Docstoc

NRC Bibliography of EGS related papers

Document Sample
NRC Bibliography of EGS related papers Powered By Docstoc
					EGSnrc & EGS Bibliography                                                                page 1


                    NRC Bibliography of EGS related papers
                                         Iwan Kawrakow
                                  Ionizing Radiation Standards
                              National Research Council of Canada
                                     Ottawa, ON, K1A 0R6
                                   last updated January 2005



The following papers, published in refereed journals or books, have been extracted from the NRC
bibliography system (a bibtex database). They all deal in one way or another with EGS and
the major emphasis is on dosimetry applications as opposed to high energy physics. While this
represents a highly biased set of references, we are willing to add references suggested by others.
As EGS has been cited by well over 1000 papers, we are mostly interested in adding papers which
contribute to either the benchmarking of EGS or demonstrate a novel application of EGS. Please
e-mail them to iwan@irs.phy.nrc.ca and include

   • Complete list of authors

   • Complete title

   • Complete reference (journal, volume, year, pagination)

   • A 50 word or less annotation




  [1] W. Abdel-Rahman, J. P. Seuntjens, F. Verhaegen, F. Deblois, and E. B. Podgorsak, Vali-
      dation of Monte Carlo calculated surface doses for megavoltage photon beams, Med. Phys.
      32, 286 – 298 (2005).

  [2] S. H. Cho, O. N. Vassiliev, S. Lee, H. H. Liu, G. S. Ibbott, and R. Mohan, Reference
      photon dosimetry data and reference phase space data for the 6 MV photon beam from
      Varian Clinac 2100 series linear accelerators, Med. Phys. 32, 137 – 148 (2005).

  [3] G. G. Zeng and J. P. McCaffrey, The response of alanine to a 150 keV X-ray beam, Rad.
      Phys. Chem 72, 537 – 540 (2005).

  [4] G. G. Zeng, M. R. McEwen, D. W. O. Rogers, and N. V. Klassen, An experimental and
      Monte Carlo investigation of the energy dependence of alanine/EPR dosimetry: II. Clinical
      electron beams, Phys. Med. Biol. 50 (submitted, 2004).

  [5] S. D. Thomas, M. Mackenzie, D. W. O. Rogers, and B. G. Fallone, A Monte Carlo derived
      TG–51 equivalent calibration for helical tomotherapy, Med. Phys. 32, submitted Dec 2004
      (2005).

  [6] E. Mainegra-Hing, D. W. O. Rogers, and I. Kawrakow, Calculation of energy deposition
      kernels for photons and dose point kernels for electrons, Med. Phys. (in press) (2005).


Printed January 12, 2005                                                       Refereed papers
EGSnrc & EGS Bibliography                                                               page 2


  [7] L. A. Buckley, I. Kawrakow, and D. W. O. Rogers, CSnrc: correlated sampling Monte
      Carlo calculations using EGSnrc, Med. Phys. 31, 3425 – 3435 (2004).

  [8] J. P. McCaffrey, E. Mainegra-Hing, I. Kawrakow, K. R. Shortt, and D. W. O. Rogers,
      Evidence for using Monte Carlo calculated wall attenuation and scatter correction factors
      for three styles of graphite-walled ion chambers, Phys. Med. Biol. 49, 2491 – 2501 (2004).

  [9] I. Kawrakow, D. W. O. Rogers, and B. Walters, Large efficiency improvements in BEAMnrc
      using directional bremsstrahlung splitting, Med. Phys. 31, 2883 – 2898 (2004).

 [10] C. Janicki and J. Seuntjens, Accurate determination of dose-point-kernel functions close
      to the origin using Monte Carlo simulations , Med. Phys. 31, 814 – 818 (2004).

 [11] H. Bouchard and J. Seuntjens, Ionization chamber-dbased reference dosimetry of intensity
      modulated radiation beams, Med. Phys. 31, 2454 – 2465 (2004).

 [12] A. Chaves, M. C. Lopes, C. C. Alves, C. Oliveira, L. Peralta, P. Rodrigues, and A. Trindade,
      A Monte Carlo multiple source model applied to radiosurgery narrow photon beams, Med.
      Phys. 31, 2192–2204 (2004).

 [13] J. G. Hunt, F. C. A. da Silva, C. L. P. Mauricio, and D. S. dos Santos, The validation of
      organ dose calculations using voxel phantoms and Monte Carlo methods applied to point
      and water immersion sources, Radiation Prorection Dosimetry 108, 85–89 (2004).

                                                                       o
 [14] C. Kirisits1, A. Hefner, P. Wexberg, B. Pokrajac, D. Glogar, R. P¨tter, and D. Georg, Esti-
      mation of doses to personnel and patients during endovascularbrachytherapy applications,
      Radiation Protection Dosimetry 108, 237–245 (2004).

            o¨
 [15] T. Kn¨os, P. Nilsson, and B. P, Measurements of output factors with different detector
      types and Monte Carlo calculations of stopping-power ratios for degraded electron beams,
      Phys. Med. Biol. 49, 4493–4506 (2004).

 [16] P. Mobit and I. Badragan, An evaluation of the AAPM-TG43 protocol for I-125 brachyther-
      apy saeed, Phys. Med. Biol. 49, 3161 – 3170 (2004).

 [17] P. Mobit and I. Badragan, Dose perturbation effects in prostate seed implant brachytherapy
      with I-125, Phys. Med. Biol. 49, 3171 – 3178 (2004).

 [18] T. T. Monajemi, S. Steciw, B. G. Fallone, and S. Rathee, Modeling scintillator-photodiodes
      as detectors for megavoltage CT, Med. Phys. 31, 1225–1234 (2004).

 [19] J. Pardo, L. Franco, F. Gomez, A. Iglesias, R. L. J. Mosquera, A. Pazos, J. Pena, M. Pom-
      bar, A. Rodriguez, and J. Sendon, Free ion yield observed in liquid isooctane irradiated by
      γ rays. Comparison with the Onsager theory, Phys. Med. Biol. 49, 1905–1914 (2004).

 [20] B. W. Raaymakers, A. J. E. Raaijmakers, A. N. T. J. Kotte, D. Jette, and J. J. W. Lagendijk,
      Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose deposition in a
      transverse magnetic field, Phys. Med. Biol. 49, 4109–4118 (2004).




Printed January 12, 2005                                                      Refereed papers
EGSnrc & EGS Bibliography                                                             page 3


 [21] B. Reniers, F. Verhaegen, and S. Vynckier, The radial dose function of low-energy
      brachytherapy seeds in different solid phantoms: comparison between calculations with
      the EGSnrc and MCNP4C Monte Carlo codes and measurements, Phys. Med. Biol. 49,
      1569–1582 (2004).

 [22] B. Reniers, S. Vynckier, and F. Verhaegen, Theoretical analysis of microdosimetric spectra
      and cluster formation for 103 Pd and 125 I photon emitters, Phys. Med. Biol. 49, 3781–3795
      (2004).

 [23] M. J. Rivard, B. M. Coursey, L. A. DeWerd, M. S. Huq, G. S. Ibbott, M. G. Mitch, R. Nath,
      and J. F. Williamson, Update of AAPM Task Group No. 43 Report: A revised AAPM
      protocol for brchytherapy dose calculations, Med. Phys. 31, 633 – 674 (2004).

 [24] D. W. O. Rogers, Accuracy of the Burns equation for stopping-power ratio as a function
      of depth and R50 , Med. Phys. 31, 2961 – 2963 (2004).

 [25] B. D. Smedt, N. Reynaert, W. D. Neve, and H. Thierens, DOSSCORE: an accelerated
      DOSXYZnrc code with an efficient stepping algorithm and scoring grid, Phys. Med. Biol.
      49, 4623 – 4635 (2004).

 [26] A. Syme, C. Kirkbey, B. Fallone, and S. McQuarrie, Monte Carlo investigation of single
      cell beta dosimetry for intraperitoneal radionuclide therapy, Phys. Med. Biol. 49, 1959 –
      1972 (2004).

 [27] G. G. Zeng, M. R. McEwen, D. W. O. Rogers, and N. V. Klassen, An experimental and
      Monte Carlo investigation of the energy dependence of alanine/EPR dosimetry: I. Clinical
      x-ray beams, Phys. Med. Biol. 49, 257 – 270 (2004).

 [28] J.-F. Carrier, L. Archambault, L. Beaulieu, and R. Roy, Validation of GEANT4, an object-
      oriented Monte Carlo toolkit, forsimulations in medical physics, Medical Physics 31, 484–
      492 (2004).

           u
 [29] L. B¨ermann, H. M. Kramer, and I. Csete, Results supporting calculated wall correction
      factors for cavity chambers, Phys. Med. Biol. 48, 3581 – 3594 (2003).

 [30] L. A. Buckley, I. Kawrakow, and D. W. O. Rogers, An EGSnrc investigation of cavity
      theory for ion chambers measuring air kerma, Med. Phys. 30, 1211 – 1218 (2003).

 [31] O. Chibani and X. A. Li, IVBTMC, A Monte Carlo dose calculation tool for intravascular
      brachytherapy, Med. Phys. 30, 44–51 (2003).

 [32] J. C. Chow, E. Wong, J. Z. Chen, and J. van Dyk, Comparison of dose calculation
      algorithms with Monte Carlo methods for photon arcs, Med. Phys. 30, 2686 – 2694
      (2003).

 [33] P. W. Chin, E. Spezi, and D. G. Lewis, Monte Carlo simulation of portal dosimetry on a
      rectilinear voxel geometry: a variable gantry angle solution, Phys. Med. Biol. 48, N231 –
      N238 (2003).




Printed January 12, 2005                                                     Refereed papers
EGSnrc & EGS Bibliography                                                                   page 4


 [34] I. J. Chetty, P. M. Charland, N. Tyagi, D. McShan, and B. A. Fraass, Photon beam relative
      dose validation of the DPM Monte Carlo code in lung-equivalent media, Med. Phys. 30,
      563 – 573 (2003).

 [35] A. Chaves, M. C. Lopes, C. C. Alves, C. Oliveira, L. Peralta, P. Rodrigues, and A. Trindade,
      Basic dosimetry of radiosurgery narrow beams using Monte Carlo simulations: A detailed
      study of depth of maximum dose, Med. Phys. 30, 2904–2911 (2003).

 [36] J. Coulot, M. Ricard, and B. Aubert, Validation of the EGS user code dose3D for internal
      beta dose calculation at the cellular tissue level, Phys. Med. Biol. 48, 2591 – 2602 (2003).

 [37] G. X. Ding, Using Monte Carlo simulations to commission photon beam output factors –
      a feasibility study, Phys. Med. Biol. 48, 3865 – 3874 (2003).

 [38] M. A. Ebert and B. Carruthers, Dosimetric characteristics of a low-kV intra-operative x-ray
      source: Implications for use in a clinical trial for treatment of low-risk breast cancer, Med.
      Phys. 30, 2424–2431 (2003).

 [39] P. Francescon, S. Cora, and P. Chiovati, Dose verification of an IMRT treatment planning
      system with the BEAM EGS4-based Monte Carlo code, Med. Phys. 30, 144 – 157 (2003).

 [40] M. Fragoso, J. Seco, A. E. Nahum, and F. Verhaegen, Incorporation of a combinatorial
      geometry package and improved scoring capabilities in the EGSnrc Monte Carlo Code
      system, Med. Phys. 30, 1076–1085 (2003).

 [41] E. Heath and J. Seuntjens, Development and validation of a BEAMnrc component module
      for accurate Monte Carlo modelling of the Varian dynamic Millennium multileaf collimator,
      Phys. Med. Biol. 48, 4045 – 4063 (2003).

                           oo             o                 o
 [42] P. Haraldsson, T. Kn¨¨s, J. Nystr¨m, and P. Engstr¨m, Monte Carlo study of TLD
      measurements in air cavities, Phys. Med. Biol. 48, N253–N259 (2003).

 [43] N. I. Kalach and D. W. O. Rogers, When is an accelerator photon beam “clinic-like” for
      reference dosimetry purposes, Med. Phys. 30, 1546 – 1555 (2003).

 [44] E. Mainegra-Hing, I. Kawrakow, and D. W. O. Rogers, Calculations for plane-parallel ion
      chambers in 60 Co beams using the EGSnrc Monte Carlo code, Med. Phys. 30, 179 – 189
      (2003).
                                                                              125
 [45] P. Mobit and I. Badragan, Response of LiF-TLD micro-rods around               I radioactive seed,
      Phys. Med. Biol. 48, 3129 – 3142 (2003).

 [46] E. Pavon, F. Sanchez-Doblado, A. Leal, R. Capote, J. Lagares, M. Perucha, and R. Ar-
      rans, Total skin electron therapy treatment verification: Monte Carlo simulation and beam
      characteristics for large non-standard electron fields, Phys. Med. Biol. 48, 2783–2796
      (2003).

 [47] A. Piermattei, L. Azario, A. Fidanzio, P. Viola, C. Dell’Omo, L. Iadanza, V. Fusco, J. I.
      Lagares, and R. Capote, The wall correction factor for a spherical ionization chamber used
      in brachytherapy source calibration, Phys. Med. Biol. 48, 4091 – 4103 (2003).


Printed January 12, 2005                                                        Refereed papers
EGSnrc & EGS Bibliography                                                              page 5


 [48] A. Piermattei, A. Fidanzio, L. Azario, L. Grimaldi, P. Viola, and R. Capote, Experimental
      dosimetry of a 32 P cathether-based endovascular brachytherapy source, Phys. Med. Biol.
      48, 2283 – 2296 (2003).
 [49] D. W. O. Rogers and I. Kawrakow, Monte Carlo calculated correction factors for primary
      standards of air-kerma, Med. Phys. 30, 521 – 543 (2003).
 [50] D. Rajon, A. Shah, C. Watchman, J. Brindle, and W. Bolch, A hyperboliod representation
      of the bone-marrow interface within 3D NMR images in trabecular bone: application to
      skeletal dosimetry, Phys. Med. Biol. 48, 1721 – 1740 (2003).
 [51] N. D. Scielzo, S. J. Freedman, B. K. Fujikawa, and P. A. Vetter, Recoil-ion charge-state
      distribution following the beta+ decayof 21 Na, Physical Review A 68, 022716 (2003).
          a                                                                     a
 [52] F. S´nchez-Doblado, P. Andreo, R. Capote, A. Leal, M. Perucha, R. Arr´ns, L. N´nez, u
      E. Mainegra, J. I. Lagares, and E. Carrasco, Ionization chamber dosimetry of small photon
      fields: a Monte Carlo study on stopping-power ratios for radiosurgery and IMRT beams,
      Phys. Med. Biol. 48, 2081 – 2099 (2003).
 [53] J. Van de Walle, C. Martens, N. Reynaert, H. Palmans, W. De Neve, C. De Wagter, and
      H. Thierens, Monte Carlo model of the Elekta SLiplus accelerator: validation of a new
      MLC component module in BEAM for a 6 MV beam, Phys. Med. Biol. 48, 371 – 385
      (2003).
 [54] F. Verhaegen, Interface perturbation effects in high-energy electron beams, Phys. Med.
      Biol. 48, 687 – 705 (2003).
                               o¨
 [55] E. Wieslander and T. Kn¨os, Dose perturbation in the presence of metallic implants:
      treatment planning system versus Monte Carlo simulation, Phys. Med. Biol. 48, 3295 –
      3305 (2003).
 [56] R. Wang, X. A. Li, and J. Lobdell, Monte Carlo dose characterization of a new [sup
      90]Sr/[sup 90]Y source with balloon for intravascular brachytherapy, Med. Phys. 30, 27–
      33 (2003).
 [57] B. Warkentin, S. Steciw, S. Rathee, and B. G. Fallone, Dosimetric IMRT verification with
      a flat-panel EPID, Medical Physics 30, 3143–3155 (2003).
 [58] G. Yegin, A new approach to geometry modelling ofr Monte Carlo particle transport: an
      application to EGS, Nucl. Inst. Meth. B 211, 331 – 338 (2003).
 [59] J. A. Antolak, M. S. Bieda, and K. R. Hogstrom, Using Monte Carlo methods to com-
      mission electron beams: A feasibility study, Med. Phys. 29, 771 – 786 (2002).
 [60] W. A. Beckham, P. J. Keall, and J. V. Siebers, A fluence-convolution method to calculate
      radiation therapy dose distributions that incorporate random set-up error, Phys. Med. Biol.
      47, 3465 – 3473 (2002).
           o                         oo
 [61] P. Bj¨rk, P. Nilsson, and T. Kn¨¨s, Dosimetry characteristics of degraded electron beams
      investigated by Monte Carlo calculations in a setup for intraoperative radiation therapy,
      Phys. Med. Biol. 47, 239 – 256 (2002).

Printed January 12, 2005                                                     Refereed papers
EGSnrc & EGS Bibliography                                                                page 6


           o         oo
 [62] P. Bj¨rk, T. Kn¨¨s, and P. Nilsson, Influence of initial electron beam characteristics on
      Monte Carlo calculated absorbed dose distributions for linear accelerator beams, Phys.
      Med. Biol. 47, 4019 – 4041 (2002).

 [63] M. Blomquist, J. Li, C.-M. Ma, B. Zackrisson, and M. Karlsson, Comparison between
      a conventional treatment energy and 50 MV photons for the treatment of lung tumours,
      Phys. Med. Biol. 47, 889 – 897 (2002).

 [64] M. Blomquist, M. G. Karlsson, B. Zackrisson, and M. Karlsson, Multileaf collimation of
      electrons - clinical effects on electron energy modulation and mixed beam therapy depending
      on treatment head design, Phys. Med. Biol. 47, 1013 – 1024 (2002).

 [65] D. Bollini, R. Campanini, N. Lanconneli, and A. Riccardi, A Modular description of the
      geometry in Monte Carlo modelling studies for nuclear medicine, Int. Journal of Modern
      Physics C13, 465–476 (2002).

 [66] D. T. Burns, L. Bueermann, H. M. Kramer, and B. Lange, Comparison of the air-kerma
      standards of the PTB and the BIPM in the medium-energy x-ray range, BIPM Report
      BIPM–02/07 (2002).

 [67] O. Chibani and X. A. Li, Monte Carlo dose calculations in homogeneous media and at
      interfaces: A comparison between GEPTS, EGSnrc, MCNP, and measurements, Med.
      Phys. 29, 835 – 847 (2002).

 [68] A. V. Chvetsov and G. A. Sandison, Reconstruction of electron spectra using singular
      component decomposition, Med. Phys. 29, 578–591 (2002).

 [69] O. Chibani, Energy-loss straggling algorithms for Monte Carlo electron transport, Med.
      Phys. 29, 2374–2383 (2002).

 [70] I. J. Das, V. P. Moskvin, A. Kassaee, T. Tabata, and F. Verhaegen, Dose perturbations at
      high-Z interfaces in kilovoltage photon beams: comparison with Monte Carlo simulations
      and measurements, Radiation Physics and Chemistry 64, 173–179 (2002).

 [71] F. DeBlois, W. Abdel-Rahman, J. P. Seuntjens, and E. B. Podgorsak, Measurement of
      absorbed dose with a bone equivalent extrapolation chamber, Med. Phys. 29, 433 – 440
      (2002).

 [72] G. X. Ding, Energy spectra, angular spread, fluence profiles and dose distributions of 6 and
      18 MV photon beams: results of Monte Carlo simulations for a Varian 2100EX accelerator,
      Phys. Med. Biol. 47, 1025 – 1046 (2002).

 [73] G. X. Ding, C. Duzenli, and N. I. Kalach, Are neutrons responsible for the dose discrepancies
      between Monte Carlo calculations and measurements in the build-up region for a high-
      energy photon beam?, Phys. Med. Biol. 47, 3251 – 3261 (2002).

 [74] G. X. Ding, Dose discrepancies between Monte Carlo calculations and measurements in
      the builup region for a high-energy photon beam, Med. Phys. 29, 2459 – 2463 (2002).




Printed January 12, 2005                                                       Refereed papers
EGSnrc & EGS Bibliography                                                              page 7


 [75] M. A. Earl and L. Ma, Depth dose enhancement of electron beams subject to external
      uniform longitudinal magnetic fields: A Monte Carlo Study, Med. Phys. 29, 484 – 491
      (2002).

 [76] Y. Fu and Z. Luo, Application of Monte Carlo simulation to cavity theory based on the
      virtual electron source concept, Phys. Med. Biol. 47, 3263 – 3274 (2002).

 [77] S. Flampouri, P. M. Evans, F. Verhaegen, A. E. Nahum, E. Spezi, and M. Partridge, Opti-
      mization of accelerator target and detector for portal imaging using Monte Carlo simulation
      and experiment, Phys. Med. Biol. 47, 3331 – 3349 (2002).

 [78] R. Jeraj, P. J. Keall, and J. V. Siebers, The effect of dose calculation accuracy on inverse
      treatment planning, Phys. Med. Biol. 47, 391 – 407 (2002).

 [79] M. G. Karlsson and M. Karlsson, Electron beam collimation with focused and curved leaf
      end MLCs – Experimental verification of Monte Carlo optimized designs, Med. Phys. 29,
      631 – 637 (2002).

 [80] H. Keller, M. Glass, R. Hinderer, K. Ruchala, R. Jeraj, G. Olivera, and T. R. Mackie,
      Monte Carlo study of a highly efficient gas ionization detector for megavoltage imaging
      and image-guided radiotherapy, Med. Phys. 29, 165 – 175 (2002).

 [81] C. Kirisits, D. Georg, P. Wexberg, B. Pokrajac, D. Glogar, and R. Potter, Determination and
      application of the reference isodose length (RIL) for commercial endovascular brachytherapy
      devices, Radiother. & Oncol. 64, 309–315 (2002).

 [82] M. Krmar, D. Nikolic, P. Krstonosic, Cora, P. Francescon, P. Chiovati, and A. Rudic, A
      simple method for bremsstrahlung spectra reconstruction from transmission measurements,
      Med. Phys. 29, 932 – 938 (2002).

 [83] R. F. Laitano, M. P. Toni, M. Pimpinella, and M. Bovi, Determination of Kwall correction
      factor for a cylindrical ionization chamber to measure air-kerma in 60 Co gamma beams,
      Phys. Med. Biol. 47, 2411 – 2431 (2002).

 [84] S.-Y. Lin, T.-C. Chu, J.-M. Lin, and C.-Y. Huang, Monte Carlo simulation of surface
      percent depth dose, Applied Rad’n and Isotopes 56, 505 – 510 (2002).

 [85] X. A. LI, O. Chibani, B. Greenwald, and M. Suntharalingam, Radiotherapy dose per-
      turbation of metallic esophageal stents, Int J Radiat Oncol Biol Phys 54, 1276 – 1285
      (2002).

 [86] C.-M. Ma, J. S. Li, T. Pawlicki, S. B. Jiang, J. Deng, M. C. Lee, T. Koumrian, M. Luxton,
      and S. Brain, A Monte Carlo dose calculation tool for radiotherapy treatment planning,
      Phys. Med. Biol. 47, 1671 – 1690 (2002).

 [87] C. Martens, N. Reynaert, C. De Wagter, M. Coghe, H. Palmans, H. Thierens, and W. De
      Neve, Underdosage of the upper-airway mucosa for small fields as used in in IMRT: A com-
      parison between radiochromic film measurements, Monte Carlo simulations and collapsed
      cone convolution calculations, Med. Phys. 29, 1528 – 1535 (2002).


Printed January 12, 2005                                                     Refereed papers
EGSnrc & EGS Bibliography                                                                 page 8


 [88] J. C. Nipper, J. L. Williams, and W. E. Bloch, Creation of two tomographic voxel models
      of pediatric patients in the first year of their life, Phys. Med. Biol. 47, 3143 – 3164 (2002).

 [89] R. F. Nutbrown, S. Duane, D. R. Shipley, and R. A. S. Thomas, Evaluation of factors to
      convert absorbed dose calibrations from graphite to water for the NPL high-energy photon
      calibration service, Phys. Med. Biol. 47, 441 – 454 (2002).

 [90] H. Palmans, W. Mondelaers, and H. Thierens, Beam quality of high-energy photon beams
      at the Ghent University linear accelerator, Phys. Med. Biol. 47, L15 – L18 (2002).

 [91] H. Palmans, F. Verhaegen, J.-M. Denis, and S. Vynckier, Dosimetry using plane-parallel
      ionization chambers in a 75 MeV clinical proton beam, Phys. Med. Biol. 47, 2895 – 2905
      (2002).

 [92] M. Piessens, N. Reynaert, J. Potempa, H. Thierens, W. Wijns, and L. Verbeke, Dose
      distributions for 90 Y intravascular brachytherapy sources used with balloon catheters, Med.
      Phys. 29, 1562 – 1571 (2002).

 [93] N. Reynaert, H. Palmans, H. Thierens, and R. Jeraj, Parameter dependence of the MCNP
      electron transport in determining dose distributions, Medical Physics 29, 2446–2454
      (2002).

 [94] D. Sheikh-Bagheri and D. W. O. Rogers, Sensitivity of megavoltage photon beam Monte
      Carlo simulations to electron beam parameters, Med. Phys. 29, 379 – 390 (2002).

 [95] E. Spezi and D. G. Lewis, Full forward Monte Carlo calculation of portal dose from MLC
      collimated treatment beams, Phys. Med. Biol. 47, 377 – 390 (2002).

 [96] D. Sheikh-Bagheri and D. W. O. Rogers, Calculation of nine megavoltage photon beam
      spectra using the BEAM Monte Carlo code, Med. Phys. 29, 391 – 402 (2002).

 [97] J. V. Siebers, P. J. Keall, J. O. Kim, , and R. Mohan, A method for photon beam Monte
      Carlo multileaf collimator particle transport, Phys. Med. Biol. 47, 3225 – 3250 (2002).

 [98] E. Spezi, D. G. Lewis, and C. W. Smith, A DICOM-RT-based toolbox for the evaluation
      and verification of radiotherapy plans, Phys. Med. Biol. 47, 4223 – 4232 (2002).

 [99] F. Verhaegen, Evaluation of the EGSnrc Monte Carlo code for interface dosimetry near
      high-Z media exposed to kilovolt and 60 Co photons, Phys. Med. Biol. 47, 1691 – 1705
      (2002).

[100] R. Wang and X. A. Li, Dosimetric comparison of two 90Sr/90Y sources for intravascular
      brachytherapy: an EGSnrc Monte Carlo calculation, Phys. Med. Biol. 47, 4259 – 4269
      (2002).

[101] R. Wang and X. A. Li, Dose characterization in the near-source region for two high doserate
      brachytherapy sources, Med. Phys. 29, 1678–1686 (2002).

[102] B. R. B. Walters, I. Kawrakow, and D. W. O. Rogers, History by history statistical
      estimators in the BEAM code system, Med. Phys. 29, 2745 – 2752 (2002).


Printed January 12, 2005                                                        Refereed papers
EGSnrc & EGS Bibliography                                                              page 9


[103] M. R. Bieda, J. A. Antolak, and K. R. Hogstrom, The effect of scattering foil parameters
      on electron-beam Monte Carlo calculations, Med. Phys. 28, 2527 – 2534 (2001).

[104] R. A. Boyd, K. R. Hogstrom, J. A. Antolak, and A. S. Shiu, A measured data set for
      evaluating electron-beam dose algorithms, Med. Phys. 46, 950 – 958 (2001).

[105] W. G. Cross, J. Hokkanen, H. Jarvinen, F. Mourtada, P. Sipila, C. G. Soares, and S. Vynck-
      ier, Calculation of beta-ray dose distributions from ophthalmic applicators and comparison
      with measurements in a model eye, Med. Phys. 28, 1385–1396 (2001).

[106] Y. D. Deene, N. Reynaert, and C. D. Wagter, On the accuracy of monomer/polymer gel
      dosimetry in the proximityof a high-dose-rate 192 Ir source, Phys. Med. Biol. 46, 2801–2825
      (2001).

[107] C. L. Hartmann Siantar et al., Description and dosimetric verification of the PEREGRINE
      Monte Carlo dose calculation system for photon beams incident on a water phantom, Med.
      Phys. 28, 1322 – 1337 (2001).

[108] J. O. Kim, J. V. Siebers, P. J. Keall, M. R. Arnfield, and R. Mohan, A Monte Carlo study
      of radiation transport through multileaf collimators, Med. Phys. 28, 2497 – 2506 (2001).

[109] M. Lachaine and B. G. Fallone, Cascade analysis for medical imaging detectors with stages
      involving both amplification and dislocation processes, Med. Phys. 28, 501–507 (2001).

                                    u
[110] W. U. Laub, A. Bakai, and F. N¨sslin, Intensity modulated irradiation of a thorax phantom:
      comparisons between measurements, Monte Carlo calculations and pencil beam calculation,
      Phys. Med. Biol. 46, 1695 – 1706 (2001).

[111] M. Lachaine, E. Fourkal, and B. G. Fallone, Detective quantum efficiency of a direct-
      detection active matrix flat panel imager at megavoltage energies, Med. Phys. 28, 1364–
      1372 (2001).

[112] M. Lachaine, E. Fourkal, and B. G. Fallone, Investigation into the physical characteristics
      of active matrix flat panel imagers for radiotherapy, Med. Phys. 28, 1689–1695 (2001).

[113] M. C. Lee, J. Deng, J. Li, S. B. Jiang, and C.-M. Ma, Monte Carlo based treatment
      planning for modulated electron beam radiation therapy, Phys. Med. Biol. 46, 2177 –
      2199 (2001).

[114] X. A. Li, L. Ma, S. Naqvi, R. Shih, and C. Yu, Monte Carlo dose verification for intensity-
      modulated arc therapy, Phys. Med. Biol. 46, 2269 – 2282 (2001).

[115] H. H. Liu, F. Verhaegen, and L. Dong, A method of simulating dynamic multileaf collima-
      tors using Monte Carlo techniques for intensity-modulated radiation therapy, Phys. Med.
      Biol. 46, 2283 – 2298 (2001).

[116] X. A. Li, L. Reiffel, J. Chu, and S. Naqvi, Conformal photon-beam therapy with transverse
      magnetic fields: A Monte Carlo study, Med. Phys. 28, 127 – 133 (2001).

[117] X. A. Li, Dosimetric effects of contrast media for catheter-based intravascular brachyther-
      apy, Med. Phys. 28, 757 – 763 (2001).

Printed January 12, 2005                                                      Refereed papers
EGSnrc & EGS Bibliography                                                               page 10


[118] S.-Y. Lin, T.-C. Chu, and J.-M. Lin, Monte Carlo simulation of a clinical linear accelerator,
      Applied Rad’n and Isotopes 55, 759 – 765 (2001).

[119] X. Li, M. Suntharalingam, and C. Yu, Dosimetry of source stepping for intravascular
      brachytherapy, Cardiovasc. Radiat. Med. 2(3), 165–172 (2001).

[120] G. Malataras, C. Kappas, and D. M. J. Lovelock, A Monte Carlo approach to electron
      contamination sources in the Saturne-25 and -41, Phys. Med. Biol. 46, 2435 – 2446
      (2001).

[121] B. M. C. McCurdy, K. Luchka, and S. Pistorius, Dosimetric investigation and portal dose
      image prediction using an amorphous silicon electronic portal imaging device, Med. Phys.
      46, 911 – 924 (2001).

[122] Y. Mejaddem, S. Hyodynmaa, R. Svensson, and A. Brahme, Photon scatter kernels for
      intensity modulating radiation therapy filters, Phys. Med. Biol. 46, 3215 – 3228 (2001).

[123] M. Miften, M. Wiesmeyer, A. Kapur, and C.-M. Ma, Comparison of RTP dose distributions
      in heterogeneous phantoms with the BEAM Monte Carlo simulation system, J of App Clin
      Med Phys 2, 21 – 31 (2001).

[124] M. Oldham, S. A. Sapareto, X. A. Li, J. Allen, S. Sutlief, O. C. Wong, and J. W. Wong,
      Practical aspects of in situ 16 O(γ,n)15 O activation using a conventional medical accelerator
      for the purpose of perfusion imaging, Med. Phys. 46, 1669 – 1678 (2001).

[125] M. Olivares, F. DeBlois, E. B. Podgorsak, and J. P. Seuntjens, Electron fluence correction
      factors for various materials in clinical electron beams, Med. Phys. 28, 1727 – 1734 (2001).

                                                  o
[126] F. C. P. du Plessis, C. A. Willemse, M. G. L¨tter, and L. Goedhais, Comparison of the
      Batho, ETAR and Monte Carlo dose calculation methods in CT based patient models,
      Med. Phys. 28, 582–589 (2001).

[127] R. Shih, X. A. Li, and J. C. H. Chu, Dynamic wedge versus physical wedge: A Monte
      Carlo study, Med. Phys. 28, 612–619 (2001).

[128] R. Shih, X. A. Li, and W. Hsu, Dosimetric characteristics of dynamic wedged fields: a
      Monte Carlo study, Phys. Med. Biol. 46, N281 – N292 (2001).

[129] E. Spezi, D. G. Lewis, and C. W. Smith, Monte Carlo simulation and dosimetric verification
      of radiotherapy beam modifiers, Phys. Med. Biol. 46, 3007 – 3029 (2001).

[130] F. Verhaegen and H. H. Liu, Incorporating dynamic collimator motion in Monte Carlo
      simulations: an application in modelling a dynamic wedge, Phys. Med. Biol. 46, 287 – 296
      (2001).

[131] F. Verhaegen and H. Palmans, A systematic Monte Carlo study of secondary electron
      fluence perturbation in clinical proton beams (70–250 MeV) for cylindrical and spherical
      ionchambers, Medical Physics 28, 2088–2095 (2001).




Printed January 12, 2005                                                        Refereed papers
EGSnrc & EGS Bibliography                                                                 page 11


[132] F. Verhaegen, C. Mubata, J. Pettingell, A. M. Bidmead, I. Rosenberg, D. Mockridge, and
      A. E. Nahum, Monte Carlo calculation of output factors for circular, rectangular, and
      square fields of electron accelerators (6-20 MeV), Med. Phys. 28, 938 – 949 (2001).

[133] R. Wang and X. A. Li, Monte Carlo dose calculations of beta-emitting sources for in-
      travascular brachytherapy: A comparison between EGS4, EGSnrc, and MCNP, Med. Phys.
      28, 134 – 141 (2001).
                                                                      32
[134] R. Wang and X. A. Li, Monte Carlo characterization of a              P source for intravascular
      brachytherapy, Med. Phys. 28, 1776 – 1785 (2001).

[135] W. van der Zee and J. Welleweerd, A Monte Carlo study on internal wedges using BEAM,
      Med. Phys. 29, 876 – 885 (2001).

[136] S. Elbakian, E. Gazazian, K. Ispirian, R. Ispirian, and K. Sanosyan, Coherent Radio Radi-
      ation of 15MeV – 30GeV Electron and Photon Bunches in Thin and Thick Radiators, in
      Radio Detection of High Energy Particles, AIP Conference Proceedings, Vol. 579, edited
      by D. Saltzberg and P. Gorham, pages 241 – 248, Melville, NY: AIP, 2001.

[137] I. Kawrakow, Accurate condensed history Monte Carlo simulation of electron transport. I.
      EGSnrc, the new EGS4 version, Med. Phys. 27, 485 – 498 (2000).

[138] I. Kawrakow, Accurate condensed history Monte Carlo simulation of electron transport.
      II. Application to ion chamber response simulations, Med. Phys. 27, 499 – 513 (2000).

[139] F. M. Buffa and A. E. Nahum, Monte Carlo dose calculations and radiobiological modelling:
      analysis of the effect of the statistical noise of the dose distribution on the probability of
      tumour control, Phys. Med. Biol. 45, 3009–3023 (2000).

[140] J. Borg, I. Kawrakow, D. W. O. Rogers, and J. P. Seuntjens, Monte Carlo study of
      correction factors for Spencer-Attix cavity theory at photon energies at or above 100 keV,
      Med. Phys. 27, 1804 – 1813 (2000).

[141] J. Deng, S. B. Jiang, A. Kapur, J. Li, T. Pawlicki, and C.-M. Ma, Photon beam charac-
      terization and modelling for Monte carlo treatment planning, Phys. Med. Biol. 45, 411 –
      427 (2000).

[142] B. A. Faddegon and I. Blevis, Electron spectra derived from depth dose distributions,
      Med. Phys. 27, 514 – 526 (2000).

[143] P. Francescon, C. Cavedon, S. Reccanello, and S. Cora, Photon dose calculation of a
      three-dimensional treatment planning system compared to the Monte Carlo code BEAM,
      Med. Phys. 27, 1579 – 1587 (2000).

[144] R. Jeraj and P. J. Keall, The effect of statistical uncertainty on inverse treatment planning
      based on Monte Carlo calculation, Phys. Med. Biol. 45, 3601 – 3613 (2000).

[145] I. Kawrakow and M. Fippel, Investigation of variance reduction techniques for Monte
      Carlo photon dose calculation using XVMC, Phys. Med. Biol. 45, 2163 – 2184 (2000).



Printed January 12, 2005                                                          Refereed papers
EGSnrc & EGS Bibliography                                                              page 12


[146] P. J. Keall, J. V. Siebers, R. Jeraj, and R. Mohan, The effect of dose calculation uncertainty
      on the evaluation of radiotherapy plans, Med. Phys. 27, 478 – 484 (2000).
[147] M. C. Lee and C.-M. Ma, Monte Carlo characterization of clinical electron beams in
      transverse magnetic fields, Phys. Med. Biol. 45, 2947–2967 (2000).
[148] M. C. Lee, S. B. Jiang, and C.-M. Ma, Monte Carlo and experimental investigations of
      multileaf collimated electron beams for modulated electron radiation therapy, Med. Phys.
      27, 2708 – 2718 (2000).
[149] X. A. Li, C. Yu, and T. Holmes, A systematic evaluation of air cavity dose perturbation
      in megavoltage x-ray beams, Med. Phys. 27, 1011 – 1017 (2000).
[150] J. S. Li, T. Pawlicki, J. Deng, S. B. Jiang, E. Mok, and C.-M. Ma, Validation of a
      Monte Carlo dose calculation tool for radiotherapy treatment planning, Phys. Med. Biol.
      45, 2969–2985 (2000).
[151] H. H. Liu, T. R. Mackie, and E. C. McCullough, Modeling photon output caused by
      backscattered radiation into the monitor chamber from collimator jaws using a Monte
      Carlo technique, Med. Phys. 27, 737 – 744 (2000).
[152] C.-M. Ma, T. Pawlicki, S. B. Jiang, J. S. Li, J. Deng, E. Mok, A. Kapur, L. Xing, L. Ma,
      and A. L. Boyer, Monte Carlo verification of IMRT dose distributions from a commercial
      treatment planning optimization system, Phys. Med. Biol. 45, 2483 – 2495 (2000).
[153] D. Marre, I. H. Ferreira, A. Bridier, A. Bjoreland, H. Svensson, A. Dutreix, and J. Chavau-
      dra, Energy correction factors of LiF power TLDs irradiated in high-energy electron beams
      and applied to mailed dosimetry for quality assurance networks, Phys. Med. Biol. 45, 3657
      – 3674 (2000).
[154] C.-M. Ma and S. B. Jiang, Monte Carlo modelling of electron beams from medical
      accelerators, Phys. Med. Biol. 44, R157 – R189 (2000).
[155] M. Miften, M. Wiesmeyer, S. Monthofer, and K. Krippner, Implementation of FFT
      convolution and multigrid superposition models in the FOCUS RTP system, Phys. Med.
      Biol. 45, 817 – 833 (2000).
[156] R. A. Price and K. Ayyangar, IORT apparatus design improvement through the evaluation
      of electron spectral distributions using Monte Carlo methods, Med. Phys. 27, 215 – 220
      (2000).
[157] M. Partridge, Reconstruction of megavoltage photon spectra from electronic portal imager
      derived transmission measurements, Phys. Med. Biol. 45, N115–N131 (2000).
[158] J. Sempau and A. F. Bielajew, Towards the elimination of Monte Carlo statistical fluctua-
      tions from dose volume histograms for radiotherapy treatment planning, Phys. Med. Biol.
      45, 131 – 157 (2000).
[159] A. Schach von Wittenau, P. M. Bergstrom, and L. J. Cox, Patient-dependent beam-
      modifier physics in Monte Carlo photon dose calculations, Med. Phys. 27, 935 – 947
      (2000).

Printed January 12, 2005                                                       Refereed papers
EGSnrc & EGS Bibliography                                                           page 13


[160] D. Sheikh-Bagheri, D. W. O. Rogers, C. K. Ross, and J. P. Seuntjens, Comparison of
      measured and Monte Carlo calculated dose distributions from the NRC linac, Med. Phys.
      27, 2256 – 2266 (2000).

[161] F. Verhaegen, R. Symonds-Tayler, H. H. Liu, and A. E. Nahum, Backscatter towards the
      monitor ion chamber in high-energy photon and electron beams: charge integration versus
      Monte Carlo simulation, Phys. Med. Biol. 45, 3159 – 3170 (2000).

[162] F. Verhaegen and I. J. Das, Monte Carlo modelling of a virtual wedge, Phys. Med. Biol.
      44, N251 – N259 (2000).

                               oo
[163] E. Wieslander and T. Kn¨¨s, A virtual linear accelerator for verification of treatment
      planning systems, Phys. Med. Biol. 45, 2887 – 2896 (2000).

[164] M. Alonso, T. Barriuso, M. J. Castaneda, N. Diaz-Caneja, I. Gutierrez, J. J. Sarmiento,
      and E. Villar, Monte Carlo estimation of absorbed dose to organs in diagnostic radiology,
      Health Physics 76, 388 – 392 (1999).

[165] P. Alaei, B. J. Gerbi, and R. A. Geise, Generation and use of photon energy deposition
      kernels for diagnostic quality x rays , Med. Phys. 26, 1687 – 1697 (1999).

[166] B. A. Faddegon, P. O’Brien, and D. L. D. Mason, The flatness of Siemens linear accelerator
      x-ray fields, Med. Phys. 26, 220 – 228 (1999).

[167] R. Jeraj, P. J. Keall, and P. M. Ostwald, Comparisons between MCNP, EGS4 and experi-
      ment for clinical electron beams, Phys. Med. Biol. 44, 705 – 717 (1999).

[168] A. Kapur and C.-M. Ma, Stopping-power ratios for clinical electron beams from a scatter-
      foil linear accelerator, Phys. Med. Biol. , 2321 – 2341 (1999).

[169] M. G. Karlsson, M. Karlsson, and C.-M. Ma, Treatment head design for multileaf collimated
      high-energy electrons, Med. Phys. 26, 2161 – 2167 (1999).

[170] X. A. Li, Peak scatter factors for high energy photon beams, Med. Phys. 26, 962 – 966
      (1999).

[171] C.-M. Ma, E. Mok, A. Kapur, T. Pawlicki, D. Findley, S. Brain, and K. Forster, Clinical
      implementation of a Monte Carlo treatment planning system, Med. Phys. 26, 2133 – 2143
      (1999).

[172] G. Mora, A. Maio, and D. W. O. Rogers, Monte Carlo simulation of a typical 60 Co therapy
      source, Med. Phys. 26, 2494 – 2502 (1999).

[173] H. Palmans, W. Mondelaers, and H. Thierens, Absorbed dose beam quality correction
      factors kQ for the NE2571 chamber in a 5 MV and 10 MV photon beam, Phys. Med. Biol.
      44, 647–663 (1999).

[174] D. W. O. Rogers, Correcting for electron contamination at dose maximum in photon
      beams, Med. Phys. 26, 533 – 537 (1999).



Printed January 12, 2005                                                    Refereed papers
EGSnrc & EGS Bibliography                                                            page 14


[175] G. Rossi, M. S. del Rio, P. Fajardo, and J. Morse, Monte Carlo simulation of the X-ray
      response of a germanium microstrip detector with energy and position resolution, Nucl.
      Inst. Meth. A 432, 130 – 137 (1999).

[176] A. Schach von Wittenau, L. J. Cox, P. M. Bergstrom, W. P. Chandler, C. L. Hartmann-
      Siantar, and R. Mohan, Correlated histogram representation of Monte Carlo derived
      medical accelerator photon-output phase space, Med. Phys. 26, 1196 – 1211 (1999).

           o
[177] R. Sj¨gren, M. G. Karlsson, and M. Karlsson, Methods for the determination of effective
      monitor chamber thickness, Med. Phys. 26, 1871 – 1873 (1999).

[178] F. Verhaegen, A. E. Nahum, S. Van de Putte, and Y. Namito, Monte Carlo modelling of
      radiotherapy kV x-ray units, Phys. Med. Biol. 44, 1767 – 1789 (1999).

[179] K. De Vlamynck, H. Palmans, F. Verhaegen, C. De Wagter, W. De Neve, and H. Thierens,
      Dose measurements compared with Monte Carlo simulations of narrow 6 MV multileaf
      collimator shaped photon beams, Med. Phys. 26, 1874–1882 (1999).

[180] W. van der Zee and J. Welleweerd, Calculating photon beam characteristics with Monte
      Carlo techniques, Med. Phys. 26, 1883 – 1892 (1999).

[181] H. Zaidi, Relevance of accurate Monte Carlo modeling in nuclear medical imaging, Med.
      Phys. 26, 574 – 608 (1999).

[182] G. G. Zhang, D. W. O. Rogers, J. E. Cygler, and T. R. Mackie, Monte Carlo investigation
      of electron beam output factors vs size of square cutout, Med. Phys. 26, 743 – 750 (1999).

[183] K. M. Ayyangar and S. B. Jiang, Do we need Monte Carlo treatment planning for linac
      based radiosurgery? A case study, Med. Dosim. 23, 161 – 168 (1998).

[184] B. A. Faddegon, J. Balogh, R. Mackenzie, and D. Scora, Clinical considerations of Monte
      Carlo for electron radiotherapy treatment planning, Radiation Physics and Chemistry 53,
      217 – 227 (1998).

[185] I. Kawrakow and A. F. Bielajew, On the representation of electron multiple elastic-
      scattering distributions for Monte Carlo calculations, Nuclear Instruments and Methods
      134B, 325 – 336 (1998).

[186] I. Kawrakow and A. F. Bielajew, On the condensed history technique for electron transport,
      Nuclear Instruments and Methods 142B, 253 – 280 (1998).

[187] A. Kapur, C.-M. Ma, E. C. Mok, and A. L. Boyer, Monte Carlo calculations of electron
      beam output factors for amedical linear accelerator, Phys. Med. Biol. 43, 3479 – 3494
      (1998).

[188] C.-M. Ma, Characterization of computer simulated radiotherapy beams for Monte Carlo
      treatment planning, Radiation Phys. Chem. 53, 329 – 344 (1998).

[189] Y. Namito, H. Hirayama, and S. Ban, Improvements of low-energy photon transport in
      EGS4, Radiation Phys. Chem. 53, 283 – 294 (1998).


Printed January 12, 2005                                                     Refereed papers
EGSnrc & EGS Bibliography                                                             page 15


[190] D. Sheikh-Bagheri and P. N. Munro, A Monte Carlo study of verification imaging in high
      dose rate Brachytherapy, Med. Phys. 25, 404 – 414 (1998).

                  a
[191] L. M. N. T´vora and E. J. Morton, Photon production using a low energy electron
      expansion of the EGS4 code system, Nucl. Inst. Meth. B 143, 253 – 271 (1998).

[192] F. Verhaegen, I. J. Das, and H. Palmans, Monte Carlo dosimetry study of a 6 MV stereo-
      tactic radiosurgery unit, Phys. Med. Biol. 43, 2755 – 2768 (1998).

[193] G. G. Zhang, D. W. O. Rogers, J. E. Cygler, and T. R. Mackie, Effects of changes in
      stopping-power ratios with field size on electron beam ROFs, Med. Phys. 25, 1711 – 1724
      (1998).

[194] G. X. Ding, D. W. O. Rogers, J. E. Cygler, and T. R. Mackie, Electron fluence correction
      factors used in conversion of dose in plastic to dose in water, Med. Phys. 24, 161 – 176
      (1997).

[195] X. A. Li, D. Salhani, and C.-M. Ma, Characteristics of orthovoltage x-ray therapy beam
      at extended SSD for applications with end plates, Phys. Med. Biol. 42, 357 – 370 (1997).

[196] H. H. Liu, T. R. Mackie, and E. C. McCullough, Calculating output factors for photon beam
      radiotherapy using a convolution/superposition method based on a dual source photon
      beam model, Med. Phys. 24, 1975 – 1985 (1997).

[197] H. H. Liu, T. R. Mackie, and E. C. McCullough, Calculating dose and output factors for
      wedged photon radiotherapy fields using a convolution/superposition method, Med. Phys.
      24, 1714 – 1728 (1997).

[198] H. H. Liu, T. R. Mackie, and E. C. McCullough, A dual source photon beam model used
      in convolution/superposition dose calculations for clinical megavoltage x-ray beams, Med.
      Phys. 24, 1960 – 1974 (1997).

[199] C.-M. Ma, B. A. Faddegon, D. W. O. Rogers, and T. R. Mackie, Accurate characterization
      of Monte Carlo calculated electron beams for radiotherapy, Med. Phys. 24, 401 – 416
      (1997).

[200] B. Nilsson, A. Montelius, P. Andreo, and J. Johansson, Correction factors for parallel-plate
      chambers used in plastic phantoms in electron dosimetry, Phys. Med. Biol. 42, 2101 –
      2118 (1997).

[201] L. E. Adam, M. E. Bellemann, G. Brix, and W. J. Lorenz, Monte Carlo-based analysis of
      PET scatter components, J Nucl. medicine 37, 2024 – 2029 (1996).

[202] A. F. Bielajew, A hybrid multiple-scattering theory for electron-transport Monte Carlo
      calculations, Nucl. Inst. Meth. B111, 195 – 208 (1996).

[203] D. T. Burns, G. X. Ding, and D. W. O. Rogers, R50 as a beam quality specifier for
      selecting stopping-power ratios and reference depths for electron dosimetry, Med. Phys.
      23, 383 – 388 (1996).



Printed January 12, 2005                                                      Refereed papers
EGSnrc & EGS Bibliography                                                             page 16


[204] J. L. Chartier, B. Grosswendt, G. F. Gualdrini, H.Hirayama, C.-M. Ma, F. Padoani,
      N. Petoussi, S. M. Seltzer, and M. Terrissol, Reference fluence-to-dose-equivalent con-
      version coefficients and angular-dependence factors for 4-element ICRU tissue, water and
      PMMA slab phantoms irradiated by broad electron beams, Radiation Protection Dosimetry
      63, 7 – 14 (1996).

[205] G. X. Ding, D. W. O. Rogers, and T. R. Mackie, Mean energy, energy-range relationship
      and depth-scaling factors for clinical electron beams, Med. Phys. 23, 361 – 376 (1996).

                                           a
[206] D. Hannallah, T. C. Zhu, and B. E. Bj¨rngard, Electron disequilibrium in high-energy x-ray
      beams, Med. Phys. , 1867 – 1871 (1996).

[207] I. Kawrakow, Electron transport: multiple and plural scattering, Nuclear Instruments and
      Methods B108, 23 – 34 (1996).

[208] I. Kawrakow, Electron transport: longitudinal and lateral correlation algorithm, Nuclear
      Instruments and Methods B114, 307 – 326 (1996).

[209] P. N. Mobit, A. E. Nahum, and P. Mayles, The energy correction factor of LiF ther-
      moluminescent dosemeters in megavoltage electron beams: Monte Carlo simulations and
      experiments, Med. Phys. 41, 979 – 993 (1996).

[210] B. Nilsson, A. Montelius, and P. Andreo, Wall effects in plane-parallel ionization chambers,
      Phys. Med. Biol. 41, 609 – 623 (1996).

[211] G. X. Ding, D. W. O. Rogers, and T. R. Mackie, Calculation of stopping-power ratios
      using realistic clinicalelectron beams, Med. Phys. 22, 489 – 501 (1995).

[212] B. J. Foote and V. G. Smyth,     The modelling of electron multiple-scattering in
      EGS4/PRESTAand its effect on ionization-chamber response, Nucl. Inst. Meth. B100,
      22 – 30 (1995).

[213] E. E. Furhang, C.-S. Chui, and M. Lovelock, Mean mass energy absorption coefficient
      ratios for megavoltage x-ray beams, Med. Phys. 22, 525 – 530 (1995).

[214] X.-Q. Lu and L. M. Chin, A direct approach for the determination of absorbed dose
      fromelectron beams using non-water phantoms, Med. Phys. 22, 2083 – 2091 (1995).

[215] X. A. Li and D. W. O. Rogers, Electron mass scattering powers: Monte Carlo and
      analytical calculations, Med. Phys. 22, 531 – 541 (1995).

[216] D. M. J. Lovelock, C. S. Chui, and R. Mohan, A Monte Carlo model of photon beams
      used in radiation therapy, Med. Phys. 22, 1387 – 1394 (1995).

[217] C.-M. Ma and A. E. Nahum, Monte Carlo calculated stem effect corrections for NE2561
      andNE2571 chambers in medium-energy x-ray beams, Phys. Med. Biol. 40, 63 – 72 (1995).

[218] C.-M. Ma and A. E. Nahum, Calculations of ion chamber displacement effect corrections
      for medium-energy x-ray dosimetry, Phys. Med. Biol. 40, 45 – 62 (1995).



Printed January 12, 2005                                                      Refereed papers
EGSnrc & EGS Bibliography                                                              page 17


[219] Y. Namito, S. Ban, and H. Hirayama, Compton scattering of 20 to 40-keV photons, Phys.
      Rev. A 51, 3036 – 3043 (1995).

[220] D. W. O. Rogers, B. A. Faddegon, G. X. Ding, C.-M. Ma, J. Wei, and T. R. Mackie,
      BEAM: A Monte Carlo code to simulate radiotherapy treatment units, Med. Phys. 22, 503
      – 524 (1995).

[221] F. Verhaegen and J. Seuntjens, Monte Carlo study of electron spectra and backscatter dose
      in the vicinity of media interfaces for monoenergetic photons of 50 - 1250 keV, Radiation
      Research 143, 334 – 342 (1995).

[222] E. L. Chaney, T. J. Cullip, and T. A. Gabriel, A Monte Carlo study of accelerator head
      scatter, Med. Phys. 21, 1383 – 1390 (1994).

[223] X. A. Li and D. W. O. Rogers, Reducing Electron Contamination for Photon-Beam-Quality
      Specification, Med. Phys. 21, 791 – 798 (1994).

[224] C.-M. Ma, R. T. Knight, A. E. Nahum, and W. P. M. Mayles, An investigation of the
      response of a simple design of plane-parallel chamber, Phys. Med. Biol. 39, 1593 – 1608
      (1994).

[225] C.-M. Ma, Implementation of a Monte Carlo radiation transport code on aparallel computer
      system, Parallel Computing 20, 991 – 1005 (1994).

[226] Y. Namito, S. Ban, and H. Hirayama, Implementation of Doppler broadening of Compton-
      scattered photons into the EGS4 code, Nucl. Inst. Meth. A349, 489 – 494 (1994).

[227] K. E. Sixel and E. B. Podgorsak, Buildup region and depth dose maximum of megavoltage
      x-ray beams, Med. Phys. 21, 411 – 416 (1994).

[228] C. M. Wells, T. R. Mackie, M. B. Podgorsak, M. A. Holmes, N. Papanikolaou, P. J. Reck-
      werdt, J. Cygler, D. W. O. Rogers, A. F. Bielajew, D. Schmidt, and J. K. Muehlenkamp,
      Measurements of electron dose distribution near inhomogeneities using a plastic scintillator
      detector, Int. J. Radiat. Oncol. Biol. Phys. 29, 1157 – 1165 (1994).

[229] P. Andreo, J. Medin, and A. F. Bielajew, Constraints on the multiple scattering theory of
          e
      Moli`re in Monte Carlo simulations of the transport of charged particles, Med. Phys. 20,
      1315 – 1325 (1993).

[230] A. F. Bielajew, R. Wang, and S. Duane, Incorporation of single scattering in the EGS4
      Monte Carlo code system: Tests of Moliere theory, Nuc Inst Meth B82, 503 – 512 (1993).

[231] B. A. Faddegon and D. W. O. Rogers, Comparisons of thick-target bremsstrahlung
      calculations by EGS4 and ITS, Nuc. Inst. Meth. A327, 556 – 565 (1993).

[232] M. A. Holmes, T. R. Mackie, W. Sohn, P. J. Reckwerdt, T. J. Kinsella, A. F. Bielajew, and
      D. W. O. Rogers, The application of correlated sampling to the computation of electron
      beam dose distributions in heterogeneous phantoms using the Monte Carlomethod, Phys.
      Med. Biol. 38, 675 – 688 (1993).



Printed January 12, 2005                                                      Refereed papers
EGSnrc & EGS Bibliography                                                              page 18


[233] A. Kosunen and D. W. O. Rogers, Beam Quality Specification for Photon Beam Dosimetry,
      Med. Phys. 20, 1181 – 1188 (1993).

[234] C.-M. Ma and A. E. Nahum, Dose conversion and wall correction factors for Fricke
      dosimetry in high-energy photon beams: analytical model and Monte Carlo calculations,
      Phys. Med. Biol. 38, 93 – 114 (1993).

[235] C.-M. Ma and A. E. Nahum, Effect of size and composition of central electrode on
      the response of cylindrical ionisation chambers in high-energy photon and electron beams,
      Phys. Med. Biol. 38, 267 – 290 (1993).

[236] C.-M. Ma and A. E. Nahum, Correction factors for Fricke dosimetry in high-energy electron
      beams, Phys. Med. Biol. 38, 423 – 438 (1993).

[237] C.-M. Ma and A. E. Nahum, Calculation of absorbed dose ratios using correlated Monte
      Carlo sampling, Med. Phys. 20, 1189 – 1199 (1993).

[238] C.-M. Ma, D. W. O. Rogers, K. R. Shortt, C. K. Ross, A. E. Nahum, and A. F. Bielajew,
      Wall correction and absorbed dose conversion factors for Fricke dosimetry: Monte Carlo
      calculations and measurements, Med. Phys. 20, 283 – 292 (1993).

[239] Y. Namito, S. Ban, and H. Hirayama, Implementation of linearly-polarized photon scat-
      tering into the EGS4 code, Nuclear Instruments and Methods A322, 277 – 283 (1993).

[240] D. W. O. Rogers, How accurately can EGS4/PRESTA calculate ion chamber response?,
      Med. Phys. 20, 319 – 323 (1993).

[241] P. Andreo and A. Fransson, Estimation of uncertainties in stopping-power ratios using
      Monte Carlo methods, Appl. Radiat. Isotop. 43, 1425 – 1426 (1992).

               o
[242] A. Ahnesj¨, M. Saxner, and A. Trepp, A pencil beam model for photon dose calculation
      , Med. Phys. 19, 263 – 273 (1992).

[243] A. F. Bielajew and D. W. O. Rogers, A standard timing benchmark for EGS4 Monte Carlo
      calculations, Medical Physics 19, 303 – 304 (1992).

[244] M. Conti, A. Del Guerra, D. Mazzei, P. R. andW. Bencivelli, E. Bartolucci, A. Messineo,
      V. Rosso, A. Stefanini, U. Bottigli, P. Randaccio, and W. R. Nelson, Use of the EGS4
      Monte Carlo code to evaluate the response of HgI2 and CdTe detectors for photons in the
      diagnostic energy range, Nuclear Instruments and Methods A322, 591 – 595 (1992).

[245] B. A. Faddegon, C. K. Ross, and D. W. O. Rogers, Measurement of collision stopping
      powers of graphite, aluminum and copper for 10 and 20 MeV electrons, Phys. Med. Biol.
      37, 1561 – 1571 (1992).

[246] C.-M. Ma and A. E. Nahum, A new algorithm for EGS4 low-energy electron transport to
      account for the change in discrete interaction cross-section with energy, Nucl. Instr. Meth.
      B72, 319 – 330 (1992).

[247] D. W. O. Rogers and B. A. Faddegon, Re-evaluation of total stopping power of 5.3 MeV
      electrons inpolystyrene, Phys. Med. Biol. 37, 969 – 983 (1992).

Printed January 12, 2005                                                      Refereed papers
EGSnrc & EGS Bibliography                                                              page 19


[248] D. W. O. Rogers, Calibration of Parallel–Plate Ion Chambers: Resolution of Several
      Problems by Using Monte Carlo Calculations, Medical Physics 19, 889 – 899 (1992).

[249] M. Udale, Monte Carlo calculations of electron beam parameters for three Philips linear
      accelerators, Phys. Med. Biol. 37, 85 – 105 (1992).

[250] S. Walker, A. F. Bielajew, M. Hale, and D. Jette, Installation of EGS4 Monte Carlo code
      on an 80386-based microcomputer, Med. Phys. 19, 305 – 306 (1992).

[251] A. Del Guerra, W. R. Nelson, and P. Russo, A simple method to introduce K-edge
      sampling for compounds inthe code EGS4 for X-ray element analysis, Nuclear Instruments
      and Methods A306, 378 – 385 (1991).

[252] B. A. Faddegon, C. K. Ross, and D. W. O. Rogers, Angular distribution of bremsstrahlung
      from 15 MeV electrons incident on thick targets of Be, Al and Pb, Medical Physics 18,
      727 – 739 (1991).

[253] C.-M. Ma and A. E. Nahum, Bragg-Gray theory and ion chamber dosimetry for photon
      beams, Phys. Med. Biol. 36, 413 – 428 (1991).

[254] C. Malamut, D. W. O. Rogers, and A. F. Bielajew, Calculation of water/air stopping-
      power ratios using EGS4 with explicit treatment of electron - positron differences, Med.
      Phys. 18, 1222 – 1228 (1991).

[255] D. W. O. Rogers, The role of Monte Carlo simulation of electron transport in radiation
      dosimetry, Int’l J of Appl. Radiation and Isotopes, 42, 965 – 974 (1991).

[256] T. Tabata, P. Andreo, and R. Ito, Analytic fits to Monte Carlo calculated depth-dose
      curves of 1– to 50–MeV electrons in water, Nucl. Instr Meth. B58, 205 – 210 (1991).

[257] C. Thomason, T. R. Mackie, and M. J. Lindstrom, Effect of source encapsulation on the
      energy spectra of 192 Ir and 137 Cs seed sources, Phys. Med. Biol. 36, 495 – 505 (1991).

[258] C. Thomason, T. R. Mackie, M. J. Lindstrom, and P. D. Higgins, The dose distribution
      surrounding 192 Ir and 137 Cs seed sources, Phys. Med. Biol. 36, 475 – 493 (1991).

[259] P. Andreo, Depth-dose and stopping-power data for monoenergetic electronbeams, Nucl.
      Instr. Meth. 51, 107 – 121 (1990).

[260] B. A. Faddegon, C. K. Ross, and D. W. O. Rogers, Forward directed bremsstrahlung of
      10 – 30 MeV electrons incident on thick targets of Al and Pb, Medical Physics 17, 773 –
      785 (1990).

[261] B. A. Faddegon, L. Van der Zwan, D. W. O. Rogers, and C. K. Ross, Precision response
      estimation, energy calibration, and unfolding of spectra measured with a large NaI detector,
      Nucl. Inst. Meth. A301, 138 – 149 (1990).

[262] S. S. Kubsad, T. R. Mackie, M. A. Gehring, D. J. Misisco, B. R. Paliwal, M. P. Mehta,
      and T. J. Kinsella, Monte Carlo and convolution dosimetry for stereotactic radiosurgery,
      Int. J. Radiation Oncology Biol. Phys. 19, 1027 – 1035 (1990).


Printed January 12, 2005                                                      Refereed papers
EGSnrc & EGS Bibliography                                                            page 20


[263] C. Manfredotti, U. Nastasi, R. Marchisio, C. Ongaro, G. Gervino, R. Ragona, S. Angle-
      sio, and G. Sannazzari, Monte Carlo simulation of dose distribution in electron beam
      radiotherapy treatment planning, Nucl. Instr. Meth. A291, 646 – 654 (1990).

[264] D. W. O. Rogers and A. F. Bielajew, Wall attenuation and scatter corrections for ion
      chambers: measurements versus calculations, Phys. Med. Biol. 35, 1065 – 1078 (1990).

[265] R. K. Rice and L. M. Chin, Monte Carlo calculations of scatter to primary ratios for
      normalization of primary and scatter dose, Phys. Med. Biol. 35, 333 – 338 (1990).

[266] P. Andreo and A. Fransson, Stopping-power ratios and their uncertainties for clinical
      electron beam dosimetry, Phys. Med. Biol. 34, 1847 – 1861 (1989).

               o
[267] A. Ahnesj¨, Collapsed cone convolution of radiant energy for photon dose calculation in
      heterogeneous media , Med. Phys. 16, 577 – 592 (1989).

[268] P. Andreo, A. Brahme, A. E. Nahum, and O. Mattsson, Influence of energy and angular
      spread on stopping-power ratios for electron beams, Phys. Med. Biol. 34, 751 – 768 (1989).

              a
[269] B. E. Bj¨rngard, J.-S. Tsai, and R. K. Rice, Doses on the central axes on narrow 6-MV
      x-ray beams, Med. Phys. 17, 794 – 799 (1989).

[270] H. Hirayama and D. K. Trubey, Effects of incoherent and coherent scattering on the
      exposurebuildup factors of low-energy gamma rays, Nucl. Sci. Eng. 99, 145 – 156 (1988).

[271] T. R. Mackie, A. F. Bielajew, D. W. O. Rogers, and J. J. Battista, Generation of energy
      deposition kernels using the EGS Monte Carlo code, Phys. Med. Biol. 33, 1 – 20 (1988).

[272] D. W. O. Rogers, G. M. Ewart, A. F. Bielajew, and G. van Dyk, Calculation of Elec-
      tron Contamination in a 60 Co Therapy Beam, in “Proceedings of the IAEA International
      Symposium on Dosimetry in Radiotherapy” (IAEA, Vienna), Vol 1 , 303 – 312 (1988).

[273] M. Udale, A Monte Carlo investigation of surface doses for broad electron beams, Phys.
      Med. Biol. 33, 939 – 954 (1988).

                o
[274] A. Ahnesj¨, P. Andreo, and A. Brahme, Calculation and application of point spread
      functions for treatment planning with high energy photon beams, Acta Oncol. 26, 49 –
      57 (1987).

[275] A. F. Bielajew and D. W. O. Rogers, PRESTA: The Parameter Reduced Electron-Step
      Transport Algorithm for electron Monte Carlo transport, Nuclear Instruments and Methods
      B18, 165 – 181 (1987).

[276] K. Han, D. Ballon, C. Chui, and R. Mohan, Monte Carlo simulation of a cobalt-60 beam,
      Med. Phys. 14, 414 – 419 (1987).

[277] C. Manfredotti, U. Nastasi, R. Ragona, and S. Anglesio, Comparison of three dimensional
      Monte Carlo simulation and the pencil beam algorithm for an electron beam from a linear
      accelerator, Nucl. Instr. Meth. A255, 355 – 359 (1987).



Printed January 12, 2005                                                     Refereed papers
EGSnrc & EGS Bibliography                                                            page 21


[278] R. Mohan, C. Chui, and L. Lidofsky, Differential pencil beam dose computation model for
      photons, Med. Phys. 13, 64 – 73 (1986).
[279] V. G. Smyth and A. C. McEwan, Interface artefacts in Monte Carlo calculations, Phys.
      Med. Biol. 31, 299 – 301 (1986).
[280] K. R. Shortt, C. K. Ross, A. F. Bielajew, and D. W. O. Rogers, Electron Beam Dose
      Distributions Near Standard Inhomogeneities, Phys. Med. Biol. 31, 235 – 249 (1986).
[281] A. F. Bielajew and D. W. O. Rogers, Interface artefacts in Monte Carlo calculations, Phys.
      Med. Biol. 31, 301 – 302 (1986).
[282] J. C. Cunningham, M. Woo, D. W. O. Rogers, and A. F. Bielajew, The Dependence
      of Mass Energy Absorption Coefficient Ratios on Beam Size and Depth in a Phantom,
      Medical Physics 13, 496 – 502 (1986).
[283] R. Mohan, C. Chui, and L. Lidofsky, Energy and angular distributions of photons from
      medical linear accelerators, Med. Phys. 12, 592 – 597 (1985).
[284] D. W. O. Rogers and A. F. Bielajew, Calculated buildup curves for photons with energies
      up to 60 Co, Med. Phys. 12, 738 – 744 (1985).
[285] D. W. O. Rogers, A. F. Bielajew, and A. E. Nahum, Ion chamber response and Awall
      correction factors in a 60 Co beam by Monte Carlo simulation, Phys. Med. Biol. 30, 429 –
      443 (1985).
[286] H. Mach and D. W. O. Rogers, A Measurement of Absorbed Dose to Water per Unit
      Incident 7 MeV Photon Fluence, Phys. Med. Biol. 29, 1555 – 1570 (1984).
[287] J. A. Rawlinson, A. F. Bielajew, P. Munro, and D. M. Galbraith, Theoretical and ex-
      perimental investigation of dose enhancement due to charge storage in electron-irradiated
      phantoms, Med. Phys. 11, 814 – 821 (1984).
[288] D. W. O. Rogers, Low energy electron transport with EGS, Nucl. Inst. Meth. 227, 535 –
      548 (1984).
[289] H. Mach and D. W. O. Rogers, An Absolutely Calibrated Source of 6.13 MeV Gamma-rays,
      IEEE Trans. on Nuclear Science NS-30, 1514 – 1517 (1983).
[290] P. L. Petti, M. S. Goodman, T. A. Gabriel, and R. Mohan, Investigation of buildup dose
      from electron contamination of clinical photon beams, Med. Phys. 10, 18 – 24 (1983).
[291] P. L. Petti, M. S. Goodman, J. M. Sisterson, P. J. Biggs, T. A. Gabriel, and R. Mohan,
      Sources of electron contamination for the Clinac–35 25–MV photon beam, Med. Phys. 10,
      856 – 861 (1983).
[292] D. W. O. Rogers, More realistic Monte Carlo calculations of photon detector response
      functions, Nucl. Instrum. Meth. 199, 531 – 548 (1982).
[293] W. P. Swanson, Improved calculation of photoneutron yields released by incident electrons,
      Health Physics 37, 347 – 358 (1979).


Printed January 12, 2005                                                     Refereed papers

				
DOCUMENT INFO
Shared By:
Categories:
Tags:
Stats:
views:20
posted:1/26/2011
language:English
pages:21