Learning Center
Plans & pricing Sign in
Sign Out
Your Federal Quarterly Tax Payments are due April 15th Get Help Now >>

BWK Nr Gasturbinenmarkt Perkavec

VIEWS: 273 PAGES: 30

									BWK 51 (1999), Nr. 11/12


    1.   M.Perkavec, R.-G.Schmidt: Gasturbinen, Jahresübersicht 1996, BWK, 4 / 1997.
    2.   Turbomachinery International Handbook 1998

         Projekte und Anlagen

    3.   Chellini, R.: Successful IPPs in Malaysia; Diesel & Gas Turbine Worldwide 1-2 1998, S. 60-61.
    4.   Mullins, P.: Gas Turbine Power for Banff FPSO; Diesel & Gas Turbine Worldwide 4 1998, S. 8.
    5.   Mullins, P.: Compressor Package for U.K. Gas Terminal; Diesel & Gas Turbine Worldwide 6 1998, S. 18-
    6.   Chellini, R.: Malpensa 2000 Cogeneration Plant; Diesel & Gas Turbine Worldwide 6 1998, S. 30-31.
    7.   Chellini, R.: Paguthan Plant on Schedule; Diesel & Gas Turbine Worldwide 10 1998, S. 12-13.
    8.   Hönings, N.: Das Gasturbinenprojekt Obernburg - Konzept, Contracting-Modell, Realisierung und
         Betriebserfahrungen. VGB Kraftwerkstechnik 78 (1998) 7, S. 37-43.
    9.   Llagostera, J.: Power Generation Possibilities in the State of Sao Paulo, Brazil. ASME 98-GT-447.

         Uprates und Updates

    10. Chellini, R.: Staying Competitive with Gas Turbine Uprates; Diesel & Gas Turbine Worldwide 1-2 1998,
        S. 48-50.
    11. Chambers, H. A.: Rolls-Royce Allison 501K Industrial Engine Product Improvement, Power-Gen
        International 1998, 2.B.4.
    12. Boley, W. M.: The Pratt & Whitney Gas Turbine Product Line, Power-Gen International 1998, 2.B.2.
    13. Wikner, J.: ABB Gas Turbine Technology Update, 5-50 MW GT Size, Power-Gen International 1998,
    14. Chellini, R.: Modernizing the MS5002D Gas Turbine; Diesel & Gas Turbine Worldwide 4 1998, S. 12-14.
    15. Chellini, R.: ABB’s GT8C2 Gas Turbine; Diesel & Gas Turbine Worldwide 4 1998, S. 40-43.
    16. Chellini, R.: ABB Uprates GT10 Gas Turbine; Diesel & Gas Turbine Worldwide 7-8 1998, S. 54-55.
    17. Schneider, Ch.: Gas Turbine Uprating Programme Development and Testing of the GT11NM. ASME 98-
    18. Fischer, W.: GUD 1S.64.3A - die optimierte Einwellenanlage in der 100 MW Klasse; VDI Berichte Nr.
        1438 (1998), S. 63-77.

         Neue Modelle

    19. Chellini, R.: Solar Introduces Mercury 50 Advance Turbine System; Diesel & Gas Turbine Worldwide 1-2
        1998, S. 34-37.
    20. Rocha, G.: Evolution of the Solar Turbines Titan 130 Industrial Gas Turbine. ASME 98-GT-590.
    21. Wadman, B.: First Two-Shaft Titan 130 Shipped; Diesel & Gas Worldwide 7-8 1998, S. 62-63.
    22. -: Sales Agreement, Engine Test Results Mark Developments at AlliedSignal; Diesel & Gas Turbine
        Worldwide 7-8 1998, S. 65-67.
    23. Chellini, R.: New Gas Turbine from Nuovo Pignone; Diesel & Gas Turbine Worldwide 1-2 1998, S. 12-
    24. Johnson, P.: First Cooper Rolls Allison Package Unveiled; Diesel & Gas Turbine Worldwide 4 1998, S.
    25. Mullins, P.: Coberra 6761 Gas Turbine Introduced; Diesel & Gas Turbine Worldwide 6 1998, S. 35-37.
    26. Wilson, J. M.: A New High Efficiency Gas Turbine for Mechanical Drives. ASME 98-GT-535.


    27. Negri di Montenegro, G.: Comparative Thermoeconomic Analysis between Combined Cycle Units
        Derived from Existing Steam Power Plants and a New Combined Cycle Plant. ASME 98-GT-197.
28. Anthony, R.: GEs LM6000: The Answer for Deregulated Power Markets, Power-Gen International 1998,
29. Mader, O.: Heavy-duty- oder aeroderivative Gasturbinen? Eine Gegenüberstellung.VGB
    Kraftwerkstechnik 78 (1998) 6, S. 42-48.


    Technik für das 21.Jahrhundert

30. Mukherjee, D.-K.: Stand der Gasturbinentechnik. Gas, Wasser, Abwasser, 78/1998, 2, S. 84-91.
31. van der Linden, S.: Combustion Turbines and Cycles for the New Millennium, Power-Gen International
    1998, 2.A.2.
32. Layne, A. W.: Advanced Turbine Systems for the 21st Century, Power-Gen International 1998, 2.A.5.
33. Lowe, E.: Powering the Next Century, Power-Gen International 1998, 2.A.1.
34. Perkavec, M.: Entwicklungstendenzen im Gasturbinenbau; BWK 50 (1998) 4, S. 114-119.
35. Wolf, J., Perkavec, M.: Neueste Entwicklungen im Gasturbinenbau; VDI Berichte Nr. 1438 (1998), S. 11-


36. Layne, A. W.: The U.S. Department of Energy’s Advanced Turbine Systems Program. ASME 98-GT-
37. Geipel, H.: Verbundforschung zur Hochtemperatur-Gasturbine. VGB Kraftwerkstechnik 78 (1998) 11, S.
38. Gabrielsson, R.: Status of the European Gas Turbine Program - AGATA. ASME 98-GT-392.
39. Diakunchak, I. S.: Status of Westinghouse’s Advanced Turbine Systems Program. ASME 98-GT-077.
40. McQuiggan, G.: An Evolutionary Approach to the Development of New Advanced Technology Gas
    Turbines. ASME 98-GT-223.
41. -:Turbine Tech 98 - Reports from Gas Turbine Manufacturers on the Latest Advancements in the Design
    and Application of Gas Turbine Engine Systems; Diesel & Gas Turbine Worldwide 6 1998, S. 46-74.
42. Susta, M. R.: Compatibility of Advanced Power Generation Technologies with the Independent Power
    Production. ASME 98-GT-222.
43. Ali, Sy A.: Renewable Fuels Turbine Project. ASME 98-GT-295.
44. Rooth, R. A.: Does User-Oriented Gas Turbine Research Pay Off? ASME 98-GT-429.

    Kleine Gasturbinen

45. Jones, M.: Small Gas Turbines Outlook, Power-Gen International 1998, 2.B.1.
46. Haller, B. R.: Advances in Gas Turbines of Lower Power; VDI Berichte Nr. 1438 (1998), S. 25-48.
47. Carnö, J.: Micro Gas Turbine for Combined Heat and Power in Distributed Generation. ASME 98-GT-

    Testen und Betriebserfahrungen

48. Radeklint, U. R.: A New Test Facility for Testing of Cooled Gasturbine Components. ASME 98-GT-557.
49. Chellini, R.: V64.3A Finishes Gas Test Program; Diesel & Gas Turbine Worldwide 1-2 1998, S. 24-25.
50. Becker, B.: Betriebserfahrungen mit der V94.3A-Gasturbine. VGB Kraftwerkstechnik 78 (1998) 9, S. 60-
51. Parece, N.: Construction, Startup, Commissioning and Testing of a 240 MW Gas Turbine Spinning
    Reserve Power Plant, Cambalache, Puerto Rico. ASME 98-GT-307
52. Kiesow, H.-J.: The ABB GT26 family-field experience; VDI Berichte Nr. 1438 (1998), S.1-10
53. Termuehlen, H.: Advanced Gas Turbine Operating Experience With Dry Low Nox Combustion, Power-
    Gen International 1998, 2.A.3.
54. Homley, B.: Development and Early Field Experience of the Tempest Gas Turbine. Power-Gen Europe
55. Nilsson, J. C.: The GT140P-Machine is Extensively Tested for Commercial Application. ASME 98-GT-
56. Masanori Yuri: Technical Features and Operating Experience of Mitsubishi Advanced 501G Gas
    Turbine, Power-Gen International 1998, 2.A.4.
57. Kim, S. Y.: Performance Analysis of a 50KW Turbogenerator Gas Turbine Engine. ASME 98-GT-209.

    Studien und Parametrische Studien

58. Bernstein, W.: Einfluß der Gastemperaturen vor der Turbine auf Lebensdauer und Schadstoffemission -
    Untersuchungen an Originalmaschinen zur Bauteillebensdauer und zur Emissionsminderung durch
    Vormischbetrieb und Wassereinspritzung. VGB Kraftwerkstechnik 78 (1998) 10, S. 104-110.
59. Reichert, A. W.: Steigerungen der Leistungsdaten von Großgasturbinen durch Optimierung des
    Sekundärluftsystems; VDI Berichte Nr. 1438 (1998), S. 221-228.
60. Owen, A. K.: A Parametric Starting Study of an Axial-Centrifugal Gas Turbine Engine Using a One-
    Dimensional Dynamic Engine Model and Comparisons to Experimental Results Part 1: Model
    Development and Facility Description. ASME 98-GT-470.
61. Owen, A. K.: A Parametric Starting Study of an Axial-Centrifugal Gas Turbine Engine Using a One-
    Dimensional Dynamic Engine Model and Comparisons to Experimental Results Part 2: Simulation
    Calibration and Trade-Off Study. ASME 98-GT-471.
62. Tarabrin, A. P.: Influence of Axial Compressor Fouling on Gas Turbine Unit Performance Based on
    Different Schemes and With Different Initial Parameters. ASME 98-GT-416.
63. Corti, A.: Exergy Analysis of Two Second-Generation SCGT Plant Proposals. ASME 98-GT-144.
64. Korakianitis, T.: Off-Design Performance of Various Gas-Turbine Cycle and Shaft Configurations. ASME
65. Neto, A. C.: An Exergy Analysis of Novel Power Generation Systems. ASME 98-GT-290.
66. Miller, H.: Engineering Gas Turbines for Best Value over Time. Power-Gen Europe 98.
67. Volponi, A. J.: Gas Turbine Parameter Corrections. ASME 98-GT-347.
68. Egorov, I. N.: The Technology of Multipurpose Optimization of Gas-Turbine Engines and Their
    Components. ASME 98-GT-512.
69. Luby, P.: Power Generation Technological Determinants for Fuel Scenario Outlook. ASME 98-GT-221.
70. Barbeau, D. E.: "Fast CE" A Radical Approach to Concurrent Engineering. ASME 98-GT-354.
71. Demouzon, F.: Cost Reduction through Digital Mock-up. ASME 98-GT-262.
72. Manfrida, G.: A Thermo-Economic Evaluation of the SCGT Cycle. Power-Gen Europe 98.


73. Moritz, R. R.: Near Term Gas Turbine Program to Enable the Use of "Renewable" Fuels. ASME 98-GT-
74. Bannister, R. L.: Preliminary Assessment of Advanced Gas Turbines for CVX. ASME 98-GT-278.
75. Giovondo, C.-A.: Capacity quest leads KCP&L to advanced gas turbine. Kapazitätserhöhung durch eine
    hocheffektive Gasturbine im Hawthorn-Kraftwerk der KCP&L. Power, 142/1998, 1, S. 34-36.
76. Rakhit, A. K.: Characteristics of Low Frequency Non-Synchronous Vibrations Induced by an Epicyclic
    Gearbox in Gas Turbogenerator Applications. ASME 98-GT-333.
77. Russom, D. M.: Investigating and Resolving Accessory Gearbox Failures on Allison 501-K Series
    Engines. ASME 98-GT-281.


78. Servaty, S.: Turboverdichter-Forschung in der AG Turbo; VDI Berichte Nr. 1425 (1998), S. 7-30.
79. Kmecl, T.: Turboverdichter: Mögliche Potentiale zur Energieeinsparung; BWK 50 (1998) 9, S. 44-46.
80. Stringham, G. D.: Design and Development of a Nine Stage Axial Flow Compressor for Industrial Gas
    Turbines. ASME 98-GT-140.
81. Kerrebrock, J. L.: A Family of Designs for Aspirated Compressors. ASME 98-GT-196.
82. Hah, C.: Control of Shock Structure and Secondary Flow Field inside Transonic Compressor Rotors
    through Aerodynamic Sweep. ASME 98-GT-561.
    CFD Anwendungen

83. Casey, M.: CFD Applications in Turbocompressors; VDI Berichte Nr. 1425 (1998), S. 31-42.
84. Dunham, J.: An AGARD Working Group Study of 3D Navier-Stokes Codes Applied to Single
    Turbomachinery Blade Rows. ASME 98-GT-050.
85. Elmendorf, W.: Three-Dimensional Analysis of a Multistage Compressor Flow Field. ASME 98-GT-249.
86. Gannon, A. J.: A Comparison of the Streamline Throughflow and Streamline Curvature Methods for Axial
    Turbomachinery. ASME 98-GT-048.
87. Baralon, St.: Validation of a Throughflow Time-Marching Finite-Volume Solver for Transonic
    Compressors. ASME 98-GT-047.
88. Buchanan, C. R.: Analysis of Aspect Ratio Effects on Transonic Rotor Performance Using a 3D Viscous
    Solver. ASME 98-GT-250.
89. Ozturk, H. K.: A Three Dimensional Computational Study of Windage Heating within an Axial
    Compressor Stator Well. ASME 98-GT-119.
90. Arima, T.: Computation of Subsonic and Transonic Compressor Rotor Flow Taking Account of Reynolds
    Stress Anisotropy. ASME 98-GT-423.
91. Issa, R. I.: Numerical Modeling of Unsteady Flow through a Turbomachine Stage. ASME 98-GT-253.


92. Bogers, P. F.: Design and Experimental Verification of an Optimised Compressor Blade. ASME 98-GT-
93. Hobson, G. V.: Effect of Reynolds Number on Separation Bubbles on Controlled-Diffusion Compressor
    Blades in Cascade. ASME 98-GT-422.
94. Currie, T. C.: Comparison of w-Based Turbulence Models for Sumulating Separated Flows in Transonic
    Compressor Cascades. ASME 98-GT-421.
95. Biesinger, Th. E.: Refined k-e Turbulence Model Q3D-Predictions in Compressor Cascades at Design
    and Off-Design. ASME 98-GT-322.


96. Willinger, R.: Vergleich verschiedener aerodynamischer Lastverteilungskonzepte in vielstufigen
    Axialverdichtern; VDI Berichte Nr. 1425 (1998), S. 121-131.
97. Müller, R.: Belastungsänderungen bei Verdichtern und deren Beurteilung anhand von Meßergebnissen
    am Niedergeschwindigkeitsverdichter Dresden; VDI Berichte Nr.1425 (1998), S. 157-166.
98. Probasco, D. P.: Variations in Upstream Vane Loading with Changes in Back Pressure in a Transonic
    Compressor. ASME 98-GT-344.

    Verstellbare Leitschaufeln

99. Gerodez, P.: Verstellbare Verdichter-Vorleitreihe und EV-Brennkammer - Erfahrungen, Durchführung
     und Ergebnisse eines Gasturbinen-Retrofit-Projektes. VGB Kraftwerkstechnik 78 (1998) 11, S. 53-59.
100. Puetz, O.: IGV-Rotor Interactions in a 4-Stage Axial Compressor. ASME 98-GT-093.
101. Minne, M.: Fast Acting Inlet Guide Vanes. Power-Gen Europe 98.
102. Cyrus, V.: Aerodynamic Performance of an Axial Compressor Stage with Variable Rotor Blades and
     Variable Inlet Guide Vanes. ASME 98-GT-151.
103. Walbaum, M.: Einfluß der Leitschaufelverstellung auf die Entwicklungsformen des Rotating Stall in
     mehrstufigen Verdichtern; VDI Berichte Nr. 1425 (1998), S. 177-188.

    Diffusoren und Spiralen

104. Casartelli, E.: Performance Analysis in a Subsonic Radial Diffuser. ASME 98-GT-153.
105. Hillewaert, K.: Numerical Simulation of Impeller-Volute Interaction in Centrifugal Compressors. ASME
106. Braembussche, R. A.: Improved Model for the Design and Analysis of Centrifugal Compressor Volutes.
     ASME 98-GT-187.
107. Bennett, I.: Detailed Measurements within a Selection of Pipe Diffusers for Centrifugal Compressors.
     ASME 98-GT-092.
108. Engeda, A.: Design and Investigation of Four Low Solidity Vaned Diffusers to Assess the Effect of
     Solidity and Vane Number. ASME 98-GT-252.


109. Fuchs, R.: Ein verlustminimiertes Verdichtergitter für einen transsonischen Rotor - Entwurf und Analyse;
     VDI Berichte Nr. 1425 (1998), S. 259-270.

    Spaltweiten und -verluste

110. Inoue, M.: Physical Explanations of Tip Leakage Flow Field in an Axial Compressor Rotor. ASME 98-GT-
111. Thompson, D. W.: Experimental and Computational Investigation of Stepped Tip Gap Effects on the
     Flowfield of a Transonic Axial-Flow Compressor Rotor. ASME 98-GT-090.
112. Doukelis, A.: Investigation of the 3-D Flow Structure in a High-Speed Annular Compressor Cascade for
     Tip Clearance Effects. ASME 98-GT-039.
113. Hoeger, M.: Numerical Simulation of the Shock-Tip Leakage Vortex Interaction in a HPC Front Stage.
     ASME 98-GT-261.
114. Furukawa, M.: The Role of Tip Leakage Vortex Breakdown in Compressor Rotor Aerodynamics. ASME
115. Politis, E. S.: High-Speed Flow in an Annular Cascade with Tip Clearance: Numerical Investigation.
     ASME 98-GT-247.
116. Ivey, P. C.: Leakage Effects in the Rotor Tip-Clearance Region of a Multistage Axial Compressor, Part 1:
     Innovative Experiments. ASME 98-GT-591.
117. Politis, E. S.: Leakage Effects in the Rotor Tip-Clearance Region of a Multistage Axial Compressor, Part
     2: Numerical Modelling. ASME 98-GT-592.
118. Gerolymos, G. A.: Tip-Clearance and Secondary Flows in a Transonic Compressor Rotor. ASME 98-GT-
119. Doukelis, A.: The Effect of Tip Clearance Gap Size and Wall Rotation on the Performance of a High-
     Speed Annular Compressor Cascade. ASME 98-GT-038.
120. Bonhommet-Chabanel, C.: Analysis of Tip Leakage Effects in a High Subsonic Annular Compressor
     Cascade. ASME 98-GT-195.


121. Puetz, O.: Strömungs-Wechselwirkung zwischen Vorleitreihe und Rotor 1 eines 4-stufigen
     Axialverdichters; VDI Berichte Nr. 1425 (1998), S. 91-104.
122. Wadia, A. R.: Design and Testing of Swept and Leaned Outlet Guide Vanes to Reduce Stator-Strut-
     Splitter Aerodynamic Flow Interactions. ASME 98-GT-070.
123. Wu, X. H.: Vortex Simulation of Rotor/Stator Interaction in Turbomachinery. ASME 98-GT-015.


124. Valkov, T. V.: Effect of Upstream Rotor Vortical Disturbances on the Time-Average Performance of Axial
     Compressor Stators: Part 1 Framework of Technical Approach and Wake-Stator Blade Interactions.
     ASME 98-GT-312.
125. Valkov, T. V.: Effect of Upstream Rotor Vortical Disturbances on Time-Average Performance of Axial
     Compressor Stators: Part 2 - Rotor Tip Vortex/Streamwise Vortex-Stator Blade Interactions. ASME 98-
126. Boos; P.: Flow Measurement in a Multistage Large Scale Low Speed Axial Flow Research Compressor.
     ASME 98-GT-432.
    Inverse Auslegung

127. Mertens, B.: Mischungsvorgänge in einem invers ausgelegten Axialverdichter. Bericht aus der Tätigkeit
     der Forschungsvereinigung Verbrennungskraftmaschinen e.V. (FVV). Motortechnische Zeitschrift,
     59/1998, 2, S. 136-144.
128. Damle, S.: Practical Use of 3D Inverse Method For Compressor Blade Design. ASME 98-GT-115.
129. Wang, Z.: A Fully Three-Dimensional Inverse Method for Turbomachinery Blading with Navier-Stokes
     Equations. ASME 98-GT-126.
130. Tiow, W. T.: A Viscous Transonic Inverse Design Method for Turbomachinery Blades Part I: 2D
     Cascades. ASME 98-GT-125.


131. März, J.: Circumferential Structure of Rotating Instability under Variation of Flow Rate and Solidity; VDI
     Berichte Nr. 1425 (1998), S. 189-198.
132. Regnery, D.: Entwicklung eines Systems zur Stabilitätsüberwachung in vielstufigen Axialverdichtern; VDI
     Berichte Nr. 1425 (1998), S. 199-210.
133. Hofmann, W.: Analyse transienter Meßdaten eines zehnstufigen Hochdruckverdichters an der
     Stabilitätsgrenze; VDI Berichte Nr. 1425 (1998), S. 211-223.
134. Gnesin, V. I.: Numerical Analysis of Unsteady Transonic 3D Flow in Oscillating Turbomachinery Blading;
     VDI Berichte Nr. 1425 (1998), S. 359-369.
135. Walker, G. J.: Periodic Transition on an Axial Compressor Stator - Incidence and Clocking Effects Part I -
     Experimental Data. ASME 98-GT-363.
136. Solomon, W. J.: Periodic Transition on an Axial Compressor Stator - Incidence and Clocking Effects Part
     II - Transition Onset Predictions. ASME 98-GT-364.
137. Prato, J.: Steady and Unsteady Three-Dimensional Flow Field Downstream of an Embedded Stator in a
     Multistage Axial Flow Compressor - Part 1: Unsteady Velocity Field. ASME 98-GT-521.
138. Suryavamshi, N.: Steady and Unsteady Three Dimensional Flow Field Downstream of an Embedded
     Stator in a Multistage Axial Flow Compressor - Part 2: Composite Flow Field. ASME 98-GT-522.
139. Suryavamshi, N.: Steady and Unsteady Three Dimensional Flow Field Downstream of an Embedded
     Stator in a Multistage Axial Flow Compressor - Part 3: Deterministic Stress and Heat-Flux Distribution
     and Average-Passage Equation System. ASME 98-GT-523.
140. Singh, U. K.: A Comparison of Measured and Predicted Unsteadiness in a Transonic Fan. ASME 98-GT-
141. Wallscheid, L.: Investigation of Unsteady Flow Phenomena in a Counterrotating Ducted Propfan. ASME

    Pumpen und Rotating stall

142. Peitsch, D.: A New Method for Surge Margin Improvement of Booster Compressors in Modern
     Aeroengines. ASME 98-GT-234.
143. Höss, B.: Stall Inception in the Compressor System of a Turbofan Engine. ASME 98-GT-475.
144. Hoying, D. A.: Role of Blade Passage Flow Structures in Axial Compressor Rotating Stall Inception.
     ASME 98-GT-588.
145. Grauer, F.: Detection of Precursor Waves Announcing Stall in Two 3-Stage Axial Compressors. ASME
146. Gong, Y.: A Computational Model for Short Wavelength Stall Inception and Development in Multi-Stage
     Compressors. ASME 98-GT-476.
147. Vo, H. D.: Experimental Development of a Jet Injection Model for Rotating Stall Control. ASME 98-GT-
148. Spakovszky, Z. S.: Rotating Stall Control in a High-Speed Stage with Inlet Distortion, Part I - Radial
     Distortion. ASME 98-GT-265.
149. Spakovszky, Z. S.: Rotating Stall Control in a High-Speed Stage with Inlet Distortion, Part II -
     Circumferential Distortion. ASME 98-GT-264.
150. Saxer-Felici, H. M.: Prediction and Measurement of Rotating Stall Cells in an Axial Compressor. ASME
151. Palomba, C.: 3D Flow Field Measurement around a Rotating Stall Cell. ASME 98-GT-594.
152. Bright, M. M.: Investigation of Pre-Stall Mode and Pip Inception in High Speed Compressors Through the
     Use of Correlation Integral. ASME 98-GT-365.

153. Witte, H.: Beurteilung von strömungserregten Schaufelschwingungen eines Flugtriebwerk-
     Axialverdichters mittels statistischer Analysenmethode; VDI Berichte Nr. 1425 (1998), S. 321-336.
154. Enghardt, L.: Akustische Radialmodenanalyse an einem dreistufigen Niederdruckaxialverdichter; VDI
     Berichte Nr. 1425 (1998), S. 337-346.
155. Lu, P.-J.: Evaluation of Acoustic Flutter Suppression for Cascade in Transonic Flow. ASME 98-GT-065.


156. Mailach, R.: Experimentelle Untersuchung von Verdichterinstabilitäten am
     Niedergeschwindigkeitsverdichter Dresden; VDI Berichte Nr. 1425 (1998), S. 167-176.
157. Lyes, P. A.: Experimental Evaluation of the High-to-Low Speed Transformation Process for a Highly
     Loaded Core Compressor Stage. ASME 98-GT-334.
158. Swoboda, M.: An Experimental Examination of Cantilevered and Shrouded Stators in a Multistage Axial
     Compressor. ASME 98-GT-282.
159. Silkowski, P. D.: An Experimental Investigation of System Effects in Axial Flow Compressors. ASME 98-

    Vergleich Messung - Rechnung

160. Dohring, C. M.: Experimental and Numerical Investigation of Flapping Wing Propulsion and its
     Application for Boundary Layer Control. ASME 98-GT-046.


161. Funazaki, K.: Effects of Periodic Wake Passing upon Flat-Plate Boundary Layers Experiencing
     Favorable and Adverse Pressure Gradient. ASME 98-GT-114.
162. Dorney, D. J.: Physics of Airfoil Clocking in a High-Speed Axial Compressor. ASME 98-GT-082.
163. Tuncer, I. H.: Investigation of Periodic Boundary Conditions in Multi-Passage Cascade Flows Using
     Overset Grids. ASME 98-GT-011.
164. Singh, U. K.: The Effect of Hub Leakage Flow in a Transonic Compressor Stator. ASME 98-GT-424.
165. Tuccillo, R.: Genetic Algorithm Based Strategies for Radial Flow Impeller Design. ASME 98-GT-427.
166. Hatman, A.: A Prediction Model for Separated-Flow Transition. ASME 98-GT-237.
167. Hu, J.: On the Application of Transition Correlations in Turbomachinery Flow Calculation. ASME 98-GT-
168. Rao, J. S.: A Mixed Shell Element for Cambered Helicoidal Blades and Dynamic Stresses Due to
     Aerodynamic Excitation. ASME 98-GT-356.
169. Khalid, S. A.: Endwall Blockage in Axial Compressors. ASME 98-GT-188.
170. Barankiewicz, W. S.: Impact of Variable-Geometry Stator Hub Leakage in a Low Speed Axial
     Compressor. ASME 98-GT-194.
171. Wellborn, St. R.: The Influence of Shrouded Stator Cavity Flows on Multistage Compressor
     Performance. ASME 98-GT-012.


172. Yiu, K. F. C.: A 3D Automatic Optimization Strategy for Design of Centrifugal Compressor Impeller
     Blades. ASME 98-GT-128.
173. Demeulenaere, A.: Application of a Three-Dimensional Inverse Method to the Design of a Centrifugal
     Compressor Impeller. ASME 98-GT-127.
174. Zangeneh, M.: On 3D Inverse Design of Centrifugal Compressor Impellers with Splitter Blades. ASME
175. Clayton, R. P.: A Numerical Study of the Three-Dimensional Turbulent Flow in the Impeller of a High-
     Speed Centrifugal Compressor. ASME 98-GT-049.
176. Eisenlohr, G.: Analysis of the Transonic Flow at the Inlet of a High Pressure Ratio Centrifugal Impeller.
     ASME 98-GT-024.
177. Filipenco, V. G.: Effects of Inlet Flow Field Conditions on the Performance of Centrifugal Compressor
     Diffuser Part 1: Discrete-Passage Diffusers. ASME 98-GT-473.
178. Deniz, S.: Effects of Inlet Flow Field Conditions on the Performance of Centrifugal Compressor Diffuser
     Part 2: Straight-Channel Diffusers. ASME 98-GT-474.
179. Rodgers, C.: The Centrifugal Compressor Inducer. ASME 98-GT-032.
180. Meuleman, C.: Surge in a Low-Speed Radial Compressor. ASME 98-GT-426.
181. Salvage, J. W.: Development of a Centrifugal Compressor With a Variable Geometry Split-Ring Pipe
     Duffuser. ASME 98-GT-007.
182. Stahlecker, D.: Investigations of Turbulent Flow in a Centrifugal Compressor Vaned Diffuser by 3-
     Component Laser Velocimetry. ASME 98-GT-300.
183. Roduner, C.: Comparison of Measurement Data at the Impeller Exit of a Centrifugal Compressor
     Measured with both Pneumatic and Fast-Response Probes. ASME 98-GT-241.
184. Chen, Y. N.: Excitation Mechanism for Standing Stall of Centrifugal Compressors. ASME 98-GT-245.
185. Paroubek, J.: The Influence of Impeller Flow Channel Modification on Aerodynamic Performance of a
     Centrifugal Compressor Stage. ASME 98-GT-040.
186. Mutou, A.: Behavior of Attractors During Surge in Centrifugal Compression Systems. ASME 98-GT-301.
187. Justen, F.: Experimental Investigation of Unsteady Flow Phenomena in a Centrifugal Compressor Vaned
     Diffuser of Variable Geometry. ASME 98-GT-368.
188. Kassens, I.: Flow Measurements behind the Inlet Guide Vane of a Centrifugal Compressor. ASME 98-
189. Oh, J.S.: Numerical Investigation of Internal Flow Field for Modified Design of Eckardt Backswept
     Impeller. ASME 98-GT-296.
190. Lenke, L. J.: Numerical Simulation of the Flow through the Return Channel of Multi-Stage Centrifugal
     Compressors. ASME 98-GT-255.
191. Sorokes, J. M.: Investigation of the Circumferential Static Pressure Non-Uniformity Caused by a
     Centrifugal Compressor Discharge Volute. ASME 98-GT-326.
192. Arnulfi, G. L.: Multistage Centrifugal Compressor Surge Analysis Part I: Experimental Investigation.
     ASME 98-GT-068.
193. Arnulfi, G. L.: Multistage Centrifugal Compressor Surge Analysis: Part II: Numerical Simulation and
     Dynamic Control Parameters Evaluation. ASME 98-GT-069.


194. Woinowsky-Krieger, M.: Off-Design Performance of a Single Stage Transonic Turbine. ASME 98-GT-
195. Arcoumanis, D.: Inlet and Exit Flow Characteristics of Mixed Flow Turbines. ASME 98-GT-495.
196. Jennions, I. K.: The GT24/26 Low Pressure Turbine. ASME 98-GT-029.

    CFD Anwendungen

197. Liamis, N.: CFD Analysis of High Pressure Turbines. ASME 98-GT-453.
198. Niestroj, O.: Three Dimensional Flow Predictions in Axial Flow Turbine Cascades. ASME 98-GT-325.
199. Noera, F.: Through Flow Calculation in Axial Flow Turbines Using a Quasi-Orthogonal Solver. ASME 98-
200. Fransson, T. H.: Viscous and Inviscid Linear/Nonlinear Calculations Versus Quasi 3D Experimental
     Cascade Data for a New Aeroelastic Turbine Standard Configuration. ASME 98-GT-490.
201. Hasan, R. G. M.: 3D RANS Calculations of Flow Through Turbine Volutes. ASME 98-GT-496.
202. Passrucker, H.: Numerical Calculation of Three-Dimensional Euler Flow Through a Transonic Test
     Turbine Stage. ASME 98-GT-428.
203. Pierret, St.: Turbomachinery Blade Design Using a Navier-Stokes Solver and Artificial Neural Network.
     ASME 98-GT-004.
204. Bassi, F.: Quasi-3D Numerical Computations on a Film-Cooled Gas Turbine Nozzle. ASME 98-GT-536.
205. Bell, D. L.: Three Dimensional Unsteady Flow for an Oscillating Turbine Blade and the Influence of Tip
     Leakage. ASME 98-GT-571.
206. Eulitz, F.: Numerical Investigation of Wake Interaction in a Low Pressure Turbine. ASME 98-GT-563.
207. Vogel, D. T.: Numerical Investigation of the Influence of Specific Vortex Generation on the Mixing
     Process of Film Cooling Jets. ASME 98-GT-210.
208. Krogh Nielsen, K.: Optimization of Swirl Brakes by Means of a 3D Navier-Stokes Solver. ASME 98-GT-

209. Hartland, J. C.: Non-Axisymmetric Endwall Profiling in a Turbine Rotor Blade. ASME 98-GT-525.
210. Venable, B. L.: Influence of Vane-Blade Spacing on Transonic Turbine Stage Aerodynamics, Part I:
     Time-Averaged Data and Analysis. ASME 98-GT-481.
211. Busby, J. A.: Influence of Vane-Blade Spacing on Transonic Turbine Stage Aerodynamics, Part II: Time-
     Resolved Data and Analysis. ASME 98-GT-482.
212. Amano, R. S.: Predictions of Turbulent Flow in a Turbine Stator/Rotor Passage. ASME 98-GT-524.
213. Matsunuma, T.: Characteristics of an Annular Turbine Cascade at Low Reynolds Numbers. ASME 98-
214. Gudmundsson, B.: Experiences from the Joint Development of the GTX100 Turbine Blading. ASME 98-
215. Boyle, R. J.: Aerodynamics of a Transitioning Turbine Stator over a Range of Reynolds Numbers. ASME


216. Hatman, A.: Separated-Flow Transition Part 1 - Experimental Methodology and Mode Classification.
     ASME 98-GT-461.
217. Hatman, A.: Separated-Flow Transition Part 2 - Experimental Results. ASME 98-GT-462.
218. Hatman, A.: Separated-Flow Transition Part 3 - Primary Modes and Vortex Dynamics. ASME 98-GT-
219. Sondak, D. L.: Simulation of Vortex Shedding in a Turbine Stage. ASME 98-GT-242.
220. Duden, A.: Controlling the Secondary Flow in a Turbine Cascade by 3D Airfoil Design and Endwall
     Contouring. ASME 98-GT-072.
221. Kubo, R.: Aerodynamic Loss Increase Due to Individual Film Cooling Injections from Gas Turbine Nozzle
     Surface. ASME 98-GT-497.
222. Boyle, R. J.: Mach Number Effects on Turbine Blade Transition Length Prediction. ASME 98-GT-367.

    Spaltweiten und -verluste

223. Stastny, M.: Effects of the Rotor Tip Leakage in a Transonic Turbine with Long Blades. ASME 98-GT-
224. Willinger, R.: The Role of Rotor Tip Clearance on the Aerodynamic Interaction of a Last Gas Turbine
     Stage and an Exhaust Diffuser. ASME 98-GT-094.
225. Ameri, A. A.: Effects of Tip Clearance and Casing Recess on Heat Transfer and Stage Efficiency in Axial
     Turbines. ASME 98-GT-369.


226. Hilditch, M. A.: Unsteady Flow in a Single Stage Turbine. ASME 98-GT-531.
227. Walraevens, R.E.: Experimental and Computational Study of the Unsteady Flow in a 1.5 Stage Axial
     Turbine with Emphasis on the Secondary Flow in the Second Stator. ASME 98-GT-254.


228. Nowinski, M.: Flutter Mechanisms in Low Pressure Turbine Blades. ASME 98-GT-573.
229. Panovsky, J.: A Design Method to Prevent Low Pressure Turbine Blade Flutter. ASME 98-GT-575.


    Wärmefluß und -übergang
230. Bohn, D.: The Effect of Turbulence on the Heat Transfer in Closed Gas-Filled Rotating Annuli for
     Different Rayleigh Numbers. ASME 98-GT-542.
231. Hall, U.: Simulations and Measurements on Impulse Blades for Heat Transfer Prediction in Supersonic
     Turbine Applications. ASME 98-GT-154.
232. Holmberg, D. G.: A Frequency Domain Analysis: Turbine Pressure Side Heat Transfer. ASME 98-GT-
233. Radomsky, R. W.: Effects of High Freestream Turbulence Levels and Length Scales on Stator Vane
     Heat Transfer. ASME 98-GT-236.
234. Iyer, G. R.: A New Low-Reynolds Number k-e Model for Simulation of Momentum and Heat Transport
     Under High Free Stream Turbulence. ASME 98-GT-081.
235. Yuki, U. M.: Effect of Coolant Injection on Heat Transfer For a Simulated Turbine Airfoil Leading Edge.
     ASME 98-GT-431.
236. Wang, H. P.: Effect of High Freestream Turbulence with Large Length Scale on Blade Heat/Mass
     Transfer. ASME 98-GT-107.
237. Glezer, B.: Heat Transfer in a Rotating Radial Channel with Swirling Internal Flow. ASME 98-GT-214.
238. Joe, Ch. R.: High Pressure Turbine Vane Annular Cascade Heat Flux and Aerodynamic Measurements
     with Comparisons to Predictions. ASME 98-GT-430.
239. Jakoby, R.: Correlations of the Convective Heat Transfer in Annular Channels with Rotating Inner
     Cylinder. ASME 98-GT-097.
240. Saidi, A.: Calculation of Convective Heat Transfer in Square-Sectioned Gas Turbine Blade Cooling
     Channels. ASME 98-GT-204.
241. Mirzaee, I.: Heat Transfer in a Rotating Cavity With a Stationary Stepped Casing. ASME 98-GT-112.
242. Kang, M. B.: Heat Transfer and Flowfield Measurements in the Leading Edge Region of a Stator Vane
     Endwall. ASME 98-GT-173.
243. Chyu, M. K.: Measurements of Heat Transfer Characteristics of Gap Leakage Around a Misaligned
     Component Interface. ASME 98-GT-132.
244. Schobeiri, M. T.: Unsteady Wake effects on Boundary Layer Transition and Heat Transfer
     Characteristics of a Turbine Blade. ASME 98-GT-291.Rigby, D. L.: Prediction of Heat and Mass Transfer
     in a Rotating Ribbed Coolant Passage with a 180 Degree Turn. ASME 98-GT-329.
245. Pilbrow, R.: Heat Transfer in a "Cover-Plate" Pre-Swirl Rotating-Disc System. ASME 98-GT-113.
246. Shih, T. I-P.: Flow and Heat Transfer in a Ribbed U-Duct under Typical Engine Conditions. ASME 98-
247. Khalatov, A.: Improved Approach to an Endwall Heat Transfer Analysis: A Linear Guide Vane and a
     Curved Duct. ASME 98-GT-293.
248. Bohn, D. E.: A Conjugate 3-D Flow and Heat Transfer Analysis of a Thermal Barrier Cooled Turbine
     Guide Vane. ASME 98-GT-089.
249. Michelassi, V.: Unsteady Heat Transfer in Stator-Rotor Interaction by Two Equation Turbulence Model.
     ASME 98-GT-243.
250. Hedhund, C. R.: Heat Transfer and Flow Phenomena in a Swirl Chamber Simulating Turbine Blade
     Internal Cooling. ASME 98-GT-466.
251. Taslim, M. E.: Measurements of Heat Transfer Coefficients in Rib-Roughened Trailing-Edge Cavities
     with Crossover Jets. ASME 98-GT-435.
252. Cho, H. H.: Characteristics of Heat Transfer in Impinging Jets by Control of Vortex Pairing. ASME 98-
253. Gritsch, M.: Heat Transfer Coefficient Measurements of Film-Cooling Holes with Expanded Exits. ASME
254. Gehrer, A.: External Heat Transfer Predictions in a Highly-Loaded Transonic Linear Turbine Guide Vane
     Cascade Using an Upwind Biased Navier-Stokes Solver. ASME 98-GT-238.
255. Jung, K.: Highly Resolved Distribution of Heat Transfer for Turbine Leading Edge Film Cooling Including
     Reynolds Number and Blowing Rate Effects. ASME 98-GT-064.
256. Hwang, J.-J.: Heat Transfer and Pressure Drop in Pin-Fin Trapezoidal Ducts. ASME 98-GT-110.
257. Chyu, M. K.: Heat Transfer Contributions of Pins and Endwall in Pin-Fin Arrays: Effects of Thermal
     Boundary Condition Modeling. ASME 98-GT-175.
258. Taslim, M. E.: 45° Round-Corner Rib Heat Transfer Coefficient Measurements in a Square Channel.
     ASME 98-GT-176.
259. Jerhamre, A.: Characteristics of Heat Transfer in Rotating Cavities. ASME 98-GT-137.


260. Mirzamoghadam,A.V.: Turbine Disc-Rim Cooling Design Criteria for Modern Two Stage High Pressure
     Turbine Aero-Engines. ASME 98-GT-205.
261. Carcasci, C.: Modular Simulation of Coolant Internal Network and Rotating Cavity Analysis. ASME 98-
262. Kerrebrock, J. L.: Vaporization Cooling for Gas Turbines, the Return-Flow Cascade. ASME 98-GT-177.

263. Seo, H. J.: Effects of Bulk Flow Pulsations on Film Cooling from Different Length Injection Holes at
     Different Blowing Ratios. ASME 98-GT-192.
264. Jung, I. S.: Effects of Bulk Flow Pulsations on Film Cooling from Spanwise Oriented Holes. ASME 98-
265. Hui Du: Effect of Unsteady Wake with Trailing Edge Coolant Ejection on Film Cooling Performance for a
     Gas Turbine Blade. ASME 98-GT-259.
266. Burd, St. W.: Turbulence Spectra and Length Scales Measured in Film Coolant Flows Emerging from
     Discrete Holes. ASME 98-GT-190.
267. Lin, Y.-L.: Computations of Discrete-Hole Film Cooling over Flat and Convex Surfaces. ASME 98-GT-
268. Drost, U.: Investigation of Detailed Film Cooling Effectiveness and Heat Transfer Distributions on a Gas
     Turbine Airfoil. ASME 98-GT-020.
269. Dahlander, P.: Numerical Simulation of a Film Cooled Nozzle Guide Vane Using an Injection Model.
     ASME 98-GT-439.
270. Ferguson, J. D.: Performance of Turbulence Models and Near-Wall Treatments in Discrete Jet Film
     Cooling Simulations. ASME 98-GT-438.
271. Garg, V. K.: Heat Transfer on a Film-Cooled Blade - Effect of Hole Physics. ASME 98-GT-404.
272. Kohli, A.: Entrance Effects on diffused Film-Cooling Holes. ASME 98-GT-402.
273. Chernobrovkin, A.: Numerical Simulation and Aerothermal Physics of Leading Edge Film Cooling. ASME
274. Moser, S.: The Influence of Pressure Pulses to an Innovative Turbine Blade Film Cooling System. ASME
275. Urban, M. F.: Experimental and Numerical Investigations of Film-Cooling Effects on the Aerodynamic
     Performance of Transonic Turbine Blades. ASME 98-GT-546.
276. Goldstein, R. J.: Film Cooling Effectiveness and Mass/Heat Transfer Coefficient Downstream of One
     Row of Discrete Holes. ASME 98-GT-174.
277. McGrath, E. L.: Physics of Hot Crossflow Ingestion in Film Cooling. ASME 98-GT-191.
278. Seager, D. J.: Film Cooling Heat Transfer: Shaped and Compound Angle Hole Injection. ASME 98-GT-
279. Berhe, M. K.: Curvature Effects on Discrete-Hole Film Cooling. ASME 98-GT-373.
280. Berhe, M. K.: Investigation of Discret-Hole Film Cooling Parameters Using Curved-Plate Models. ASME


281. Carnevale, E.: A Rotor Blade Cooling Improvement for Heavy Duty Gas Turbine Using Steam and Mixed
     Steam/Air Cooling. ASME 98-GT-275.
282. Brillert, D.: Cooling Air Flow in a Multi Disc Industrial Gas Turbine Rotor. ASME 98-GT-136.



283. Liou, M-S.: Numerical Analysis of Turbine Coolant Passage Flows. ASME 98-GT-320.
284. Lutum, E.: Influence of the Hole Length-to-Diameter Ratio on Film Cooling with Cylindrical Holes. ASME
285. Tolpadi, A. K.: Predictions of the Effect of Roughness on Heat Transfer From Turbine Airfoils. ASME 98-
286. Uzol, O.: Oscillator Fin as a Novel Heat Transfer Augmentation Device for Gas Turbine Cooling
     Applications. ASME 98-GT-150.
287. Dutta, P.: Internal Heat Transfer Enhancement by Two Perforated Baffles in a Rectangular Channel.
     ASME 98-GT-055.
288. Donahoo, E. E.: Determination of Optimal Row Spacing for a Staggered Cross-Pin Array in a Turbine
     Blade Cooling Passage. ASME 98-GT-149.
289. Chen, P.-H.: Effects Of Compound Angle Injection On Flat-Plate Film Cooling Through A Row of Conical
     Holes. ASME 98-GT-459.
290. Wang, T.: Jet Mixing in a Slot. ASME 98-GT-056.
291. Schabacker, J.: PIV Investigation of the Flow Characteristics in an Internal Coolant Passage with Two
     Ducts Connected by a Sharp 180° Bend. ASME 98-GT-544.
292. Day, Ch. R. B.: Efficiency Measurements of an Annular Nozzle Guide Vane Cascade with Different Film
     Cooling Geometries. ASME 98-GT-538.
293. Berger, Ph. A.: A Near-Field Investigation Into the Effects of Geometry and Compound Angle on the
     Flowfield of a Row of Film Cooling Holes. ASME 98-GT-279.
294. Friedrichs, S.: The Design of an Improved Endwall Film-Cooling Configuration. ASME 98-GT-483.


295. Servouze, Y.: 3D Laser Anemometry in a Rotating Cooling Channel. ASME 98-GT-123.
296. Taylor, M. D.: Time Resolved HWA Measurements of the OTL Flow Field from a Shrouded Turbine HP
     Rotor Blade. ASME 98-GT-564.


297. Denninger, M. J.: An Experimental Study on the Relationship between Velocity Fluctuations and Heat
     Transfer in a Turbulent Air Flow. ASME 98-GT-108.
298. Burd, St. W.: Measurements of Discharge Coefficients in Film Cooling. ASME 98-GT-009.
299. Dambach, R.: An Experimental Study of Tip Clearance Flow in a Radial Inflow Turbine. ASME 98-GT-
300. Bons, J. P.: Complementary Velocity and Heat Transfer Measurements in an Rotating Cooling Passage
     with Smooth Walls. ASME 98-GT-464.
301. Cravero, C.: Experimental Analysis of Fluid Flow and Surface Heat Transfer in a Three-Pass Trapezoidal
     Serpentine Smooth Passage. ASME 98-GT-543.
302. Funazaki, K.: Surface Heat Transfer Measurements of a Scaled Rib-Roughened Serpentine Cooling
     Passage by Use of a Transient Liquid Crystal Technique. ASME 98-GT-515.
303. Ardey, S.: A Systematic Experimental Study on the Aerodynamics of Leading Edge Film Cooling on a
     Large Scale High Pressure Turbine Cascade. ASME 98-GT-434.
304. Haiping, Ch.: Experimental Investigation on Impingement Heat Transfer from Rib Roughened Surface
     within Arrays of Circular Jet: Effect of Geometric Parameters. ASME 98-GT-208.
305. Kaszeta, R. W.: Flow Measurements in Film Cooling Flows With Lateral Injection. ASME 98-GT-054.
306. Sohn, Ki H.: Experimental Investigation of Boundary Layer Behavior in a Simulated Low Pressure
     Turbine. ASME 98-GT-034.

    Vergleich Messung - Rechnung

307. Bohn, D. E.: Experimental and Numerical Conjugate Investigation of the Blowing-Ratio Influence on the
     Showerhead Cooling Efficiency. ASME 98-GT-085.
308. Fitzgerald, J. E.: Turbine Blade Aerodynamic Wall Shear Stress Measurements and Predictions. ASME
309. Carscallen, W. E.: Measurement and Computation of Energy Separation in the Vortical Wake Flow of a
     Turbine Nozzle Cascade. ASME 98-GT-477.
310. Menter, U. W.: Experimental Analysis and Numerical Simulation of the Flow Field in Turbine Scrolls.
     ASME 98-GT-597.
311. Harvey, N. W.: Measurement and Calculation of Nozzle Guide Vane End Wall Heat Transfer. ASME 98-
312. Casciaro, C.: A Comparison of Experimental with Computational Results in an Annular Turbine Cascade
     with Emphasis on Losses. ASME 98-GT-146.
313. Sanz, W.: Numerical and Experimental Investigation of the Wake Flow Downstream of a Linear Turbine
     Cascade. ASME 98-GT-246.
314. Rubensdörffer, F.G.: Experimental and Numerical Investigation of Heat Transfer on a Cooled Turbine
     Vane. ASME 98-GT-212.
315. Wallis, A. M.: Comparison of Design Intent and Experimental Measurements in a Low Aspect Ratio Axial
     Flow Turbine with Three-Dimensional Blading. ASME 98-GT-516.
316. Rowbury, D. A.: Scaling of Film Cooling Discharge Coefficient Measurements to Engine Conditions.
     ASME 98-GT-079.
317. Ott, P.: The Influence of Tailboards on Unsteady Measurements in a Linear Cascade. ASME 98-GT-572.

318. Heselhaus, A.: A Hybrid Coupling Scheme and Stability Analysis for Coupled Solid/Fluid Turbine Blade
     Temperature Calculations. ASME 98-GT-088.
319. Jennions, I. K.: A Numerical Study of Air Transfer from a Stationary to a Rotating System through an
     Unsealed Cavity. ASME 98-GT-139.
320. Muldoon, F.: Dynamics of Large-Scale Structures for Jets in a Crossflow. ASME 98-GT-019.
321. Dossena, V.: The Influence of Endwall Contouring on the Performance of a Turbine Nozzle Guide Vane.
     ASME 98-GT-071.
322. Michelassi, V.: Secondary Flow Decay Downstream of Turbine Inlet Guide Vane with Endwall
     Contouring. ASME 98-GT-095.
323. Hildebrandt, Th.: A Numerical Study of the Influence of Grid Refinement and Turbulence Modelling on
     the Flow Field inside a Highly Loaded Turbine Cascade. ASME 98-GT-240.
324. Sekavcnik, M.: Characteristics of One Stage Radial Centrifugal Turbine. ASME 98-GT-494.
325. Liou, T-M.: Fluid Flow in a 180 Deg Sharp Turning Duct with Different Divider Thicknesses. ASME 98-
326. Norris, G.: Strut Influences Within a Diffusing Annular S-Shaped Duct. ASME 98-GT-425.

    Verbrennung, Brennkammer, Emissionen

    CFD Applications

327. Crocker, D. S.: CFD Modeling of a Gas Turbine Combustor from Compressor Exit to Turbine Inlet.
     ASME 98-GT-184.
328. Tolpadi, A. K.: Advanced Combustion Code: Overall Description, Prediction of a Jet Diffusion Flame and
     Combustor Flowfields. ASME 98-GT-229.
329. Costura, D. M.: A Computational Model for the Study of Gas Turbine Combustor Dynamics. ASME 98-
330. Liever, P. A.: CFD Assessment of a Wet, Low-NOx Combustion System for a 3MW-Class Industrial Gas
     Turbine. ASME 98-GT-292.
331. Bideau, R. J.: The Development of a Computer Code for the Estimation of Combustor Exhaust
     Temperature Using Simple Gas Analysis Measurements. ASME 98-GT-180.


332. Ferrante, A.: Main Features and Potential Applications of the New Turbogas Burner Test Facility in Gioia
     del Colle. Power-Gen Europe 98.
333. Benelli, G.: High Pressure Tests on Gas Turbine Combustors. Power-Gen Europe 98.
334. Hung, W. S. Y.: Uncertainty in Gas Turbine NOx Emission Measurements. ASME 98-GT-075.

    Modellierungen und Simulationen

335. Xia, J.-L.: Numerical and experimental study of swirling flow in a model combuster. International Journal
     of Heat and Mass Transfer, 41/1998, 11, S. 1485-1497.
336. Schmid, H.-P.: A model for calculating heat release in premixed turbulent flames. Combustion and
     Flame, 113/1998, 1/2, S. 79-91.
337. Kim, J.-S.: Effects of non-homogeneities on the eigenmodes of acoustic pressure in combustion
     chambers. Journal of Sound and Vibration, 209/1998, 5, S. 821-843.
338. Polifke, W.: Optimization of rate coefficients for simplified reaction mechanisms with genetic algorithms.
     Combustion and Flame, 113/1998, 1/2, S. 119-134.
339. Menon, S.: Subgrid Two-Phase Mixing and Combustion Modeling for Large-Eddy Simulations. ASME
340. Ganz, B.: Validation of Numerical Methods at a Confined Turbulent Natural Gas Diffusion Flame
     Considering Detailed Radiative Transfer. ASME 98-GT- 228.
341. Oost van, M.L.E.: Applying the Relationship between the Amount of CO2 and O2 in Flue Gases to
     Reduce the NOx Emission Measurement Uncertainty. ASME 98-GT-235.
342. Nicol, D. G.: Development of a Five-Step Global Methane Oxidation-NO Formation Mechanism for Lean-
     Premixed Gas Turbine Combustion. ASME 98-GT-185.
343. Smirnov, A.: Modeling of Turbulent Swirling Flame Stabilization in LPP Combustors. ASME 98-GT-493.
344. Lachner, R.: Simultaneous Single-Shot LIF-Imaging of OH and UHC in a Prevaporized, Partially
     Premixed, Swirl-Stablized N-Heptane Flame. ASME 98-GT-560.
345. Hicks, R. A.: The Effect of the Fuel Injector Internal Geometry upon the Primary Zone Aerodynamics.
     ASME 98-GT-232.
346. Honami, S.: Effect of the Flame Dome Depth and Improvement of the Pressure Loss in the Dump
     Diffuser. ASME 98-GT-225.
347. Ale, B. B.: The Effect of Time of Exposure to Elevated Temperatures on the Flammability Limits of Some
     Common Gaseous Fuels in Air. ASME 98-GT-179.
348. Bunama, R.: An Investigation of the Formation and Venting of Flammable Mixtures Formed within Liquid
     Fuel Vessels. ASME 98-GT-178.
349. Parker, T.: Fugitive Methane Emission Reductions Using Gas Turbines. ASME 98-GT-314.


350. Anderson, T. J.: Dynamic Flame Structure in a Low NOx Premixed Combustor. ASME 98-GT-568.
351. Harding, St. C.: Fuel-Air Mixing and Combustion in an Optical, Lean, Premixed, Prevaporised Gas
     Turbine Combustor. ASME 98-GT-553.
352. Hu, I. Z.: Aerodynamics of a Fuel Spoke in a Gas Turbine Combustor. ASME 98-GT-389.
353. Koopmann, J. W.: Investigation of a Rectangular Rich Quench Lean Combustor Sector. ASME 98-GT-
354. Peracchio, A. A.: Nonlinear Heat-Release/Acoustic Model for Thermoacoustic Instability in Lean
     Premixed Combustors. ASME 98-GT-269.
355. Rutar, T.: NOx Dependency on Residence Time and Inlet Temperature for Lean-Premixed Combustion
     in Jet-Stirred Reactors. ASME 98-GT-433.
356. Held, T. J.: Application of a Partially Premixed Laminar Flamelet Model to a Low Emissions Gas Turbine
     Combustor. ASME 98-GT-217.
357. Held, T. J.: Application of a Micro-/Macro-Mixing Two Reactor Model to a Single-Cup Low-Emissions
     Combustor. ASME 98-GT-218.


358. Vilayanur, S. R.: Effect of Inlet Conditions on Lean Premixed Gas Turbine Combustor Performance.
     ASME 98-GT-440.
359. Straub, D. L.: Effect of Fuel Nozzle Configuration on Premix Combustion Dynamics. ASME 98-GT-492.
360. Krüger, U.: Influence of Turbulence on the Dynamic Behaviour of Premixed Flames. ASME 98-GT-323.
361. Kraemer, G.: Flashback Arrestor for Lean Premixed, Prevaporized, Low NOx Combustors. ASME 98-
362. Hura, H. S.: Dry Low Emissions Premixer CCD Modeling and Validation. ASME 98-GT-444.


363. Gysling, D. L.: Combustion System Damping Augmentation with Helmholtz Resonators. ASME 98-GT-
364. Mongia, R.: Measurement of Air-Fuel Ratio Fluctuations Caused by Combustor Driven Oscillations.
     ASME 98-GT-304.
365. Kendrick, D. W.: Acoustic Sensitivities of Lean-Premixed Fuel Injectors in a Single Nozzle Rig. ASME
366. Paschereit, Ch. O.: Investigation of the Thermoacoustic Characteristics of a Lean Premixed Gas Turbine
     Burner. ASME 98-GT-582.
367. Cronemyr, P. J. M.: Coupled Acoustic-Structure Analysis of an Annular DLE Combustor. ASME 98-GT-
368. Ohtsuka, M.: Combustion Oscillation Analysis of Premixed Flames at Elevated Pressures. ASME 98-GT-
369. Sattinger, St.: Sub-Scale Demonstration of the Active Feedback Control of Gas-Turbine Combustion
     Instabilities. ASME 98-GT-258.
370. Vermeulen, P. J.: Acoustically Controlled Combustor NOx. ASME 98-GT-303.
371. Verhage, A.: Pressure Pulsations in Combustion Chambers of Large Gas Turbines. Power-Gen Europe

    Kühlung im Verbrennungssystem

372. Janczewski, J.: Heat Load on the Walls of an Annular DLE Combustor Calculation and Comparison with
     Experiments. ASME 98-GT-454.
373. Wigren, J.: A Combustor Can with 1.8 mm Thick Plasma Sprayed Thermal Barrier Coating. ASME 98-
374. Nilsson, U. E.: Experimental Investigation of GTX100 Combustor Liner Cooling System. ASME 98-GT-
375. Abdon, A.: Investigation of a Turbulence Model for Wall Cooling of Combustion Chambers. ASME 98-
376. Silverstein, C. C.: Heat Pipe Combustor Cooling. ASME 98-GT-541.

    Verschiedene Systeme

377. Joshi, N. D.: Dry Low Emissions Combustor Development. ASME 98-GT-310.
378. Hoffmann, St.: Further Development of the Siemens LPP Hybrid Burner. ASME 98-GT-552.
379. Steinbach, Ch.: ABB’s Advanced EV Burner-A Dual Fuel Dry Low NOx Burner for Stationary Gas
     Turbines. ASME 98-GT-519.
380. Ziemann, J.: Low-NO(x) combustors for hydrogen fueled aero engine. International Journal of Hydrogen
     Energy, 23/1998, 4, S. 281-288.
381. Okuto, A.: Development of a Low NOx Combustor for 300kw-Class Ceramic Gas Turbine (CGT302).
     ASME 98-GT-272.
382. Takahashi, S.: Research and Development of Swirling Flow Combustor For Low NOx. ASME 98-GT-
383. Chellini, R.: First LM1600 with DLE Combustor; Diesel & Gas Turbine Worldwide 7-8 1998, S. 28-31.
384. Vandesteene, J.: A Fleet Leader Experience with Dry Low Emissions Aeroderivative Gas Turbines (LM
     6000 PB and PD). Power-Gen Europe 98.
385. Arrighi, L.: Operation and Maintenance Experiences of Dry Low NOx Combustors for Heavy Duty Gas
     Turbines GE MS 8001E (Type DLN1) and Fiat 70ID (Type K Point). Power-Gen Europe 98.
386. Soudarev, A.: Low-Emission Combustor for Power GTU Application. Power-Gen Europe 98.
387. Eroglu, A.: Vortex Generators in Lean-Premix Combustion. ASME 98-GT-487.
388. Kühnel, J.: Optimierung von Gasturbinenprozessen unter Berücksichtigung der Stickoxidbildung; VDI
     Berichte Nr. 1438 (1998), S 189-198.
389. Joos, F.: Field Experience of the Sequential Combustion System for the GT24/GT26 Gas Turbine
     Family. ASME 98-GT-220.
390. Solt, J. Ch.: The Ultimate NOx Solution for Gas Turbines. ASME 98-GT-287.

    Katalytische Verfahren

391. Ozawa, Y.: High Pressure Test Results of a Catalytically Assisted Ceramic Combustor for a Gas Tubine.
     ASME 98-GT-381.
392. Le Gal, J-H.: Development of a Dual Fuel Catalytic Combustor for a 2.3 MWe Gas Turbine. ASME 98-
393. Lipinski, J. J.: Development and Test of a Catalytic Combustor for an Automotive Gas Turbine. ASME


394. Cannon, S.-M.: Stochastic modeling of CO and NO in premixed methane combustion. Combustion and
     Flame, 113/1998, 1/2, S. 135-146.
395. Facchini, B.: A Semi-Analytical Approach to Emissions Prediction in Gas Turbine Combustors. ASME
396. Botros, K. K.: One-Dimensional Model to Quantify NOx Reduction in Gas Turbines Using EGR. ASME
397. -: Studies of NOx Formation in Two-Stage Methane-Air Flames. ASME 98-GT-073.
398. Hasegawa, T.: A Study of Low NOx Combustion in Medium-Btu Fueled 1300° C class Gas Turbine
     Combustor in IGCC. ASME 98-GT-331.
399. Audus, H.: Technologies for Reducing Greenhouse Gas Emissions from Fossil Fuels. ASME 98-GT-074.
400. Li, S. C.: Experimental and Numerical
401. Poppe, C.: Control of NO(x) emissions in confined flames by oscillations. Combustion and Flame,
     113/1998, 1/2, S. 13-26.
402. Osenga, M.: Emissions Reduction To 3.5 ppm Nox. Diesel & Gas Turbine Worldwide 1-2 1998, S. 44-46.
403. Urbach, H. B.: Water Injection into Navy Gas-Turbine Combustors to Reduce NOx Emissions. ASME 98-
404. Topaloglu, B.: Stickoxide bei der Verbrennung; BWK 50 (1998) 9, S. 47-51.

    Brennstoffe, Sonderbrennstoffe

    Zerstäubung von flüssigen Brennstoffen

405. Purcell, J.: Liquid Fuels for Gas Turbines and Their Effects on Fuel System Reliability. Power-Gen
     Europe 98.
406. Yeoung, M. H.: Effects of Fuel Nozzle Displacement on Pre-Filming Airblast Atomization. ASME 98-GT-
407. O’Shaughnessy, P.: Injector Geometry Effect on Plain Jet Airblast Atomization. ASME 98-GT-445.
408. Chin, J. S.: Study on High Liquid Pressure Internal Mixing Prefilming Airblast Atomization. ASME 98-GT-
409. Liao, Y.: A Comprehensive Model to Predict Simplex Atomizer Performance. ASME 98-GT-441.
410. Benjamin, M. A.: Film Thickness, Droplet Size Measurements and Correlations for Large Pressure-Swirl
     Atomizers. ASME 98-GT-537.
411. Ibrahim, M.: Spray Characteristics of an Airblast-Simplex Nozzle for Liquid-Fueled Gas Turbine
     Combustors. ASME 98-GT-517.
412. Rosskamp, H.: Effect of the Shear Driven Liquid Wall Film on the Performance of Prefilming Airblast
     Atomizers. ASME 98-GT-500.
413. Karbasi, M.: The effects of hydrogen addition on the stability limits of methane jet diffusion flames.
     International Journal of Hydrogen Energy, 23/1998, 2, S. 123-129.
414. Brushwood, J. S.: A Combined Cycle Power Generation / Alfalfa Processing System: Part 1:
     Development & Testing. ASME 98-GT-335.


415. Bannister, R. L.: Final Report on the Development of a Hydrogen-Fueled Combustion Turbine Cycle for
     Power Generation. ASME 98-GT-021.
416. Aoki, S.: A Study of Hydrogen Combustion Turbines. ASME 98-GT-392.
417. Narula, R. G.: Alternative Fuels for Gas Turbine Plants. An Engineering, Procurement, and Construction
     Contractor’s Perspective. ASME 98-GT-122.
418. Morris, J. D.: Combustion Aspects of Application of Hydrogen and Natural Gas Fuel Mixtures to
     MS9001E DLN-1 Gas Turbines at Elsta Plant, Terneuzen, The Netherlands. ASME 98-GT-359.
419. Moliére, M.: Volatile, Low Lubricity Fuels in Gas Turbine Plants: A Review of Main Fuel Options and
     Their Respective Merits. ASME 98-GT-231.
420. Smith, A. R.: Air Separation Unit Integration for Alternative Fuel Projects. ASME 98-GT-063.
421. Heilos, A.: Combustion of Refinery Residual Gas with a Siemens V94.2 (K) Burner. Power-Gen Europe
422. Sperkac, I.-E.: Möglichkeiten zur Modernisierung des Komplexes von Ausrüstungen für die Aufbereitung
     und Verwertung des Hochofengases. Stal, 68/1998, 1, S. 7-11.
423. Chellini, R.: Low Btu Gas for Combined-Cycle Plant; Diesel & Gas Turbine Worldwide 6 1998, S. 12-15.
424. Pourchot, T.: Heavy Duty Gas Turbines in LCV Applications: 25 Years of Experience and Development.
     Power-Gen Europe 98.
425. Benter, M. M.: Low Ash Fuel and Chemicals From the Convertech Process. ASME 98-GT-351.
426. Huth, M.: Verbrennung von Synthesegas in Gasturbinen; BWK 50 (1998) 9, S. 35-39.

427. Patnaik, P. C.: Elevated Temperature Exposure of Gas Turbine Materials to a Bio-fuel Combustion
     Environment. ASME 98-GT-164.
428. Schmidt, E. R.: Large-Scale Handling and Use of Solid Biofuels, ASME 98-GT-327.
429. Craig, J. D.: A Small Scale Biomass Fueled Gas Turbine Engine. ASME 98-GT-315.
430. Arcate, J. R.: Biomass Charcoal Co-Firing with Coal. ASME 98-GT-226.
431. Cavani, A.: Modified Humid Air Turbine Cycle for Biomass Gasification. ASME 98-GT-233.
432. Waldheim, L.: Update on the Progress of the Brazilian Wood BIG-GT Demonstration Project. ASME 98-
433. Neilson, Ch. E.: LM2500 Gas Turbine Fuel Nozzle Design and Combustion Test Evaluation & Emission
     Results with Simulated Gasifire Wood Product Fuels. ASME 98-GT-337.
434. Johansson, E. M.: Development of Hexaaluminate Catalysts for Combustion of Gasified Biomass in Gas
     Turbines. ASME 98-GT-338.
435. Kilpinen, P.: Staged Combustion of Air-Blown Biomass Gasification Gas in Gas Turbines - a Kinetic
     Modelling Study of Nitrogen Oxide Control; VDI Berichte Nr. 1438 (1998), S. 167-176.
436. Salo, K.: Pressurized Gasification of Biomass. ASME 98-GT-439.
437. Larson, E. D.: Combined Biomass and Black Liquor Gasifier/Gas Turbine Cogeneration at Pulp and
     Paper Mills. ASME 98-GT-339.
438. Ahlroth, M.: Case Study on Simultaneous Gasification of Black Liquor and Biomass in a Pulp Mill. ASME
439. Larson, E. D.: Preliminary Economics of Black Liquor Gasifier/Gas Turbine Cogeneration at Pulp and
     Paper Mills. ASME 98-GT-346.

    Kohlenutzung in Gasturbinen

440. Storm, Ch.: Co-Pyrolysis of Coal/Biomass and Coal/Sewage Sludge Mixtures. ASME 98-GT-103.
441. Green, A. E. S.: Feedstock Blending Studies with Laboratory Indirectly Heated Gasifiers. ASME 98-GT-
442. Peres, S.: Catalytic Indirectly Heated Gasification of Bagasse. ASME 98-GT-161.
443. Newby, R. A.: Status of Westinghouse Hot Gas Filters for Coal and Biomass Power Systems. ASME 98-
444. Robson, F. L.: Advanced Aeroderivative Gas Turbines in Coal-Based High Performance Power Systems
     (HIPPS). ASME 98-GT-131.
445. Wang, T.: Effect of Air Extraction for Cooling and/or Gasification on Combustor Flow Uniformity. ASME
446. Hoppesteyn, P.D.J.: Biomass/Coal Derived Gas Utilization in a Gas Turbine Combustor. ASME 98-GT-


447. Baumann, II. R.: Development of the Cost-Effective IGCC Power Plant. Power-Gen Europe 98.
448. Farina, G.: Optimisation of the Degree of Integration of IGCC Design.Power-Gen Europe 98.
449. Pinacci, P.: A Commercial Project for Private Investments; Update of the 280 MW API Energia IGCC
     Plant Construction in Central Italy. Power-Gen Europe 98.
450. Huth, M.: Siemens Gas Turbine Operating Experience with Coal Gas in the IGCC in Buggenum. Power-
     Gen Europe 98.
451. Chiesa, P.: Shift Reactors and Physical Absorption for Low-CO2 Emissions IGCCs. ASME 98-GT-396.
452. Collodi, G.: Progress of the Sarlux IGCC Project. Power-Gen Europe 98.
453. Joos, E.: Puertollano IGCC Power Plant Analysis of Performance Test Data. Power-Gen Europe 98.
454. Newby, R. A.: Fuel Gas Cleanup Parameters in Air-Blown IGCC. ASME 98-GT-341.
455. Minchener, A. J.: An Overview of Recent Clean Coal Gasification Technology R&D Activities Supported
     by the European Commission. ASME 98-GT-163.
456. Gaio, G.: Energieerzeugung durch Kohle- und Schwerölrückstandsvergasung mit anschließender
     Verbrennung in Siemens Gasturbinen; VDI Berichte Nr. 1438 (1998), S. 143-149.

457. Nemet, A.: Die Gasturbine in der Druckwirbelschichtfeuerung; VDI Berichte Nr. 1438 (1998), S. 151-166.
458. Romeo, L.: Operational and Design Strategies to Improve PFBC Power Plant Efficiency. Power-Gen
     Europe 98.
459. Lundqvist, R.: Repowering and Retrofilting of Old Power Plants with Circulating Fluidised Bed
     Technology in Central and Eastern Europe. Power-Gen Europe 98.
460. Luby, P.: Contribution of IGCC & PFCB to Global Fuel Consumption Trends. Power-Gen Europe 98.
461. Kaneko, S.: Operating Experience of First Commercial PFBC in Japan and its Future Application. Power-
     Gen Europe 98.
462. Pai, D.: Advanced Pressurised Circulating Fluidised Bed Technology. Power-Gen Europe 98.
463. Testi, A.: Performance of a Pressurised Fluidised Bed Combined Cycle Using High Sulphur Content
     Coals. Power-Gen Europe 98.
464. Jong de, W.: Coal Biomass Gasification in a Pressurized Fluidized Bed Gasifier. ASME 98-GT-159.
465. Collot, A-G.: Co-Pyrolysis and Co-Gasification of Coal and Biomass in a Pressurized Fixed-Bed Reactor.
     ASME 98-GT-162.


466. Ortmann, P.: Optimisation of Combined Cycle Power Plant Operation with Degraded Compressor and
     Heat Recovery Boiler Efficiency; VDI Berichte Nr. 1438 (1998), S. 199-220.
467. Franke, U.: Zur thermodynamischen Prozeßoptimierung; BWK 50 (1998) 1/2, S. 54-58.
468. Kurzke, J.: Gas Turbine Cycle Design Methodology: A Comparison of Parameter Variation with
     Numerical Optimization. ASME 98-GT-343.
469. Longhi, A.: Combined Cycle Power Plants Close to Gas Fields or to Electricity Final Users? Power-Gen
     Europe 98.
470. Antonini,C.: New Combined Cycle Plants Experience in Commissioning and Operation, Technical and
     Economical Results. Power-Gen Europe 98.
471. Jeske, H.-O.: Ein modulares, standardisiertes Kraftwerkskonzept auf der Basis von Dampf- und
     Gasturbinen. VGB Kraftwerkstechnik 78 (1998) 6, S. 49-54.
472. Scherzer, St.: GuD-Anlagen für kommunale und industrielle Energieversorgung Teil 1:
     Planungsüberlegungen. VGB Kraftwerkstechnik 78 (1998) 8, S. 40-43.
473. Koch, J.: Improved Combined-Cycle Economics Through Marginal Pricing with Variable Gas Turbine
     Firing Temperature Control, Power-Gen International 1998, 2.D.3.
474. Hanawa, K.: Thermodynamic Performance Analysis of Mixed Gas-Steam Cycle (1): Performance
     Prediction Method. ASME 98-GT-117
475. Hanawa, K.: Thermodynamic Performance Analysis of Mixed Gas-Steam Cycle (2): A Case Study of
     Aeroderivative Gas Turbine. ASME 98-GT-118.
476. Sheard, A.: The Combined Cycle Application of Aeroderivative Gas Turbines. Power-Gen Europe 98.
477. Finckh, H.: Perspective of the Next Generation of Combined-Cycle Processes, Power-Gen International
     1998, 2.D.1.


478. Robinson, B.: The First Mechant Plant in Massachusetts Dighton CC-Single Shaft-GT11N2, Power-Gen
     International 1998, 2.D.4.
479. Mattes, K.: Sacramento Power Authority Project-Execution and Operation of the Cleanest Power Plant of
     its Class in the World, Power-Gen International 1998, 2.C.1.
480. Baumgartner, R.-J.: Bridgeport Energy: 520 MW Combined-Cycle Power Plant, Power-Gen International
     1998, 2.C.4.
481. Magneschi, P.: La Spezia Power Plant: Transformation of Units 1 & 2 to Combined Cycle with
     Modification of the Steam Turbines from Cross Compound to Tandem Compound. Power-Gen Europe
482. Dumoulin, J.: The Eems Project (1675MW); From Feasibility to Reality. Power-Gen Europe 98.
483. Kotschenreuther, H.:Combined Cycle Power Plant of Schwarze Pumpe - Operating Experience Gained
     with Low Calorific Value Fuel Resulting from Gasification Processes. Power-Gen Europe 98.
484. Galaberi, B.: Acceptance Tests of 3 Combined Cycles at the Taranto Steel Factory. Power-Gen Europe
485. d’Izarny-Gargas, L.: The Tarragone Power Plant. Power-Gen Europe 98.
486. Zachary, J.: Sacramento Power Authority Project - Experience of Building and Testing a Combined
     Cycle Project with Emissions less than 3 PPM NO. Power-Gen Europe 98.
487. Jonas, K.: Der Umbau des Kraftwerkes VEO Eisenhüttenstadt zu einem Kombi-Kraftwerk für die
     industrielle und öffentliche Energieversorgung. VGB Kraftwerkstechnik 78 (1998) 8, S. 34-39.
488. Gebert, H.: Betriebserfahrungen mit dem Kombi-Kraftwerk HKW Mitte, Berlin. VGB Kraftwerkstechnik 78
     (1998) 7, S. 31-36.
489. Kolp, D. A.: LM2500+ Single Shaft Combined Cycle with Frequency Stabilization. ASME 98-GT-418.
490. Pfleger, C.: Operation Record of the Large 9FA Based CCGT Built in Europe. Power-Gen Europe 98.
491. Chellini, R.: 100 MW, Single-Shaft Combined-Cycle Block Available; Diesel & Gas Turbine Worldwide 6
     1998, S. 76-77.
492. Murphy, J. C.: Barge Mounted Combined-Cycle Plants, Power-Gen International 1998, 2.C.5.


493. Barik, M.: Optimization of Turbine Blade Flow Path for Combined-Cycle Repowering, Power-Gen
     International 1998, 2.D.5.
494. Bauer, G.: Ertüchtigung bestehender Dampfkraftwerke durch Gasturbinen; BWK 50 (1998)1/2, S. 32-36.
495. Clerici, A.: Transformation into Combined Cycle of Old Steam Plants in an Competitive Market. Power-
     Gen Europe 98.
496. Pfost, H.: Gas Turbines Increase Power and Efficiency of Steam Power Plants. Power-Gen Europe 98

    Fortschrittliche Kreisprozesse

497. Cavenagh, A.: Helium hope. A helium cooled reactor with gas turbine technology could boost nuclear
     energy as pressure builds to cut CO2 emissions. The Engineer, 286/1998, 7383/4, S. 26-27.
498. Kizuka, N.: Conceptual Design of the Cooling System for 1700° C-Class Hydrogen-Fueled Combustion
     Gas Turbines. ASME 98-GT-345.
499. Penninger, A.: Moderne 500 MW Spitzlastkraftwerkanlage mit Pressluft-Energiespeicherung; VDI
     Berichte Nr. 1438 (1998), S. 255-258.
500. Deckamps, P.: Experience Gained on the Demonstration Unit of a Once-Through Supercritical Heat
     Recovery Steam Generator. Power-Gen Europe 98.
501. Oggero, L.: A Novel Optimisation Method for Variable Cycle Jet Engines. ASME 98-GT-142.
502. Humphries, J. J.: Multi-Cycle Plus Energy Generation for Large Industrials, Power-Gen International
     1998, 2.C.2.
503. Negri di Montenegro, G.: Intercooled and Brayton Cycle Gas Turbines for Steam Power Plant Hot
     Windbox Repowering. ASME 98-GT-198.
504. McNeely, M.: Intercooling for LM6000 Gas Turbines; Diesel & Gas Turbine Worldwide 7-8 1998, S. 42-
505. Hisazumi, Y.: Proposal of a Novel Gas Turbine System with High Generation Efficiency by Using Two
     Stages Combustion and Steam Injection. Power-Gen Europe 98.
506. Hofstädter, A.: Effects of Steam Reheat in Advanced Steam Injected Gas Turbine Cycles. ASME 98-GT-
507. De Paepe, M.: Economic Analysis of Condensers for water Recovery in Steam Injected Gas Turbines.
     Power-Gen Europe 98.
508. Paepe de, M.: Industrial Application of Water Recovery in Steam Injected Gas Turbines; VDI Berichte Nr.
     1438 (1998), S. 241-250.

    Rekuperative Zyklen

509. Utriainen, E.: Recuperators in Gas Turbine Systems. ASME 98-GT-165.
510. Horlock, J. H.: The Effect of Heat Exchanger Effectiveness and Exergy Loss in the Estimation of Cycle
     Efficiency. ASME 98-GT-352.
511. Behrens, D.: Gasturbinenprozesse mit variabler Rekuperation; VDI Berichte Nr. 1438 (1998), S. 229-
512. Carcasci, C.: Design & Off-Design Analysis of a CRGT Cycle Based on the LM2500-STIG Gas Turbine.
     ASME 98-GT-036.
513. Lefcort, M. D.: Sawmill, Wood Waste Fuelled, 100 % Recuperated, 5 MW Gas Turbine Co-Generation
     Plant. ASME 98-GT-062.
514. Abdallah, H.: Part Load Performance of Chemically Recuperated Gas Turbine Cycles Compared to
     Other Advanced Cycles. ASME 98-GT-037.
515. Arai, N.: Development of Highly Efficient Gas Turbine Systems: the Chemical Gas Turbine System.
     Power-Gen Europe 98.
516. Carcasci, C.: Design Issues for the Methane-Steam Reformer of a Chemically Recuperated Gas Turbine
     Cycle. ASME 98-GT-035.

    Geschlossene und halbgeschlossene Zyklen

517. Corti, A.: Absorption of CO2 with Amines in a Semiclosed GT Cycle: Plant Performance and Operating
     Costs. ASME 98-GT-395.
518. Chiesa, P.: CO2 Emission Abatement in IGCC Power Plants by Semiclosed Cycles. Part A: With
     Oxygen-Blown Combustion. ASME 98-GT-384.
519. Chiesa, P.: CO2 Emission Abatement in IGCC Power Plants by Semiclosed Cycles. Part B: With Air-
     Blown Combustion and CO2 Physical Absorption. ASME 98-GT-385.
520. Veld op het, R. P.: An Empirical Approach to the Preliminary Design of a Closed Cycle Gas Turbine.
     ASME 98-GT-393.

    Humid Air Technologie

521. Corti, A.: Semi Closed Gas Turbine Cycle and Humid Air Turbine: Thermoeconomic Evaluation of Cycle
     Performance and of the Water Recovery Process. ASME 98-GT-031.
522. Facchini, B.: A Parametric Study of CHAT Cycle Performance: Thermodynamic and Design Features.
     ASME 98-GT-166.
523. Nakhamkin, M.: CHAT Technology: An Altenative Approach to Achieve Advanced Turbine Systems
     Efficiencies with Present Combustion Turbine Technology. ASME 98-GT-143.
524. Desideri, U.: Humid Air Turbine Cycles with Water Recovery: How to Dispose Heat in an Efficient Way.
     ASME 98-GT-060.
525. Song, C. H.: Performance Enhancement of a Gas Turbine with Humid Air and Utilization of LNG Cold
     Energy. ASME 98-GT-058.

    Kombination mit Brennstoffzellen

526. Campanari, S.: Thermodynamic Analysis of Advanced Power Cycles Based Upon Solid Oxide Fuel
     Cells, Gas Turbines and Rankine Bottoming Cycles. ASME 98-GT-585.
527. -: Brennstoffzellen-Kraftwerke. Westinghouse stellt SOFC-Prototyp vor. Blick durch die Wirtschaft,
     41/1998, 36, 20.02.98, S. 6.
528. Massardo, A. F.: Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Combined Cycles (IRSOFC-GT)
     Part A: Cell Model and Cycle Thermodynamic Analysis. ASME 98-GT-577.

    Indirekt gefeuerte Gasturbinen

529. Crosa, G.: Steady-State and Dynamic Performance Prediction of an Indirect Fired Gas Turbine Plant.
     ASME 98-GT-167

    Andere Prozesse
530. Kellerer, A.: Betriebserfahrungen mit einer Cheng-Cycle-Anlage - Konzept und technische
     Besonderheiten des Cheng Cycles, Betriebserfahrungen. VGB Kraftwerkstechnik 78 (1998) 11, S. 46-
531. Strasser, A.: First Small Size Cheng Cycle Series 5 Cogeneration System Installed in Europe. Power-
     Gen Europe 98.
532. Jericha, H.: Graz-Cycle - eine Innovation zur CO2-Minderung; BWK 50 (1998) 10, S. 30-34.
533. Mathieu, Ph.: Zero Emission Matiant Cycle. ASME 98-GT-383.
534. Camporcale, S.: Uprate of an Industrial Gas Turbine to Evaporative Cycle. Power-Gen Europe 98.
535. Dalili, F.: Design of Tubular Humidifiers for Evaporative Gas Turbine Cycles. ASME 98-GT-203.
536. Dobrowolski, R.: New Combined Cycle with Integrated Solar Heat. Power-Gen Europe 98.
537. Korobitsyn, M. A.: Analysis of a Gas Turbine Cycle with Partial Oxidation. ASME 98-GT-033.
538. Gustafsson, J.-O.: Transient Analysis of a Small Gas Turbine to be Used in an Evaporative Cycle. ASME
539. Kuosa, M.: Refrigeration Process with High Speed Technology. ASME 98-GT-532.


540. Vandesteene, J.-L.: GasTurbine Based Cogeneration Facilities: Key Issues to Be Addressed at an Early
     Design Stage. Power-Gen Europe 98.
541. Teodorescu, C.: Gas Turbines Cogeneration Power Plant: the Criteria and Method of the Choice for
     Plant Structure. Power-Gen Europe 98.
542. Reppen, D.: Benefits of Optimizing Thermal and Electrical Energy Production in a Cogeneration Facility,
     Power-Gen International 1998, 2.C.3.
543. Sheikh, A.: Project Optimisation and Construction of Cogeneration Power Plant for a Large Refinery and
     Petrochemical Complex in India. ASME 98-GT-200.
544. Haag, F.: Energie muß nicht teuer sein. Mit Wärmekraftkopplung zum Selbstversorger. Schweizer
     Maschinenmarkt, 1998, 4, S. 30-32.
545. Ruhl, H.: Modernes Versorgungskonzept (Wärme/Strom) für die Region. Das Wärmeverbundkraftwerk
     Freiburg (D.). Gas, Wasser, Abwasser, 78/1998, 2, S. 92-95.
546. Mercer, M.: Cogeneration Package Cuts VOC Emissions; Diesel & Gas Turbine Worldwide 6 1998, S.
547. Minychthaler, G.: Der Betrieb der Kraft-Wärme-Kopplung in den Kraftwerken von WIENSTROM. VGB
     Kraftwerkstechnik 78 (1998) 5, S. 102-106.
548. Yokoyama, R.: Analysis of Cooperation between Central Power Utility and Dispersed Cogeneration
     Systems Through Time-of-Use Pricing. ASME 98-GT-199.
549. Gailfuß, M.: Stand der BHKW-Technologie; BWK 50 (1998) 9, S. 40-43.
550. Gailfuss, M.: Zukünftige BHKW-Potentiale in Deutschland. Eine Prognose für das Jahr 2010.
     Wärmetechnik - Versorgungstechnik, 43/1998, 1, S. 45-51.
551. Chodkiewicz, R.: Electric Power and Nitric Acid Coproduction a New Concept in Reducing the Energy
     Cost. Power-Gen Europe 98.

    Fahrbare und Marine Anwendung

552. Berenyi, St. G.: Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) Program 1997-98
     Progress. ASME 98-GT-451.
553. O’Brien, P.: Development of a 50-KW, Low-Emission Turbogenerator for Hybrid Electric Vehicles. ASME
554. Sexton, M. R.: Evaporative Compressor Cooling for NOx Suppression and Enhanced Engine
     Performance for Naval Gas Turbine Propulsion Plants. ASME 98-GT-332.
555. Plugnikov, V.: Combined-Cycle Propulsion Plant Uprated in Ship Conversion; Diesel & Gas Turbine
     Worldwide 10 1998, S. 22-24.
556. Zoccoli, M. J.: Development of the Next Generation Gas Turbine Based Jet Air Start Unit for the US
     Navy. ASME 98-GT-084.
557. Luck, D. L.: Extending Use of Marine Gas Turbines through Application of the LM2500+. ASME 98-GT-
558. Carter, M.: A 21st Century Warship With a 21st Century Propulsion System. ASME 98-GT-437.
559. Chellini, R: Gas Turbine Power for Cruisers; Diesel & Gas Turbine Worldwide 7-8 1998, S. 38-39
560. Clevenger, M. T.: Turbines Provide Premium Speeds for Passenger Ferry; Diesel & Gas Turbine
     Worldwide 3 1998, S. 46
561. Kazatzis, P.: A Novel and Compact Marine Gas Turbine Propulsion System. ASME 98-GT-057.
562. Younghans, J. L.: Preliminary Design of Low Cost Propulsion Systems Using Next Generation Cost
     Modeling Techniques. ASME 98-GT-182.
563. Huete, J. I.: A New Propulsion System Proposal for Civil Supersonic Transport: The Retractable Fan
     Concept. ASME 98-GT-059.
564. Waldhelm, Ch.: Application of Gas Turbines on Floater Vessel for Power Generation Service. ASME 98-
565. Waldhelm, Ch.: Design Features of Gas Turbine Systems Applied to Floating Production Storage and
     Off-Loading (FPSO) Vessels. ASME 98-GT-330.


566. Wadman, B.: Controls Upgraded for Improved Reliability; Diesel & Gas Turbine Worldwide 9 1998, S.
567. Martucci, A.: Fault Detection and Accommodation in Real Time Embedded Full Authority Digital
     Electronic Engine Controls. ASME 98-GT-155.
568. Simani, S.: Fault Detection and Isolation Based on Dynamic Observers Applied to Gas Turbine Control
     Sensors. ASME 98-GT-158.
569. Camporeale, S. M.: Dynamic Modeling and Control of Regenerative Gas Turbines. ASME 98-GT-172.
570. Peres-Blanco, H.: A Gas Turbine Dynamic Model for Simulation and Control. ASME 98-GT-078.
571. Vroemen, B. G.: Nonlinear Model Predictive Control of a Laboratory Gas Turbine Installation. ASME 98-
572. Thompson, H. A.: Multi-Objective Optimisation of Systems Architectures for Distributed Aero-Engine
     Control Systems. ASME 98-GT-045.
573. Shaffer, Ph. L.: Distributed Control System for Turbine Engines. ASME 98-GT-016.
574. Kozuhowski, H. J.: Integrated Testing of the Full Authority Digital Control and Redundant Independent
     Mechanical Start System for the U.S.Navy’s DDG-51 Ship Service Gas Turbine Generator Sets. ASME
575. Schley, W. R.: Distributed Flight Control & Propulsion Control Implementation Issues & Lessons
     Learned. ASME 98-GT-003.
576. Lorenz, W.: Development of a Smart Actuator for Turbine Engine Applications. ASME 98-GT-044.
577. Sobanski, K.: Gas Turbine Distributed Control Systems: Power Supply and Communication Data Bus
     Design Considerations. ASME 98-GT-414.
578. Grzybowski, R. R.: High Temperature Silicon Integrated Circuits and Passive Components for
     Commercial and Military Applications. ASME 98-GT-362.

    Aktive Regelung

579. Jackson, M. D.: Active Control of Combustion for Optimal Performance. ASME 98-GT-576.
580. Cohen, J. M.: Active Control of Combustion Instability in a Liquid - Fueled Low - NOx Combustor. ASME
581. Hope, R. W.: Adaptive Vibration Control of Industrial Turbomachinery. ASME 98-GT-405.
582. Perkavec, M.: Aktive Regelung von Gasturbinen; VDI Berichte Nr. 1438 (1998), S. 177-188.


    Ausgeführte Anlagen

583. Dorra, H.: Betriebserfahrungen einer 40-MW-Gasturbine in der Papierindustrie; VDI Berichte Nr. 1438
     (1998), S. 123-129.
584. Stein, P.: Erfahrungen aus dem Einsatz von Gasturbinen in einem Zementwerk; VDI Berichte Nr. 1421
     (1998), S. 289-301.
585. Dopf, W.: Fernheizkraftwerk Linz-Süd - 4 Jahre Betriebserfahrung, erzielte Ergebnisse; VDI Berichte Nr.
     1438 (1998), S. 79-91.
586. Heinisch, M.: Erfahrungen aus der Planung, der Inbetriebnahme und dem ersten Betriebsjahr des GuD-
     Kraftwerks des Gemeinschaftskraftwerk Tübingen GmbH; VDI Berichte Nr. 1438 (1998), S. 93-121.
587. Necker, P.: Bauüberwachung, Qualitätssicherung, Betriebserfahrungen mit dem neuen Heizkraftwerk II;
     VDI Berichte Nr. 1421 (1998), S. 47-74.
588. Svatck, J.: Results of the GT Prime Program Improvements to General Electric MS7001B Gas Turbines
     at the Houston Light and Power T.H. Wharton Site. ASME 98-GT-450.
589. Blomberg, G.: Fast-track Redeployment of AVON Quad-pack Improves Island’s Backup Power System.
     ASME 98-GT-455.
590. Brito, I.: Gas Turbine Spinning Reserve Operation to Support Frequency Drops in Small Grid. ASME 98-
591. Beyene, A.: Comparative Analysis of Gas Turbine Engine Starting. ASME 98-GT-419.

    Monitoring und Diagnose

592. McKay, I.: TIGER: Intelligent Continuous Monitoring of Gas Turbines. Power-Gen Europe 98.
593. Seeliger, J.: Condition Monitoring im Kraftwerk VDI Berichte Nr. 1421 (1998), S. 75-93.
594. Kosmann, G. P.: On-Line & Off-Line Steam Turbine Component Strain States Monitoring for the
     Diagnostic System. ASME 98-GT-456.
595. Hastings, M. M.: Integrated Condition Monitoring System Strategy at CEMEG. ASME 98-GT-129.
596. Wadman, B.: Advances in Gas Turbine Monitoring; Diesel & Gas Turbine Worldwide 9 1998, S. 58-60.
597. Eftekhari, K.: An Open Approach to Condition Monitoring, Diagnosis, and Decision Support Systems.
     ASME 98-GT-156.
598. DePold, H. R.: The Application of Expert Systems and Neural Networks to Gas Turbine Prognostics and
     Diagnostics. ASME 98-GT-101.
599. Gluch, J.: Searching for Inefficient Components of Complex Power Systems. ASME 98-GT-076.
600. Stalder, J.-P.: Gas Turbine Compressor Washing - State of the Art - Field Experiences. ASME 98-GT-

    Zuverlässigkeit und Verfügbarkeit

601. Bernstein, W.: Zuverlässigkeit und Verfügbarkeit von Gasturbinenanlagen - ein notwendiges
     Qualitätsmerkmal für Hersteller und Betreiber; VDI Berichte Nr. 1438 (1998), S. 49-62.
602. Klemp, K.: Experience in Industrial Gas Turbine Operation with Special Respect to Availability. Power-
     Gen Europe 98.
603. Boley, W. M.: FT8 Phase II Reliability Improvement Program. ASME 98-GT-417.
604. Ali, Sy A.: Ultra-High Efficiency Power Systems with Near-Term Commercial Availability. ASME 98-GT-


605. Chellini, R.: Global Maintenance for Gas Turbines; Diesel & Gas Turbine Worldwide 6 1998, S. 44.
606. Birch, P. W.: Quality of both maintenance and breakdown provision for a 3.65 MWe gas turbine CHP
     plant: The Liverpool Experience; VDI Berichte Nr. 1438 (1998), S. 131-141.

    Störungen und Schäden

607. -: Tiger Tracks Faults on Gas Turbines; Diesel & Gas Turbine Worldwide 9 1998, S. 20-22.
608. -: Ice Detection System for Gas Turbines; Diesel & Gas Turbine Worldwide 9 1998, S. 42.
609. Hargrave, S. M.: The Use of Case-Based Reasoning Technology to Aid Fault Isolation in a Modern Gas
     Turbine Engine Design. ASME 98-GT-061.
610. Koubogiannis, D. G.: A Parallel CFD Tool to Produce Faulty Blade Signatures for Diagnostic Purposes.
     ASME 98-GT-169.
611. Yoshida, H.: Experiment on Foreign Object Damage of Gas Turbine-Grade Silicon Nitride Ceramic.
     ASME 98-GT-399.
612. Valk, M.: Schäden an Strömungsmaschinen; VDI Berichte Nr. 1421 (1998), S. 1-23.
613. Lange, G.: Beispiele für Schäden an Flugtriebwerken; VDI Berichte Nr. 1421 (1998), S. 243-266.
614. Busch, H.-G.: Beispielhafte Schäden an stationären Gasturbinen; VDI Berichte Nr. 1421 (1998), S. 267-



615. Casanova, E. L.: Analysis of an Accelerating Rotor-Bearing System with Flexible Damped Supports.
     ASME 98-GT-411.
616. Vazquez, J. A.: Representing Flexible Supports by Polynomial Transfer Functions. ASME 98-GT-027.
617. Yakoub, R. Y.: A Fast Method to Obtain the Nonlinear Response of Multi-Mode Rotors Supported on
     Squeeze Film Dampers Using Planar Modes - Part I: Theory. ASME 98-GT-412.
618. Yakoub, R. Y.: A Fast Method to Obtain the Nonlinear Response of Multi-Mode Rotors Supported on
     Squeeze Film Dampers Using Planar Modes - Part II: Parametric Studies. ASME 98-GT-413.
619. Santiage de, O.: Imbalance Response of a Rotor Supported on Open-Ends Integral Squeeze Film
     Dampers. ASME 98-GT-006.
620. Arghir, M.: A Quasi 2D Method for the Rotordynamic Analysis of Centered Labyrinth Liquid Seals. ASME
621. Soto, E. A.: Experimental Rotordynamic Coefficient Results for (a) A Labyrinth Seal with and without
     Shunt Injection and (b) A Honeycomb Seal. ASME 98-GT-008.
622. Darden J. M.: Experimental Rotordynamic Characterization of Annular Seals: Facility and Methodology.
     ASME 98-GT-017.
623. Vazquez, J. A.: Comparison Between Calculated and Measured Free-Free Modes for a Flexible Rotor.
     ASME 98-GT-051.
624. Florjancic, St. S.: Vibration Measurement Techniques on an Industrial Gas Turbine Rotor Train. ASME
625. Behzad, M.: Accuracy of the Riccati Transfer Matrix Method in Rotor Dynamic Analysis. ASME 98-GT-
626. Haq, I. U.: Identification of the Intermittent Synchronous Instability in a High Performance Steam Turbine
     Rotor Due to Deteriorated Labyrinth Seals. ASME 98-GT-305.
627. Memmott, E. A.: Stability Analysis and Testing of a Train of Centrifugal Compressors for High Pressure
     Gas Injection. ASME 98-GT-378.


628. Kuang, J. H.: Mode Localization of a Cracked Blade-Disks. ASME 98-GT-105.
629. Bladh, R.: Reduced Order Modeling and Vibration Analysis of Mistuned Bladed Disk Assemblies with
     Shrouds. ASME 98-GT-484.
630. Kaneko, Y.: Vibrational Response Analysis of Mistuned Bladed Disk System of Grouped Blades. ASME
631. Cha, D.: Statistics of Response of a Mistuned Bladed Disk Assembly Subjected to White Noise and
     Narrow Band Excitation. ASME 98-GT-379.
632. Mignolet, M. P.: Identification of Mistuning Characteristics of Bladed Disks from Free Response Data.
     ASME 98-GT-583.
633. Gärtner, W.: A Momentum Integral Method to Predict the Frictional Torque of a Rotating Disk with
     Protruding Bolts. ASME 98-GT-138.
634. Maeng, D. J.: Characteristics of Discharge Coefficient in a Rotating Disk System. ASME 98-GT-266.
635. Cairo, R. R.: Twin Web Disk: A Step Beyond Convention. ASME 98-GT-505.


636. Yang. B. D.: Prediction of Resonant Response of Shrouded Blades with 3D Shroud Constraint. ASME
637. Chen, J. J.: Prediction of the Resonant Response of Frictionally Constrained Blade Systems Using
     Constrained Mode Shapes ASME 98-GT-548.
638. Chiang, H.-W.D.: A Cyclic Symmetry Analysis for Turbomachine Blade Flutter. ASME 98-GT-052.
639. Liu, Sh.Ji + F.: Computation of Flutter of Turbomachinery Cascades Using a Parallel Unsteady Navier-
     Stokes Code. ASME 98-GT-043.
640. Blaswich, M.: Effects of Variable Inlet Guide Vane Settings on Axial Compressor Blades Vibration in an
     Industrial Gas Turbine. ASME 98-GT-361.
641. Sensmeier, M. D.: Minimizing Vibratory Strain Measurement Error. ASME 98-GT-257.


642. Schulenberg, T.: New Development in Land-Based Gas Turbine Technology; Materials for Advanced
     Power Engineering 1998, O16.
643. Ramaswarry, V.: Materials Advancements in Land-Based Gas Turbines, Power-Gen International 1998,
644. Härkegärd, G.: Disc Materials for Advanced Land-Based Gas Turbines; Materials for Advanced Power
     Engineering 1998, O20.
645. Nazmy, M. Y.: Gamma TiAl Intermetallic for Gas Turbine Applications; Materials for Advanced Power
     Engineering 1998, O21.
646. Naka, S.: Considerations of Solidification Paths and Development of new Castable Gamma Titanium
     Aluminides; Materials for Advanced Power Engineering 1998, O22.
647. Tabakoff, W.: Erosion Rate Testing at High Temperature of Alloys and Coatings For Use in
     Turbomachinery. ASME 98-GT-025.
648. Stamm, W.: Thermomechanische Ermüdung beschichteter Einkristallwerkstoffe VDI Berichte Nr. 1421
     (1998), S. 303-322.
649. Barykin, B.-M.: Effektive Wärmeleitfähigkeit von Zirkondioxid bei hohen Temperaturen. Teplofizika
     Vysokich Temperatur, 36/1998, 1, S. 44-47.
650. Mannan, S.: Long Term Thermal Stability of INCONEL Alloy 783. ASME 98-GT-508.
651. Sjödin, B.: A Non-Local Theory for the Assessment of Multiaxial High Cycle Fatigue Failure. ASME 98-
652. Wereszczak, A. W.: Strength Distribution Changes in a Silicon Nitride as a Function of Stressing Rate
     and Temperature. ASME 98-GT-527.
653. Woetting, G.: High-Temperature Properties of SiC-Si3N4 Particle Composites. ASME 98-GT-465.
654. Desai, V. H.: Oxidation Characteristics of Nickel Based Superalloys in Steam. ASME 98-GT-587.
655. Hurst, J. B.: ASTM Single Fiber Room Temperature Test Standard Development. ASME 98-GT- 567.
656. Brown, C.: PM 2000 Honeycomb Structures. ASME 98-GT-565.


657. Bullough, C. K.: The Characterisation of the single crystal superalloy CMSX-4 for Industrial Gas Turbine
     Blading Applications; Materials for Advanced Power Engineering 1998, O17.
658. Toulios, M.: Deformation Modelling of the single chrystal superalloy CMSX-4 for Industrial Gas Turbine
     Applications; Materials for Advanced Power Engineering 1998, O18.
659. Caron, P.: Third Generation superalloys for single crystal blades; Materials for Advanced Power
     Engineering 1998, O19.
660. Ford, D. A.: Improved Performance Rhenium Containing Single Crystal Alloy Turbine Blades Utilising
     PPM Levels of the Highly Reactive Elements Lanthanum and Yttrium. ASME 98-GT-371.
661. Henderson, P.: A Metallographie Technique For High Temperature Creep Damage Assessment in
     Single Crystal Alloys. ASME 98-GT-488.
662. Cherwu, N. S.: Influence of Metal Temperature on Base Material and Coating Degradation of GTD-111
     Buckets. ASME 98-GT-511.


663. Czech, N.: Maßgeschneiderte Schutzschichten machen Gasturbinenschaufeln leistungsfähiger; Siemens
     Power Journal 1/1998; S. 40 - 43.
664. Stoiber, J.: Schutzschichtschäden an Gasturbinenschaufeln; VDI Berichte Nr. 1421 (1998), S. 323-338.
665. Rettig, U.: Characterization of Fatigue Mechanisms of Thermal Barrier Coatings by a Novel Laser-Based
     Test. ASME 98-GT-336.
666. Mutasim, Z.: Effects of Alloy Composition on the Performance of Diffusion Aluminide Coatings. ASME
667. Warnes, B. M.: Improved Pt Aluminide Coatings Using CVD and Novel Platinum Electroplating. ASME
668. Page, R. A.: Inhibition of Interdiffusion from MCrAIY Overlay Coating by Application of a Ni-Re Interlayer.
     ASME 98-GT-375.
669. Cheruvu, N. S.: Cyclic Oxidation Behavior of Aluminide, Platinum Modified Aluminide, and MCrAIY
     Coating on GTD-111. ASME 98-GT-468.
670. Kameda, J.: Microstructure/Composition Evolution and Ductility Variation in Thermally Aged Aluminized
     CoCrAIY Coatings. ASME 98-GT-526.
671. Wereszczak, A. A.: Stress Relaxation of MCrAIY Bond Coat Alloys as a Function of Temperature and
     Strain. ASME 98-GT-403.
672. Schmidt, U. T.: The Creep Damage Behavior of the Plasma-Sprayed Thermal Barrier Coating System
     NiCr22Co12Mo9-NiCoCrAIY-ZrO2/7%Y2O3. ASME 98-GT-387.
673. Affeldt, E. E.: Influence of an Aluminide Coating on the TMF Life of a Single Crystal Nickel-Base
     Superalloy. ASME 98-GT-318.
674. Boudot, A.: Thermo-mechanical Characterizations of Coatings for HP Turbines. ASME 98-GT-324.
675. Bettridge, D. F.: The Explorations of Protective Coatings and Deposition Processes for NiBase Alloys
     and γ TiAI; Materials for Advanced Power Engineering 1998, O24.
676. Singheiser, L.: Thermal Barrier Coatings for Gas Turbines-Failure Mechanisms and Life Prediction;
     Materials for Advanced Power Engineering 1998, O25.
677. Chan, K. S.: Coating Life Prediction for Combustion Turbine Blades. ASME 98-GT-478.
678. Schenk, B.: A Unique Small Gas Turbine Test Facility for Low-Cost Investigations of Ceramic Rotor
     Materials and Thermal Barrier Coatings. ASME 98-GT-348.
679. Lenk, P.: Aktuelle Applikationsfelder der Hochleistungs-Elektronenstrahltechnik. Vakuum in Forschung
     und Praxis, 10/1998, 1, S. 29-31.


680. Daleo, J. A.: Application of Stress Relaxation Testing in Metallurgical Life Assessment Evaluations of
     GTD111 Alloy Turbine Buckets. ASME 98-GT-370.
681. Osama, M. J.: Multiaxial Creep Life Prediction of Ceramic Structures Using Continuum Damage
     Mechanics and the Finite Element Method. ASME 98-GT-489.


682. Easley, M. L.: Ceramic Gas Turbine Technology Development. ASME 98-GT-554.
683. Jimenez, O.: Ceramic Stationary Gas Turbine Development Program-Design and Test of a Ceramic
     Turbine Blade. ASME 98-GT-529.
684. Faulder, L.: Ceramic Stationary Gas Turbine Development Program-Design and Test of a First Stage
     Ceramic Nozzle. ASME 98-GT-528.
685. Price, J. R.: Ceramic Stationary Gas Turbine Development Program - Fifth Annual Summary. ASME 98-
686. Hara, Y.: Development and Evaluation of Silicon Nitride Components for Ceramic Gas Turbine. ASME
687. Brinkmann, Ch. R.: Development of ASTM Standards in Support of Advanced Ceramics-Continuing
     Efforts. ASME 98-GT-530.
688. Choi, S. R.: Elevated-Temperature, ‘Ultra’-Fast Fracture Strength of Advanced Ceramics: An Approach
     to Elevated-Temperature "Inert" Strength. ASME 98-GT-479.
689. Taoka, T.: Current Status of the CGT301, Ceramic Gas Turbine. ASME 98-GT-288.
690. Kobayashi, H.: Current Status of Ceramic Gas Turbine (CGT302). ASME 98-GT-501.
691. Yoshida, M.: Development of Ceramic Components for Ceramic Gas Turbine Engine (CGT302). ASME
692. Grondahl, C. M.: Performance Benefit Assessment of Ceramic Components in an MS9001FA Gas
     Turbine. ASME 98-GT-186.
693. Dilzer, M.: Testing of a Low Cooled Ceramic Nozzle Vane Under Transient Conditions. ASME 98-GT-
694. Day, W. H.: Development of Cooled, Ceramic First Stage Vanes for the FT8 Aeroderivative Gas Turbine.
     ASME 98-GT-133.
695. Klemm, H.: High-Temperature Oxidation and Corrosion of Silicon-Based Nonoxide Ceramics. ASME 98-
696. Razzell, A. G.: Oxide/Oxide Ceramic Matrix Composites in Gas Turbine Combustors. ASME 98-GT-030.
697. Nishio, K.: Development of a Combustor Liner Composed of Ceramic Matrix Composite (CMC). ASME
698. Kempster, A.: Protection against Oxidation of Internal Cooling Passageways on Turbine Blades and
     Vanes. Power-Gen Europe 98.
699. Takashi, O.: Reliability Evaluation of Structural Ceramics under Multiaxial Stress State. ASME 98-GT-
700. Rahman, S.: Life Prediction and Reliability Analysis of Ceramic Structures under Combined Static and
     Cyclic Fatigue. ASME 98-GT-569.

    Fertigung, Reparatur

701. Tsay, Der Min: Generation of Five-Axis Cutter Paths for a Ball-End Cutter with Global Interface
     Checking. ASME 98-GT-549.
702. Greaves, W.: Manual GTAW of Superalloy Blade Materials Using High Strength Fillers. ASME 98-GT-
703. Larker, R.: Diffusion Bonding of CMSX-4 to Udimet 720 Using PVD-Coated Interfaces and HIP. ASME
704. Subhas, B. K.: Dimensional Instability Studies in Machining of Inconel 718 Nickel Based Superalloys as
     Applied to Aerogas Turbine Components. ASME 98-GT-469.


705. Picton, P. J.: Economic Considerations in the Development of New Repairs for Gas Turbines. ASME 98-
706. Kunberger, K.: Gas Turbine Repair & Test Facility; Diesel & Gas Turbine Worldwide 4 1998, S. 66-68.
707. -: Hot Gas Casing Repair; Diesel & Gas Turbine Worldwide 9 1998, S. 24-25.
708. Nerovnyi, V.-M.: Restoration of the end surface of working blades of gas turbines. Welding International,
     12/1998, 1, S. 69-72.
709. Bremer, C.: Automatic Blade Repair System Based on Reverse Engineering Strategies. ASME 98-GT-
710. Noble, M.: Turbine Blade Reconstruction from Elbar; Diesel & Gas Turbine Worldwide 9 1998, S. 50.
711. Roth, M.: Reparatur von gerichtet erstarrten und einkristallinen Gasturbinenschaufeln; VDI Berichte Nr.
     1421 (1998), S. 339-353.
712. Swaminathan; V.P.: Microstructure and Property Assessment of Conventionally Cast and Directionally
     Solidified Buckets Refurbished After Long-Term Service. ASME 98-GT-510.
713. Mazur, Z.: Gas Turbine Rotor Disc Repair-Case History. ASME 98-GT-547.
714. Lundberg, R.: HIPed Silicon Nitride Components for AGATA - Properties and Evaluation. ASME 98-GT-

    Meßtechnik und Instrumentierung

715. Vouillarmet, A.: Improvements in L2F Anemometry Technique for Inter-Blade Investigations in High-
     Speed Turbomachinery. ASME 98-GT-157.
716. Dhadwal, H. S.: Dual-Laser Probe Measurement of Blade-Tip Clearance. ASME 98-GT-183.
717. Evans, C.: Testing and Modelling Gas Turbines Using Multisine Signals and Frequency-Domain
     Techniques. ASME 98-GT-098.
718. Mozumdar, S.: New Non-Dimensional Parameters in Fluid Mechanics and their Application to Turbine
     Flowmeter Data Analysis. ASME 98-GT-486.
719. Davies, M. R. D.: Local Measurement of Loss Using Heated Thin Film Sensors. ASME 98-GT-380.
720. Martins, N.: Radiation and Convection Heat Flux Sensor for High Temperature Gas Environment. ASME
721. Lou, W.: Total and Static Quantity Measurements in Unsteady Flow-Effect of Unsteadiness. ASME 98-
722. McGarry, E. T.: Digital Measuring Borescope System. ASME 98-GT-534.
723. Lepicovsky, J.: PSP Measurement of Stator Vane Surface Pressures in a High Speed Fan. ASME 98-
724. Anderson, R. C.: A Government / Industry Collaboration for Turbine Engine Instrumentation
     Development. ASME 98-GT-491.
725. Stange, W. A.: Advanced Instrumentation Technology for the Integrated-High-Performance-Turbine-
     Engine-Technology and High-Cycle-Fatigue Programs. ASME 98-GT-458.
726. Brun, K.: Measurement Uncertainties Encountered During Gas Turbine Driven Compressor Field
     Testing. ASME 98-GT-001.



727. Lewis, A. S.: Sliding Mode Output Feedback Control of a Flexible Rotor Via Magnetic Bearings. ASME
728. Kasarda, M. E. F.: Experimentally Determined Rotor Power Losses in Homopolar and Heteropolar
     Magnetic Bearings. ASME 98-GT-317.
729. Allaire, P. E.: Rotor Power Losses in Planar Radial Magnetic Bearings - Effects of Number of Stator
     Poles, Air Gap Thickness, and Magnetic Flux Density. ASME 98-GT-316.
730. Maslen, E. H.: Fault Tolerant Magnetic Bearings. ASME 98-GT-377.
731. Heshmat, H.: On the Performance of Hybrid Foil-Magnetic Bearings. ASME 98-GT-376.
732. Kondoleon, A. S.: A High Bandwidth, Low Loss Magnetic Supension System for Turbomachinery. ASME
733. Zachariadis, D.C.: Short Bearing Model for the Evaluation of Journal’s Dynamic Angular Misalignment
     Effects on Rotor Vibrations. ASME 98-GT-397.
734. Edney, St. L.: Testing, Analysis and CFD Modeling of a Profiled Leading Edge Groove Tilting Pad
     Journal Bearing. ASME 98-GT-409.


735. Harris, H.: A Performance Evaluation of a Three Splitter Diffuser and Vaneless Diffuser Installed on the
     Power Turbine Exhaust of a TF40B Gas Turbine. ASME 98-GT-284.
736. Zaryankin, A. E.: Experimental Investigations of an Annular Diffuser of the Gas Turbine Exhaust Hood;
     VDI Berichte Nr. 1438 (1998), S. 251-254.
737. Agrawal, A. K.: Flow Characteristics of an Annular Intercooler-Diffuser for Gas Turbines. ASME 98-GT-
738. Sultanian, B. K.: Experimental and 3D CFD Investigation in a Gas Turbine Exhaust System. ASME 98-


739. Chen, L. H.: An Iterative CFD and Mechanical Brush Seal Model and Comparison With Experimental
     Results. ASME 98-GT-372.
740. Rhode, D. L.: Visualization and Measurements of Rub-Groove Leakage Effects on Straight-Through
     Labyrinth Seals. ASME 98-GT-506.
741. Zimmermann, H.: Air System Correlations, Part 1: Labyrinth Seals. ASME 98-GT-206.
742. Zimmermann, H.: Air System Correlations, Part 2: Rotating Holes and Two Phase Flow. ASME 98-GT-
743. Li, J.: A Bulk-Flow Analysis of Multiple-Pocket Gas Damper Seals. ASME 98-GT-013.
744. Zirkelback, N. L.: Qualitative Characterization of Anti-Swirl Gas Dampers. ASME 98-GT-014.
745. Diaz, S. E.: Reduction of the Dynamic Load Capacity in a Squeeze Film Damper Operating with a
     Bubbly Lubricant. ASME 98-GT-109.


746. Santon, R. C.: Explosion Hazards at Gas Turbine Driven Power Plants. ASME 98-GT-215.
747. Sinai, Y. L.: Remediation of Gas Explosion Hazards in Gas Turbine Enclosures. ASME 98-GT-321.
748. Hunt, P. J.: A Risk Based Approach to the Potential for CCGT Enclosure Explosions A Study on
     Teesside Power Station. ASME 98-GT-446.
749. Schwamm, F.: FADEC Computer Systems for Safety Critical Application. ASME 98-GT-170.


750. Srivastava, R.: Application of Time-Shifted Boundary Conditions to a 3D Euler/Navier-Stokes Aeroelastic
     Code. ASME 98-GT-042.
751. Chuang, H. A.: A Nonlineat Numerical Simulator for Three-Dimensional Flows Through Vibrating Blade
     Rows. ASME 98-GT-018.
752. Acran, P.: Optimization of Design of High Pressure Compact and Light-Weight Liquid Heat Exchangers.
     ASME 98-GT-202.
753. Sonoda, T.: The Effect of Inlet Boundary Layer Thickness on the Flow within an Annular S-Shaped Duct.
     ASME 98-GT-260.
754. Matsubara, M.: Boundary Layer Transition at High Levels of Free Stream Turbulence. ASME 98-GT-248.
755. Schook, R.: Effects of Compressibility and Turbulence Level on Bypass Transition. ASME 98-GT-286.
756. Volino, R. J.: Wavelet Analysis of Transitional Flow Data under High Free-Stream Turbulence
     Conditions. ASME 98-GT-289.
757. Johnson, M. W.: Turbulent Spot Characteristics in Boundary Layers Subjected to Streamwise Pressure
     Gradient. ASME 98-GT-124.
758. Maryle, R. E.: A Theory for Predicting the Turbulent-Spot Production Rate. ASME 98-GT-256.
759. Clary, W.: Greenhouse Plants Benefit from Catalytic System; Diesel & Gas Turbine Worldwide 10 1998,
     S. 30-31.
760. Crosa, G.: Turbine Model Improvement for a Heavy-Duty Gas Turbine Plant Simulation. ASME 98-GT-
761. Basu, R. D.: Modification and Redesign of GT Components. ASME 98-GT-586.
762. Morris, R. J.: Active Structural Control for Gas Turbine Engines. ASME 98-GT-514.

763. Yee, R.: Combined Gas Turbine and Diesel Generator Cooling Air Intake System. ASME 98-GT-280.
764. Tanaka, T.: Gas Turbine Inlet Air Cooling System with Liquid Air. ASME 98-GT-449.

765. Anders, J. M.: Achieving Acoustical and Structural Requirements for Gas Turbine Packages while
     Reducing Costs, Pressure Losses, and Weight. ASME 98-GT-083.
766. Moen, L.: Vibroacoustic Early Warning System for Gas Turbines Paper Presentation, ASME Turbo
     Expo., Land, Sea & Air 1998. ASME 98-GT-302.

767. Ekström, C.: Technology and Cost Options for Capture and Disposal of Carbon Dioxide from Gas
     Turbines. A System Study for Swedish Conditions. ASME 98-GT-443.

768. Haq, I. U.: Multistage Centrifugal Compressor Fouling Evaluation at High Power Settings. ASME 98-GT-
769. Palmer, C. A.: Combining Bayesian Belief Networks with Gas Path Analysis for Test Cell Diagnostics
     and Overhaul. ASME 98-GT-168.
770. Wadman, B.: Contaminant Analysis for Gas Turbine Water Systems; Diesel & Gas Turbine Worldwide
     10 1998, S. 75.

771. Steen, M.: Mechanical Property Scatter in CFCCs. ASME 98-GT-319.
772. Puente, I.: Influence of the Interface on the Energy Absorption Mechanisms of CMCs. ASME 98-GT-408.
773. Gyekenyesi, A. L.: Isothermal Fatigue Behavior and Damage Modeling of a High Temperature Woven
     PMC. ASME 98-GT-106.
774. Moftakhar, A. A.: Creep Analysis of High Temperature Components Under Multi-Axial Loading. ASME

To top