3 loîi coï thãø xem:
                                              ro ≈ 10r1
                                        Xo ≈ (3,5 ÷ 4,6)X1

V. SÅ ÂÄÖ CAÏC THAÌNH PHÁÖN THÆÏ TÆÛ:


    V.1. Så âäö thæï tæû thuáûn vaì thæï tæû nghëch:
      Så âäö thæï tæû thuáûn laì så âäö duìng âãø tênh toaïn åí chãú âäü âäúi xæïng. Tuìy thuäüc
vaìo phæång phaïp vaì thåìi âiãøm tênh toaïn, caïc maïy phaït vaì caïc pháön tæí khaïc âæåüc
thay thãú bàòng sæïc âiãûn âäüng vaì âiãûn khaïng tæång æïng.
      Så âäö thæï tæû nghëch vaì så âäö thæï tæû thuáûn coï cáúu truïc tæång tæû nhau vç âæåìng
âi cuía doìng thæï tæû nghëch vaì doìng thæï tæû thuáûn laì nhæ nhau. Âiãøm khaïc biãût cuía så
âäö thæï tæû nghëch so våïi så âäö thæï tæû thuáûn laì:
      - caïc nguäön sæïc âiãûn âäüng bàòng khäng.
      - caïc âiãûn khaïng thæï tæû nghëch khäng thay âäøi, khäng phuû thuäüc vaìo daûng
ngàõn maûch vaì thåìi âiãøm tênh toaïn.
      Ta goüi:
         Âiãøm âáöu cuía så âäö thæï tæû thuáûn vaì thæï tæû nghëch laì âiãøm näúi táút caí caïc
trung tênh maïy phaït vaì phuû taíi, âoï laì âiãøm coï thãú âiãûn bàòng khäng.
        Âiãøm cuäúi cuía så âäö thæï tæû thuáûn vaì thæï tæû nghëch laì âiãøm sæû cäú.
        Âiãûn aïp giæîa âiãøm cuäúi vaì âiãøm âáöu cuía så âäö thæï tæû thuáûn vaì thæï tæû nghëch
tæång æïng laì âiãûn aïp ngàõn maûch thæï tæû thuáûn vaì thæï tæû nghëch.
    V.2. Så âäö thæï tæû khäng:

      Âæåìng âi cuía doìng thæï tæû khäng ráút khaïc våïi doìng thæï tæû thuáûn vaì thæï tæû
nghëch. Så âäö thæï tæû khäng phuû thuäüc ráút nhiãöu vaìo caïch näúi dáy cuía maïy biãún aïp
vaì chãú âäü näúi âáút âiãøm trung tênh cuía hãû thäúng âiãûn.
                                                8



      Muäún thaình láûp så âäö thæï tæû khäng cáön bàõt âáöu tæì âiãøm ngàõn maûch, coi ràòng
caí 3 pha taûi âiãøm âoï nháûp chung vaì coï âiãûn aïp laì UNo. Så âäö thæï tæû khäng chè bao
gäöm caïc pháön tæí maì doìng thæï tæû khäng coï thãø âi qua. Täøng tråí näúi âáút caïc âiãøm
trung tênh cáön nhán 3, vç så âäö thæï tæû khäng âæåüc láûp cho 1 pha trong khi qua täøng
tråí näúi âáút coï doìng thæï tæû khäng cuía caí 3 pha.

VI. TÊNH TOAÏN CAÏC DAÛNG NGÀÕN MAÛCH CÅ BAÍN:

      Qui æåïc:
      - Coi pha A laì pha âàûc biãût (åí trong âiãöu kiãûn khaïc 2 pha coìn laûi).
      - Xeït ngàõn maûch ngay taûi âáöu nhaïnh reî cuía pháön tæí vaì chiãöu dæång cuía doìng
âiãûn laì tæì caïc pha âãún âiãøm ngàõn maûch.
      Theo âiãöu kiãûn phán têch hãû thäúng veïctå khäng âäúi xæïng, ta âaî coï:
     ⎡I ⎤ ⎡                       ⎡.    ⎤            ⎡I       ⎤   ⎡1 1 1 ⎤ ⎡I NA ⎤
                   1 1 1 ⎤ ⎢I N 0 ⎥
       .                                               .                             .
     ⎢. ⎥ ⎢
         NA
                                ⎥ .                  ⎢.  N0
                                                              ⎥ 1⎢                ⎥ ⎢. ⎥
     ⎢ I NB ⎥ = ⎢1      a a ⎥ ⎢I NA1 ⎥
                         2
                                               vaì   ⎢I NA1 ⎥ = ⎢1              2 ⎢
                                                                        a a ⎥ I NB ⎥
     ⎢. ⎥ ⎢                    2⎥ ⎢.    ⎥            ⎢.       ⎥ 3⎢                ⎥ ⎢. ⎥
     ⎢ I NC ⎥ ⎢1        a a ⎥ ⎢I NA 2 ⎥              ⎢ I NA 2 ⎥   ⎢1    a 2 a ⎥ ⎢I NC ⎥
     ⎣       ⎦ ⎣                ⎦⎣      ⎦            ⎣        ⎦   ⎣               ⎦⎣   ⎦
vaì caïc phæång trçnh cå baín:
                              .        .            .
                             U NA1 = E AΣ − jI NA1 . X 1Σ                              (7.1)
                              .                     .
                             U NA 2 = 0      − jI NA 2 . X 2Σ                          (7.2)
                              .                     .
                             U N0 = 0        − jI N 0 . X 0 Σ                          (7.3)

    VI.1. Ngàõn maûch 2 pha:
     Xeït ngàõn maûch giæîa 2 pha
B, C (hçnh 7.8). Âiãöu kiãûn ngàõn
maûch laì:
      .
      I NA    =0              (7.4)
      .             .
      I NB    = − I NC        (7.5)
          .     .
      U NB = U NC            (7.6)
                                                                    Hçnh 7.8
       Thay vaìo caïc phæång trçnh
thæï tæû:
          ⎡U.      ⎤    ⎡          ⎤       ⎡U ⎤
                                             .
          ⎢.  N0
                   ⎥ 1 ⎢1 1 1 ⎥            ⎢ . NA ⎥             .        .
          ⎢ U NA1 ⎥ = ⎢1    a a2⎥          ⎢ U NB ⎥     ⇒       U NA1 = U NA 2         (7.7)
          ⎢.       ⎥ 3⎢            ⎥       ⎢.     ⎥
          ⎢ U NA 2 ⎥    ⎢1  a2 a ⎥         ⎢ U NB ⎥
          ⎣        ⎦    ⎣          ⎦       ⎣      ⎦
                                                                  9



              ⎡I       ⎤  ⎡               1 ⎤⎡ 0 ⎤
                .
              ⎢ . N 0 ⎥ 1 ⎢1     1            ⎥⎢ .     ⎥                              .
              ⎢I NA1 ⎥ = ⎢1                                                           I N0 = 0                    (7.8)
                                 a        a 2 ⎥ ⎢ I NB ⎥                          ⇒
              ⎢.       ⎥ 3⎢
                                                                                      .                   .
                                              ⎥⎢ . ⎥                                  I NA1 = − I NA 2            (7.9)
              ⎢ I NA 2 ⎥  ⎢1     a2       a ⎥ ⎢− I NB ⎥
              ⎣        ⎦  ⎣                   ⎦⎣       ⎦
     Giaíi caïc phæång trçnh tæì (7.1) âãún (7.9) ta coï:
                        .        .                                    .                               .
                       E AΣ − jI NA1 . X 1Σ = 0 − jI NA 2 . X 2Σ = 0 + jI NA1 . X 2Σ
     Nhæ váûy:
                                                                              .
                                                  .               E AΣ
                                                  I NA1   =
                                                            j( X 1Σ + X 2Σ )
                                              .               .                       .
                                              I NB = − I NC = − j 3 I NA1
                            .         .                   .                                       .
                            U NA1 = U NA 2 = jI NA1 . X 2Σ                                    ;   U N0 = 0
                            .             .                               .               .                   .
                            U NA = 2 U NA1                 ;              U NB = U NC = − U NA1




                                                           Hçnh 7.9

    VI.2. Ngàõn maûch 1 pha:

     Xeït ngàõn maûch 1 pha åí pha
A (hçnh 7.10). Âiãöu kiãûn ngàõn
maûch laì:
      .
     I NB        =0              (7.10)
      .
     I NC        =0              (7.11)
          .
      U NA = 0                   (7.12)
                                                                                              Hçnh 7.10
       Thay vaìo phæång trçnh thæï
tæû doìng:
                                                                                       10



 ⎡I       ⎤  ⎡                                         ⎡. ⎤
                                                   1 ⎤ ⎢I NA ⎥
   .
 ⎢ . N 0 ⎥ 1 ⎢1                    1                 ⎥                                                  .       .       .       1.
 ⎢I NA1 ⎥ = ⎢1                     a               a2⎥ ⎢ 0 ⎥                           ⇒                I N 0 = I NA1 = I NA 2 = I NA                 (7.13)
 ⎢.       ⎥ 3⎢                                       ⎥⎢      ⎥                                                                  3
 ⎢ I NA 2 ⎥  ⎢1                    a2              a ⎥⎢ 0 ⎥
 ⎣        ⎦  ⎣                                       ⎦⎣      ⎦
 Tæì phæång trçnh thæï tæû aïp ta coï:
                                               .                       .                   .                .
                        U NA = U NA1 + U NA 2 + U N 0 = 0
 Vaì tæì caïc phæång trçnh cå baín (7.1) ÷ (7.3) ta coï:
                                       .                   .
                                       E AΣ − jI NA1 ( X 1Σ + X 2Σ + X 0 Σ ) = 0
                                                                                               .
                                                   .                                     E AΣ
 Nhæ váûy:                                     I NA1 =
                                                                       j( X 1Σ         + X 2Σ + X 0 Σ )
.                      .                                       .                                        .                 .                       .
U N 0 = − jX 0 Σ I N 0 = − jX 0 Σ I NA1                                                ;                U NA 2 = − jX 2Σ I NA 2 = -jX 2Σ I NA1
                   .                                   .                   .                        .
               U NA1 = − ( U N 0 + U NA 2 ) = jI NA1 ( X 0 Σ + X 2Σ )
 Doìng taûi chäù ngàõn maûch, cuîng laì doìng âi qua âáút IÂ:
                                                                   .               .                    .
                                                                   I NA = I Â = 3 I NA1
 Aïp taûi chäù ngàõn maûch:
      .        .                               .                           .                                                                  .
      U NB = U N 0 + a 2 U NA1 + a U NA 2                                                      = j[( a 2 − a ) X 2Σ + ( a 2 − 1) X 0 Σ ] I NA1
                           .                                                                          .                  X
            = 3 I NA1 ( X 2Σ − aX 0 Σ )                                                        = 3 I NA1 X 2Σ (1 − a 0 Σ )
                                                                                                                         X 2Σ
      .        .                           .                                   .                                                          .
      U NC = U N 0 + a U NA1 + a 2 U NA 2                                                          = j[( a − a 2 ) X 2Σ + ( a − 1) X 0 Σ ] I NA1
                               .                                                                            .                    X
            = − 3 I NA1 ( X 2Σ − a 2 X 0 Σ )                                                       = − 3 I NA1 X 2Σ (1 − a 2 0 Σ )
                                                                                                                                 X 2Σ




                                                                                   Hçnh 7.11

VI.3. Ngàõn maûch 2 pha chaûm âáút:
                                                           11



      Xeït ngàõn maûch 2 pha B, C
chaûm âáút (hçnh 7.12). Âiãöu kiãûn
ngàõn maûch laì:
      .
      I NA    =0                  (7.14)
          .
      U NB = 0                    (7.15)
          .
      U NC = 0                    (7.16)
        Thay vaìo phæång        trçnh thæï                                      Hçnh 7.12

tæû aïp:
   ⎡U       ⎤    ⎡                     ⎡.   ⎤
                                 1 ⎤ ⎢ U NA ⎥
      .
   ⎢ . N 0 ⎥ 1 ⎢1 1                  ⎥         .       .       .       1 .
   ⎢ U NA1 ⎥ = ⎢1     a          a 2 ⎥ ⎢ 0 ⎥ ⇒ U N 0 = U NA1 = U NA 2 = U NA                            (7.17)
   ⎢.       ⎥ 3⎢                     ⎥⎢     ⎥                          3
   ⎢ U NA 2 ⎥    ⎢1   a2         a ⎥⎢ 0 ⎥
   ⎣        ⎦    ⎣                   ⎦⎣     ⎦
                                       .         .         .            .
Tæì (7.14) ta coï:            I NA = I NA1 + I NA 2 + I N 0 = 0
Vaì tæì caïc phæång trçnh cå baín (7.1) ÷ (7.3) ta coï:
                                                     .                      .
                                        jX 2Σ I NA 2 = jX 0 Σ I N 0
                .           .           X 2Σ               .          .           X 0Σ
Nhæ váûy:       I N0    = − I NA1 (               ) ;      I NA 2 = − I NA1 (              )
                                    X 0 Σ + X 2Σ                              X 0 Σ + X 2Σ
Tæì caïc phæång trçnh cå baín vaì (7.17) ta coï:
          .         .       .                .                  .                .        X 2Σ
       U NA1 = E AΣ − jI NA1 X 1Σ = U N 0 = − jI N 0 X 0 Σ = jI NA1 (                              ) X 0Σ
                                                                                      X 0 Σ + X 2Σ
                                                                .
                                   .                         E AΣ
Do âoï:                            I NA1 =
                                                              X 2Σ X 0 Σ
                                                 j( X 1Σ   +              )
                                                             X 2Σ + X 0 Σ
Doìng taûi chäù ngàõn maûch:
        .             X + aX 0 Σ .                                 X 2Σ + a 2 X 0 Σ .
                                                                    .
       I NB = ( a 2 − 2Σ           ) I NA1     ;      I NC = ( a −                 ) I NA1
                      X 2Σ + X 0 Σ                                   X 2Σ + X 0 Σ
                              .       .          .          X 2Σ
Doìng âi qua âáút IÂ laì:     I Â = 3 I N 0 = −3 I NA1
                                                        X 0 Σ + X 2Σ
                            .            .          .        X 2Σ X 0 Σ
AÏp taûi âiãøm ngàõn maûch: U NA = 3 U NA1 = 3 jI NA1
                                                          X 0 Σ + X 2Σ
                                                             12




                                                     Hçnh 7.13


     Baíng 7.3: TOÏM TÀÕT BIÃØU THÆÏC ÂÄÚI VÅÏI CAÏC DAÛNG NGÀÕN MAÛCH
        Daûng NM                             Doìng                                   AÏp
                                             .                      .                 .
                       .               E AΣ                         U NA1 = jX 2Σ I NA1
           N(2)        I NA1   =                                    .            .             .
                                 j( X 1Σ + X 2Σ )                   U NA 2 = U NA1 ; U N 0 = 0
                       .                 .               .
                       I NA 2 = − I NA1 ;                I N0 = 0
                                                     .              .                              .
                       .                           E AΣ             U NA1 = j( X 2Σ + X 0 Σ ) I NA1
           N(1)        I NA1 =                                      .        .             .
                                     j( X 1Σ     + X 2Σ + X 0 Σ )   U NA1 + U NA 2 + U N 0 = 0
                       .             .           .
                       I NA 2 = I N 0 = I NA1
                                                     .              .            .         X 2Σ X 0 Σ
                       .                           E AΣ             U NA1 = jI NA1 (                   )
           N(1,1)      I NA1 =                                                            X 0 Σ + X 2Σ
                                                    X 2Σ X 0 Σ
                                     j( X 1Σ     +              )   .            .         .
                                                   X 2Σ + X 0 Σ     U NA 2 = U N 0 = U NA1
                       .         .               .
                       I NA1 + I NA 2 + I N 0 = 0

VII. QUI TÀÕC ÂÀÍNG TRË THÆÏ TÆÛ THUÁÛN:

       Qua baíng 7.3 tháúy ràòng caïc thaình pháön âäúi xæïng cuía doìng vaì aïp tyí lãû våïi
doìng thæï tæû thuáûn åí chäù ngàõn maûch, do váûy nhiãûm vuû tênh toaïn mäüt daûng ngàõn
maûch khäng âäúi xæïng báút kyì træåïc hãút laì tçm doìng thæï tæû thuáûn åí chäù ngàõn maûch.
Âãø tênh toaïn ngæåìi ta âæa ra qui tàõc âàóng trë thæï tæû thuáûn nhæ sau:
       “ Doìng thæï tæû thuáûn cuía mäüt daûng ngàõn maûch khäng âäúi xæïng báút kyì âæåüc
tênh nhæ laì doìng ngàõn maûch 3 pha åí mäüt âiãøm xa hån âiãøm ngàõn maûch thæûc sæû mäüt
âiãûn khaïng phuû X∆(n). Trë säú cuía X∆(n) khäng phuû thuäüc vaìo tham säú cuía så âäö thæï
tæû thuáûn maì chè phuû thuäüc vaìo X2Σ vaì XoΣ.”
                                                           13


                                                                .
                                            . (n)           E AΣ
                                            I NA1   =
                                                      j( X 1Σ + X ( n ) )
                                                                  ∆
                                              . (n)             (n) . (n)
                                             U NA1 = jX ∆ . I NA1
                                              . (n)        (n) . (n)
                                              IN      =   m . I NA1
trong âoï, m(n), X∆(n) tuìy thuäüc vaìo daûng ngàõn maûch âæåüc tênh theo baíng 7.4.

              Baíng 7.4:
               Daûng NM           (n)                 X∆(n)                         m(n)
               3 pha              (3)                 0                             1
               2 pha              (2)                X2Σ                             3
               1 pha              (1)           X 2 Σ + Xo Σ                        3
               2 pha - âáút      (1,1)           X 2Σ X 0 Σ                         X 2Σ X 0 Σ
                                                                            3 1−
                                                X 2Σ + X 0 Σ                     ( X 2Σ + X 0 Σ ) 2
      Nhæ váûy caïc phæång phaïp tênh toaïn, cäng thæïc sæí duûng cho ngàõn maûch 3 pha
âäúi xæïng âãöu coï thãø duìng âãø tênh toaïn thaình pháön thæï tæû thuáûn cuía mäüt daûng ngàõn
maûch khäng âäúi xæïng báút kyì.

VIII. SÅ ÂÄÖ THAY THÃÚ PHÆÏC HÅÜP:

     Så âäö thay thãú phæïc håüp laì så âäö trong âoï bao gäöm caïc så âäö thæï tæû näúi våïi
nhau thoía maîn âiãöu kiãûn quan hãû giæîa caïc thaình pháön doìng âiãûn vaì âiãûn aïp taûi
âiãøm ngàõn maûch.
     Doìng thæï tæû taûi âiãøm ngàõn maûch hay trong mäüt pháön tæí naìo âoï laì doìng trong
så âäö thæï tæû tæång æïng. Aïp thæï tæû laì hiãûu thãú giæîa âiãøm âang xeït vaì âiãøm âáöu cuía
så âäö thæï tæû tæång æïng.
         Ngàõn maûch 2 pha:
          .           .
      U NA1 = U NA 2
                                        .
      .               .               E AΣ
      I NA1 = − I NA 2        =
                                j( X 1Σ + X 2Σ )




                                                                                 Hçnh 7.14
                                                     14




                              Hçnh 7.15                                 Hçnh 7.16


               Ngàõn maûch 1 pha:                                 Ngàõn maûch 2 pha - âáút:
           .              .            .                      .         .                 .
       U NA1 + U NA 2 + U N 0 = 0                         U NA1 = U NA 2 = U N 0
       .              .            .                      .                 .         .
       I NA1 = I NA 2 = I N 0                             I NA1 = − ( I NA 2 + I N 0 )
                                       .                                          .
                                    E AΣ                                          E AΣ
                  =                                               =
                      j( X 1Σ     + X 2Σ + X 0 Σ )                    j( X 1Σ   +
                                                                                   X 2Σ X 0 Σ
                                                                                               )
                                                                                  X 2Σ + X 0 Σ
      Så âäö phæïc håüp ráút thuáûn tiãûn khi cáön nghiãn cæïu caïc thaình pháön doìng vaì aïp
taûi mäüt pháön tæí hoàûc mäüt nhaïnh naìo âoï, nháút laì khi duìng mä hçnh tênh toaïn, vç noï
cho pheïp âo træûc tiãúp kãút quaí ngay trãn mä hçnh.

IX. SÆÍ DUÛNG PHÆÅNG PHAÏP ÂÆÅÌNG CONG TÊNH TOAÏN:

      Bàòng qui tàõc âàóng trë thæï tæû thuáûn ta coï thãø sæí duûng âæåìng cong tênh toaïn âãø
tçm doìng thæï tæû thuáûn cuía mäüt daûng ngàõn maûch báút kyì vaì tæì âoï tênh âæåüc doìng
ngàõn maûch.
    IX.1. Duìng mäüt biãún âäøi:
        Láûp caïc så âäö thæï tæû thuáûn, thæï tæû nghëch, thæï tæû khäng; tênh X1Σ, X2Σ, XoΣ
cuía så âäö âäúi våïi âiãøm ngàõn maûch tênh toaïn trong âån vë tæång âäúi våïi caïc læåüng
cå baín Scb, Ucb = Utb.
       Tênh âiãûn khaïng phuû X∆(n) tuìy theo daûng ngàõn maûch vaì tæì âoï tçm âæåüc âiãûn
khaïng tênh toaïn X*tt:
                                                           S
                                  X *tt = ( X1Σ + X ( n ) ) âmΣ
                                                     ∆
                                                            S cb
trong âoï: SâmΣ - täøng cäng suáút âënh mæïc cuía táút caí caïc maïy phaït coï trong så âäö.
                                                     15



       Tra âæåìng cong tênh toaïn taûi thåìi âiãøm t cáön xeït tæång æïng våïi âiãûn khaïng
tênh toaïn X*tt âãø coï doìng thæï tæû thuáûn I(n)*N1t.
       Tênh doìng ngàõn maûch toaìn pháön trong âån vë coï tãn:
                                     I ( n ) = m ( n ) . I *n )1t . I âmΣ
                                       Nt
                                                           (
                                                             N
trong âoï: IâmΣ - doìng âënh mæïc täøng tæång æïng våïi cáúp âiãûn aïp cáön tênh doìng ngàõn
maûch.
    IX.2. Duìng nhiãöu biãún âäøi:

       Láûp caïc så âäö thæï tæû nghëch, thæï tæû khäng âãø tênh X2Σ, XoΣ cuía så âäö âäúi våïi
âiãøm ngàõn maûch trong âån vë tæång âäúi våïi caïc læåüng cå baín Scb, Ucb = Utb.
       Tênh âiãûn khaïng phuû X∆(n) tuìy theo daûng ngàõn maûch.
        Láûp så âäö thæï tæû thuáûn vaì âàût thãm âiãûn khaïng phuû X∆(n) vaìo âiãøm ngàõn
maûch, xem nhæ ngàõn maûch 3 pha sau âiãûn khaïng naìy.
       Duìng caïc pheïp biãún âäøi, taïch riãng tæìng nhaïnh âäúi våïi âiãøm ngàõn maûch giaí
tæåíng âãø tênh âiãûn khaïng XΣi cuía tæìng nhaïnh.
       Tênh âiãûn khaïng tênh toaïn cuía tæìng nhaïnh:
                                                    S
                                      X *tti = X Σi âmΣi
                                                     S cb
trong âoï: SâmΣi - täøng cäng suáút âënh mæïc cuía caïc maïy phaït gheïp chung trong
nhaïnh thæï i.
       Tra âæåìng cong tênh toaïn taûi thåìi âiãøm t cáön xeït tæång æïng våïi âiãûn khaïng
tênh toaïn X*tti âãø coï doìng thæï tæû thuáûn I(n)*N1ti cuía nhaïnh thæï i.
       Tênh doìng ngàõn maûch toaìn pháön trong âån vë coï tãn:
                                                      k
                                 I (n)
                                   Nt    =m    (n)
                                                     ∑ I *nN)1ti . I âmΣi
                                                         (

                                                     i =1
trong âoï: k - säú nhaïnh taïch riãng cuía så âäö thay thãú.
           IâmΣi - doìng âënh mæïc täøng cuía nhaïnh thæï i tæång æïng våïi cáúp âiãûn aïp cáön
               tênh doìng ngàõn maûch.
     MÄÜT SÄÚ ÂIÃØM LÆU YÏ:
      - Nãúu coï hãû thäúng cäng suáút vä cuìng låïn thç phaíi taïch noï thaình mäüt nhaïnh
riãng, sau khi thãm X∆(n) duìng caïc pheïp biãún âäøi âãø tênh âiãûn khaïng tæång häø giæîa
hãû thäúng vaì âiãøm ngàõn maûch X*HN vaì tênh riãng doìng do hãû thäúng cung cáúp:
                                               I
                                    I ( n1)H = cb
                                      N
                                              X *HN
                                         I ( n ) = m ( n ) I ( n1)H
                                           NH                N
      - Vç phæång phaïp âæåìng cong tênh toaïn sæí duûng caïch tênh gáön âuïng nãn coï
thãø xem X2Σ ≈ X1Σ maì khäng cáön láûp så âäö thæï tæû nghëch.
                                                          16



      - Do caïch âiãøm ngàõn maûch giaí tæåíng thãm mäüt âiãûn khaïng phuû X∆(n) nãn sæû
khaïc biãût giæîa caïc nguäön êt hån. Vç váûy thæåìng duìng 1 hoàûc 2 biãún âäøi chung laì
âaím baío âuí âäü chênh xaïc yãu cáöu, chè taïch riãng nhæîng nhaïnh cáön thiãút.

X. SÆÛ BIÃÚN ÂÄØI CUÍA DOÌNG VAÌ AÏP QUA MAÏY BIÃÚN AÏP:

     Qua maïy biãún aïp, doìng vaì aïp thay âäøi caí vãö trë säú láùn goïc pha. Thæåìng täø näúi
dáy cuía maïy biãún aïp âæåüc goüi theo chè säú cuía kim âäöng häö:
                                         .        .
                                       ( U a , U A ) = γ = 30 o . N
trong âoï: N - chè säú cuía kim âäöng häö.
     Nhæ váûy coï thãø sæí duûng hãû säú biãún âäøi phæïc:
                                             .
                                   .         UA                          o
                                   k1 =      .
                                                      = k. e jγ = k. e j30   .N

                                             Ua
           U A U âmI
våïi k =      =       laì tyí säú biãún aïp khäng taíi.
           U a U âmII
      k1 chênh laì hãû säú biãún âäøi cuía âiãûn aïp thæï tæû thuáûn vç noï âæåüc xaïc âënh trong
chãú âäü bçnh thæåìng, âäúi xæïng.
                            .
                     .      U A1                 .         1   .        1 .             o
                     k1 =   .
                                       ⇒ U a1 =            .
                                                               U A1 =     U A1 . e − j30 .N
                           U a1                    k1                   k
     Tæì âoï ta coï biãøu thæïc biãún âäøi doìng thæï tæû thuáûn dæûa vaìo quan hãû:
                                ∧           ∧             ∧        .      ∧     ∧
                         .    .        .   .             .        U A1 .    . .
                        U A1 I A1 = U a1 I a1 ⇒ I a1 = . I A1 = k1 I A1
                                                                  U a1
                                         ∧
                                  .      . .            .             o
hay:                              I a1 = k1 . I A1 = k. I A1 . e − j30 .N
      Doìng vaì aïp thæï tæû thuáûn biãún âäøi qua maïy biãún aïp våïi cuìng mäüt goïc pha
nhæ nhau (hçnh 7.17).




                                                      Hçnh 7.17
                                                 17




                                              Hçnh 7.18
       Tæång tæû, doìng vaì aïp thæï tæû nghëch biãún âäøi qua maïy biãún aïp cuîng våïi cuìng
mäüt goïc pha (hçnh 7.18) cuía hãû säú biãún âäøi phæïc k2 liãn hiãûp våïi k1.
                                          ∧
                                  .       .            o
                                  k 2 = k1 = k. e − j30 .N
                             .        1 .         1 .         o
                            U a 2 = . U A 2 = U A 2 . e j30 .N
                                     k            k
                                          2
                                         ∧
                               .      .        .          .            o
                                 I a 2 = k 2 . I A 2 = k. I A 2 . e j30 .N
         Doìng vaì aïp thæï tæû khäng biãún âäøi qua maïy biãún aïp (nãúu coï thãø âæåüc) hoàûc
cuìng pha hoàûc lãûch pha nhau 180o.
         Xeït mäüt säú træåìng håüp sau:
           - Træåìng håüp maïy biãún aïp näúi Y/Y-12 hay∆ /∆-12 (tæïc N=12), caïc veïctå
doìng vaì aïp åí 2 phêa truìng pha nhau, nghéa laì hãû thäúng veïctå xem nhæ khäng lãûch
pha khi biãún âäøi qua maïy biãún aïp.
       Khi N=6, hãû thäúng veïctå åí 2 phêa cuía maïy biãún aïp seî lãûch nhau 180o.
       Âäúi våïi maïy biãún aïp näúi Yo/Yo cáön tênh âãún sæû biãún âäøi cuía thaình pháön doìng
vaì aïp thæï tæû khäng.
           - Træåìng håüp thäng duûng nháút maïy biãún aïp näúi Y/∆-11, khi biãún âäøi tæì
phêa Y qua phêa ∆ thç hãû thäúng veïctå thæï tæû thuáûn seî quay mäüt goïc 30o ngæåüc chiãöu
kim âäöng häö.
         Mäüt säú læu yï:
           - Doìng trong cuäün dáy näúi ∆ cuía maïy biãún aïp coï thãø coï thaình pháön thæï tæû
khäng, nhæng doìng dáy vaì aïp dáy khäng coï thaình pháön naìy.
       - Trong hãû âån vë tæång âäúi thç tyí säú biãún aïp k = 1, do âoï hãû thäúng veïctå åí 2
phêa cuía maïy biãún aïp coï âäü låïn bàòng nhau, chè khaïc nhau vãö goïc pha.

								
To top