Document Sample

EGSnrc & EGS Bibliography page 1 NRC Bibliography of EGS related papers Iwan Kawrakow Ionizing Radiation Standards National Research Council of Canada Ottawa, ON, K1A 0R6 last updated January 2005 The following papers, published in refereed journals or books, have been extracted from the NRC bibliography system (a bibtex database). They all deal in one way or another with EGS and the major emphasis is on dosimetry applications as opposed to high energy physics. While this represents a highly biased set of references, we are willing to add references suggested by others. As EGS has been cited by well over 1000 papers, we are mostly interested in adding papers which contribute to either the benchmarking of EGS or demonstrate a novel application of EGS. Please e-mail them to iwan@irs.phy.nrc.ca and include • Complete list of authors • Complete title • Complete reference (journal, volume, year, pagination) • A 50 word or less annotation [1] W. Abdel-Rahman, J. P. Seuntjens, F. Verhaegen, F. Deblois, and E. B. Podgorsak, Vali- dation of Monte Carlo calculated surface doses for megavoltage photon beams, Med. Phys. 32, 286 – 298 (2005). [2] S. H. Cho, O. N. Vassiliev, S. Lee, H. H. Liu, G. S. Ibbott, and R. Mohan, Reference photon dosimetry data and reference phase space data for the 6 MV photon beam from Varian Clinac 2100 series linear accelerators, Med. Phys. 32, 137 – 148 (2005). [3] G. G. Zeng and J. P. McCaﬀrey, The response of alanine to a 150 keV X-ray beam, Rad. Phys. Chem 72, 537 – 540 (2005). [4] G. G. Zeng, M. R. McEwen, D. W. O. Rogers, and N. V. Klassen, An experimental and Monte Carlo investigation of the energy dependence of alanine/EPR dosimetry: II. Clinical electron beams, Phys. Med. Biol. 50 (submitted, 2004). [5] S. D. Thomas, M. Mackenzie, D. W. O. Rogers, and B. G. Fallone, A Monte Carlo derived TG–51 equivalent calibration for helical tomotherapy, Med. Phys. 32, submitted Dec 2004 (2005). [6] E. Mainegra-Hing, D. W. O. Rogers, and I. Kawrakow, Calculation of energy deposition kernels for photons and dose point kernels for electrons, Med. Phys. (in press) (2005). Printed January 12, 2005 Refereed papers EGSnrc & EGS Bibliography page 2 [7] L. A. Buckley, I. Kawrakow, and D. W. O. Rogers, CSnrc: correlated sampling Monte Carlo calculations using EGSnrc, Med. Phys. 31, 3425 – 3435 (2004). [8] J. P. McCaﬀrey, E. Mainegra-Hing, I. Kawrakow, K. R. Shortt, and D. W. O. Rogers, Evidence for using Monte Carlo calculated wall attenuation and scatter correction factors for three styles of graphite-walled ion chambers, Phys. Med. Biol. 49, 2491 – 2501 (2004). [9] I. Kawrakow, D. W. O. Rogers, and B. Walters, Large eﬃciency improvements in BEAMnrc using directional bremsstrahlung splitting, Med. Phys. 31, 2883 – 2898 (2004). [10] C. Janicki and J. Seuntjens, Accurate determination of dose-point-kernel functions close to the origin using Monte Carlo simulations , Med. Phys. 31, 814 – 818 (2004). [11] H. Bouchard and J. Seuntjens, Ionization chamber-dbased reference dosimetry of intensity modulated radiation beams, Med. Phys. 31, 2454 – 2465 (2004). [12] A. Chaves, M. C. Lopes, C. C. Alves, C. Oliveira, L. Peralta, P. Rodrigues, and A. Trindade, A Monte Carlo multiple source model applied to radiosurgery narrow photon beams, Med. Phys. 31, 2192–2204 (2004). [13] J. G. Hunt, F. C. A. da Silva, C. L. P. Mauricio, and D. S. dos Santos, The validation of organ dose calculations using voxel phantoms and Monte Carlo methods applied to point and water immersion sources, Radiation Prorection Dosimetry 108, 85–89 (2004). o [14] C. Kirisits1, A. Hefner, P. Wexberg, B. Pokrajac, D. Glogar, R. P¨tter, and D. Georg, Esti- mation of doses to personnel and patients during endovascularbrachytherapy applications, Radiation Protection Dosimetry 108, 237–245 (2004). o¨ [15] T. Kn¨os, P. Nilsson, and B. P, Measurements of output factors with diﬀerent detector types and Monte Carlo calculations of stopping-power ratios for degraded electron beams, Phys. Med. Biol. 49, 4493–4506 (2004). [16] P. Mobit and I. Badragan, An evaluation of the AAPM-TG43 protocol for I-125 brachyther- apy saeed, Phys. Med. Biol. 49, 3161 – 3170 (2004). [17] P. Mobit and I. Badragan, Dose perturbation eﬀects in prostate seed implant brachytherapy with I-125, Phys. Med. Biol. 49, 3171 – 3178 (2004). [18] T. T. Monajemi, S. Steciw, B. G. Fallone, and S. Rathee, Modeling scintillator-photodiodes as detectors for megavoltage CT, Med. Phys. 31, 1225–1234 (2004). [19] J. Pardo, L. Franco, F. Gomez, A. Iglesias, R. L. J. Mosquera, A. Pazos, J. Pena, M. Pom- bar, A. Rodriguez, and J. Sendon, Free ion yield observed in liquid isooctane irradiated by γ rays. Comparison with the Onsager theory, Phys. Med. Biol. 49, 1905–1914 (2004). [20] B. W. Raaymakers, A. J. E. Raaijmakers, A. N. T. J. Kotte, D. Jette, and J. J. W. Lagendijk, Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose deposition in a transverse magnetic ﬁeld, Phys. Med. Biol. 49, 4109–4118 (2004). Printed January 12, 2005 Refereed papers EGSnrc & EGS Bibliography page 3 [21] B. Reniers, F. Verhaegen, and S. Vynckier, The radial dose function of low-energy brachytherapy seeds in diﬀerent solid phantoms: comparison between calculations with the EGSnrc and MCNP4C Monte Carlo codes and measurements, Phys. Med. Biol. 49, 1569–1582 (2004). [22] B. Reniers, S. Vynckier, and F. Verhaegen, Theoretical analysis of microdosimetric spectra and cluster formation for 103 Pd and 125 I photon emitters, Phys. Med. Biol. 49, 3781–3795 (2004). [23] M. J. Rivard, B. M. Coursey, L. A. DeWerd, M. S. Huq, G. S. Ibbott, M. G. Mitch, R. Nath, and J. F. Williamson, Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brchytherapy dose calculations, Med. Phys. 31, 633 – 674 (2004). [24] D. W. O. Rogers, Accuracy of the Burns equation for stopping-power ratio as a function of depth and R50 , Med. Phys. 31, 2961 – 2963 (2004). [25] B. D. Smedt, N. Reynaert, W. D. Neve, and H. Thierens, DOSSCORE: an accelerated DOSXYZnrc code with an eﬃcient stepping algorithm and scoring grid, Phys. Med. Biol. 49, 4623 – 4635 (2004). [26] A. Syme, C. Kirkbey, B. Fallone, and S. McQuarrie, Monte Carlo investigation of single cell beta dosimetry for intraperitoneal radionuclide therapy, Phys. Med. Biol. 49, 1959 – 1972 (2004). [27] G. G. Zeng, M. R. McEwen, D. W. O. Rogers, and N. V. Klassen, An experimental and Monte Carlo investigation of the energy dependence of alanine/EPR dosimetry: I. Clinical x-ray beams, Phys. Med. Biol. 49, 257 – 270 (2004). [28] J.-F. Carrier, L. Archambault, L. Beaulieu, and R. Roy, Validation of GEANT4, an object- oriented Monte Carlo toolkit, forsimulations in medical physics, Medical Physics 31, 484– 492 (2004). u [29] L. B¨ermann, H. M. Kramer, and I. Csete, Results supporting calculated wall correction factors for cavity chambers, Phys. Med. Biol. 48, 3581 – 3594 (2003). [30] L. A. Buckley, I. Kawrakow, and D. W. O. Rogers, An EGSnrc investigation of cavity theory for ion chambers measuring air kerma, Med. Phys. 30, 1211 – 1218 (2003). [31] O. Chibani and X. A. Li, IVBTMC, A Monte Carlo dose calculation tool for intravascular brachytherapy, Med. Phys. 30, 44–51 (2003). [32] J. C. Chow, E. Wong, J. Z. Chen, and J. van Dyk, Comparison of dose calculation algorithms with Monte Carlo methods for photon arcs, Med. Phys. 30, 2686 – 2694 (2003). [33] P. W. Chin, E. Spezi, and D. G. Lewis, Monte Carlo simulation of portal dosimetry on a rectilinear voxel geometry: a variable gantry angle solution, Phys. Med. Biol. 48, N231 – N238 (2003). Printed January 12, 2005 Refereed papers EGSnrc & EGS Bibliography page 4 [34] I. J. Chetty, P. M. Charland, N. Tyagi, D. McShan, and B. A. Fraass, Photon beam relative dose validation of the DPM Monte Carlo code in lung-equivalent media, Med. Phys. 30, 563 – 573 (2003). [35] A. Chaves, M. C. Lopes, C. C. Alves, C. Oliveira, L. Peralta, P. Rodrigues, and A. Trindade, Basic dosimetry of radiosurgery narrow beams using Monte Carlo simulations: A detailed study of depth of maximum dose, Med. Phys. 30, 2904–2911 (2003). [36] J. Coulot, M. Ricard, and B. Aubert, Validation of the EGS user code dose3D for internal beta dose calculation at the cellular tissue level, Phys. Med. Biol. 48, 2591 – 2602 (2003). [37] G. X. Ding, Using Monte Carlo simulations to commission photon beam output factors – a feasibility study, Phys. Med. Biol. 48, 3865 – 3874 (2003). [38] M. A. Ebert and B. Carruthers, Dosimetric characteristics of a low-kV intra-operative x-ray source: Implications for use in a clinical trial for treatment of low-risk breast cancer, Med. Phys. 30, 2424–2431 (2003). [39] P. Francescon, S. Cora, and P. Chiovati, Dose veriﬁcation of an IMRT treatment planning system with the BEAM EGS4-based Monte Carlo code, Med. Phys. 30, 144 – 157 (2003). [40] M. Fragoso, J. Seco, A. E. Nahum, and F. Verhaegen, Incorporation of a combinatorial geometry package and improved scoring capabilities in the EGSnrc Monte Carlo Code system, Med. Phys. 30, 1076–1085 (2003). [41] E. Heath and J. Seuntjens, Development and validation of a BEAMnrc component module for accurate Monte Carlo modelling of the Varian dynamic Millennium multileaf collimator, Phys. Med. Biol. 48, 4045 – 4063 (2003). oo o o [42] P. Haraldsson, T. Kn¨¨s, J. Nystr¨m, and P. Engstr¨m, Monte Carlo study of TLD measurements in air cavities, Phys. Med. Biol. 48, N253–N259 (2003). [43] N. I. Kalach and D. W. O. Rogers, When is an accelerator photon beam “clinic-like” for reference dosimetry purposes, Med. Phys. 30, 1546 – 1555 (2003). [44] E. Mainegra-Hing, I. Kawrakow, and D. W. O. Rogers, Calculations for plane-parallel ion chambers in 60 Co beams using the EGSnrc Monte Carlo code, Med. Phys. 30, 179 – 189 (2003). 125 [45] P. Mobit and I. Badragan, Response of LiF-TLD micro-rods around I radioactive seed, Phys. Med. Biol. 48, 3129 – 3142 (2003). [46] E. Pavon, F. Sanchez-Doblado, A. Leal, R. Capote, J. Lagares, M. Perucha, and R. Ar- rans, Total skin electron therapy treatment veriﬁcation: Monte Carlo simulation and beam characteristics for large non-standard electron ﬁelds, Phys. Med. Biol. 48, 2783–2796 (2003). [47] A. Piermattei, L. Azario, A. Fidanzio, P. Viola, C. Dell’Omo, L. Iadanza, V. Fusco, J. I. Lagares, and R. Capote, The wall correction factor for a spherical ionization chamber used in brachytherapy source calibration, Phys. Med. Biol. 48, 4091 – 4103 (2003). Printed January 12, 2005 Refereed papers EGSnrc & EGS Bibliography page 5 [48] A. Piermattei, A. Fidanzio, L. Azario, L. Grimaldi, P. Viola, and R. Capote, Experimental dosimetry of a 32 P cathether-based endovascular brachytherapy source, Phys. Med. Biol. 48, 2283 – 2296 (2003). [49] D. W. O. Rogers and I. Kawrakow, Monte Carlo calculated correction factors for primary standards of air-kerma, Med. Phys. 30, 521 – 543 (2003). [50] D. Rajon, A. Shah, C. Watchman, J. Brindle, and W. Bolch, A hyperboliod representation of the bone-marrow interface within 3D NMR images in trabecular bone: application to skeletal dosimetry, Phys. Med. Biol. 48, 1721 – 1740 (2003). [51] N. D. Scielzo, S. J. Freedman, B. K. Fujikawa, and P. A. Vetter, Recoil-ion charge-state distribution following the beta+ decayof 21 Na, Physical Review A 68, 022716 (2003). a a [52] F. S´nchez-Doblado, P. Andreo, R. Capote, A. Leal, M. Perucha, R. Arr´ns, L. N´nez, u E. Mainegra, J. I. Lagares, and E. Carrasco, Ionization chamber dosimetry of small photon ﬁelds: a Monte Carlo study on stopping-power ratios for radiosurgery and IMRT beams, Phys. Med. Biol. 48, 2081 – 2099 (2003). [53] J. Van de Walle, C. Martens, N. Reynaert, H. Palmans, W. De Neve, C. De Wagter, and H. Thierens, Monte Carlo model of the Elekta SLiplus accelerator: validation of a new MLC component module in BEAM for a 6 MV beam, Phys. Med. Biol. 48, 371 – 385 (2003). [54] F. Verhaegen, Interface perturbation eﬀects in high-energy electron beams, Phys. Med. Biol. 48, 687 – 705 (2003). o¨ [55] E. Wieslander and T. Kn¨os, Dose perturbation in the presence of metallic implants: treatment planning system versus Monte Carlo simulation, Phys. Med. Biol. 48, 3295 – 3305 (2003). [56] R. Wang, X. A. Li, and J. Lobdell, Monte Carlo dose characterization of a new [sup 90]Sr/[sup 90]Y source with balloon for intravascular brachytherapy, Med. Phys. 30, 27– 33 (2003). [57] B. Warkentin, S. Steciw, S. Rathee, and B. G. Fallone, Dosimetric IMRT veriﬁcation with a ﬂat-panel EPID, Medical Physics 30, 3143–3155 (2003). [58] G. Yegin, A new approach to geometry modelling ofr Monte Carlo particle transport: an application to EGS, Nucl. Inst. Meth. B 211, 331 – 338 (2003). [59] J. A. Antolak, M. S. Bieda, and K. R. Hogstrom, Using Monte Carlo methods to com- mission electron beams: A feasibility study, Med. Phys. 29, 771 – 786 (2002). [60] W. A. Beckham, P. J. Keall, and J. V. Siebers, A ﬂuence-convolution method to calculate radiation therapy dose distributions that incorporate random set-up error, Phys. Med. Biol. 47, 3465 – 3473 (2002). o oo [61] P. Bj¨rk, P. Nilsson, and T. Kn¨¨s, Dosimetry characteristics of degraded electron beams investigated by Monte Carlo calculations in a setup for intraoperative radiation therapy, Phys. Med. Biol. 47, 239 – 256 (2002). Printed January 12, 2005 Refereed papers EGSnrc & EGS Bibliography page 6 o oo [62] P. Bj¨rk, T. Kn¨¨s, and P. Nilsson, Inﬂuence of initial electron beam characteristics on Monte Carlo calculated absorbed dose distributions for linear accelerator beams, Phys. Med. Biol. 47, 4019 – 4041 (2002). [63] M. Blomquist, J. Li, C.-M. Ma, B. Zackrisson, and M. Karlsson, Comparison between a conventional treatment energy and 50 MV photons for the treatment of lung tumours, Phys. Med. Biol. 47, 889 – 897 (2002). [64] M. Blomquist, M. G. Karlsson, B. Zackrisson, and M. Karlsson, Multileaf collimation of electrons - clinical eﬀects on electron energy modulation and mixed beam therapy depending on treatment head design, Phys. Med. Biol. 47, 1013 – 1024 (2002). [65] D. Bollini, R. Campanini, N. Lanconneli, and A. Riccardi, A Modular description of the geometry in Monte Carlo modelling studies for nuclear medicine, Int. Journal of Modern Physics C13, 465–476 (2002). [66] D. T. Burns, L. Bueermann, H. M. Kramer, and B. Lange, Comparison of the air-kerma standards of the PTB and the BIPM in the medium-energy x-ray range, BIPM Report BIPM–02/07 (2002). [67] O. Chibani and X. A. Li, Monte Carlo dose calculations in homogeneous media and at interfaces: A comparison between GEPTS, EGSnrc, MCNP, and measurements, Med. Phys. 29, 835 – 847 (2002). [68] A. V. Chvetsov and G. A. Sandison, Reconstruction of electron spectra using singular component decomposition, Med. Phys. 29, 578–591 (2002). [69] O. Chibani, Energy-loss straggling algorithms for Monte Carlo electron transport, Med. Phys. 29, 2374–2383 (2002). [70] I. J. Das, V. P. Moskvin, A. Kassaee, T. Tabata, and F. Verhaegen, Dose perturbations at high-Z interfaces in kilovoltage photon beams: comparison with Monte Carlo simulations and measurements, Radiation Physics and Chemistry 64, 173–179 (2002). [71] F. DeBlois, W. Abdel-Rahman, J. P. Seuntjens, and E. B. Podgorsak, Measurement of absorbed dose with a bone equivalent extrapolation chamber, Med. Phys. 29, 433 – 440 (2002). [72] G. X. Ding, Energy spectra, angular spread, ﬂuence proﬁles and dose distributions of 6 and 18 MV photon beams: results of Monte Carlo simulations for a Varian 2100EX accelerator, Phys. Med. Biol. 47, 1025 – 1046 (2002). [73] G. X. Ding, C. Duzenli, and N. I. Kalach, Are neutrons responsible for the dose discrepancies between Monte Carlo calculations and measurements in the build-up region for a high- energy photon beam?, Phys. Med. Biol. 47, 3251 – 3261 (2002). [74] G. X. Ding, Dose discrepancies between Monte Carlo calculations and measurements in the builup region for a high-energy photon beam, Med. Phys. 29, 2459 – 2463 (2002). Printed January 12, 2005 Refereed papers EGSnrc & EGS Bibliography page 7 [75] M. A. Earl and L. Ma, Depth dose enhancement of electron beams subject to external uniform longitudinal magnetic ﬁelds: A Monte Carlo Study, Med. Phys. 29, 484 – 491 (2002). [76] Y. Fu and Z. Luo, Application of Monte Carlo simulation to cavity theory based on the virtual electron source concept, Phys. Med. Biol. 47, 3263 – 3274 (2002). [77] S. Flampouri, P. M. Evans, F. Verhaegen, A. E. Nahum, E. Spezi, and M. Partridge, Opti- mization of accelerator target and detector for portal imaging using Monte Carlo simulation and experiment, Phys. Med. Biol. 47, 3331 – 3349 (2002). [78] R. Jeraj, P. J. Keall, and J. V. Siebers, The eﬀect of dose calculation accuracy on inverse treatment planning, Phys. Med. Biol. 47, 391 – 407 (2002). [79] M. G. Karlsson and M. Karlsson, Electron beam collimation with focused and curved leaf end MLCs – Experimental veriﬁcation of Monte Carlo optimized designs, Med. Phys. 29, 631 – 637 (2002). [80] H. Keller, M. Glass, R. Hinderer, K. Ruchala, R. Jeraj, G. Olivera, and T. R. Mackie, Monte Carlo study of a highly eﬃcient gas ionization detector for megavoltage imaging and image-guided radiotherapy, Med. Phys. 29, 165 – 175 (2002). [81] C. Kirisits, D. Georg, P. Wexberg, B. Pokrajac, D. Glogar, and R. Potter, Determination and application of the reference isodose length (RIL) for commercial endovascular brachytherapy devices, Radiother. & Oncol. 64, 309–315 (2002). [82] M. Krmar, D. Nikolic, P. Krstonosic, Cora, P. Francescon, P. Chiovati, and A. Rudic, A simple method for bremsstrahlung spectra reconstruction from transmission measurements, Med. Phys. 29, 932 – 938 (2002). [83] R. F. Laitano, M. P. Toni, M. Pimpinella, and M. Bovi, Determination of Kwall correction factor for a cylindrical ionization chamber to measure air-kerma in 60 Co gamma beams, Phys. Med. Biol. 47, 2411 – 2431 (2002). [84] S.-Y. Lin, T.-C. Chu, J.-M. Lin, and C.-Y. Huang, Monte Carlo simulation of surface percent depth dose, Applied Rad’n and Isotopes 56, 505 – 510 (2002). [85] X. A. LI, O. Chibani, B. Greenwald, and M. Suntharalingam, Radiotherapy dose per- turbation of metallic esophageal stents, Int J Radiat Oncol Biol Phys 54, 1276 – 1285 (2002). [86] C.-M. Ma, J. S. Li, T. Pawlicki, S. B. Jiang, J. Deng, M. C. Lee, T. Koumrian, M. Luxton, and S. Brain, A Monte Carlo dose calculation tool for radiotherapy treatment planning, Phys. Med. Biol. 47, 1671 – 1690 (2002). [87] C. Martens, N. Reynaert, C. De Wagter, M. Coghe, H. Palmans, H. Thierens, and W. De Neve, Underdosage of the upper-airway mucosa for small ﬁelds as used in in IMRT: A com- parison between radiochromic ﬁlm measurements, Monte Carlo simulations and collapsed cone convolution calculations, Med. Phys. 29, 1528 – 1535 (2002). Printed January 12, 2005 Refereed papers EGSnrc & EGS Bibliography page 8 [88] J. C. Nipper, J. L. Williams, and W. E. Bloch, Creation of two tomographic voxel models of pediatric patients in the ﬁrst year of their life, Phys. Med. Biol. 47, 3143 – 3164 (2002). [89] R. F. Nutbrown, S. Duane, D. R. Shipley, and R. A. S. Thomas, Evaluation of factors to convert absorbed dose calibrations from graphite to water for the NPL high-energy photon calibration service, Phys. Med. Biol. 47, 441 – 454 (2002). [90] H. Palmans, W. Mondelaers, and H. Thierens, Beam quality of high-energy photon beams at the Ghent University linear accelerator, Phys. Med. Biol. 47, L15 – L18 (2002). [91] H. Palmans, F. Verhaegen, J.-M. Denis, and S. Vynckier, Dosimetry using plane-parallel ionization chambers in a 75 MeV clinical proton beam, Phys. Med. Biol. 47, 2895 – 2905 (2002). [92] M. Piessens, N. Reynaert, J. Potempa, H. Thierens, W. Wijns, and L. Verbeke, Dose distributions for 90 Y intravascular brachytherapy sources used with balloon catheters, Med. Phys. 29, 1562 – 1571 (2002). [93] N. Reynaert, H. Palmans, H. Thierens, and R. Jeraj, Parameter dependence of the MCNP electron transport in determining dose distributions, Medical Physics 29, 2446–2454 (2002). [94] D. Sheikh-Bagheri and D. W. O. Rogers, Sensitivity of megavoltage photon beam Monte Carlo simulations to electron beam parameters, Med. Phys. 29, 379 – 390 (2002). [95] E. Spezi and D. G. Lewis, Full forward Monte Carlo calculation of portal dose from MLC collimated treatment beams, Phys. Med. Biol. 47, 377 – 390 (2002). [96] D. Sheikh-Bagheri and D. W. O. Rogers, Calculation of nine megavoltage photon beam spectra using the BEAM Monte Carlo code, Med. Phys. 29, 391 – 402 (2002). [97] J. V. Siebers, P. J. Keall, J. O. Kim, , and R. Mohan, A method for photon beam Monte Carlo multileaf collimator particle transport, Phys. Med. Biol. 47, 3225 – 3250 (2002). [98] E. Spezi, D. G. Lewis, and C. W. Smith, A DICOM-RT-based toolbox for the evaluation and veriﬁcation of radiotherapy plans, Phys. Med. Biol. 47, 4223 – 4232 (2002). [99] F. Verhaegen, Evaluation of the EGSnrc Monte Carlo code for interface dosimetry near high-Z media exposed to kilovolt and 60 Co photons, Phys. Med. Biol. 47, 1691 – 1705 (2002). [100] R. Wang and X. A. Li, Dosimetric comparison of two 90Sr/90Y sources for intravascular brachytherapy: an EGSnrc Monte Carlo calculation, Phys. Med. Biol. 47, 4259 – 4269 (2002). [101] R. Wang and X. A. Li, Dose characterization in the near-source region for two high doserate brachytherapy sources, Med. Phys. 29, 1678–1686 (2002). [102] B. R. B. Walters, I. Kawrakow, and D. W. O. Rogers, History by history statistical estimators in the BEAM code system, Med. Phys. 29, 2745 – 2752 (2002). Printed January 12, 2005 Refereed papers EGSnrc & EGS Bibliography page 9 [103] M. R. Bieda, J. A. Antolak, and K. R. Hogstrom, The eﬀect of scattering foil parameters on electron-beam Monte Carlo calculations, Med. Phys. 28, 2527 – 2534 (2001). [104] R. A. Boyd, K. R. Hogstrom, J. A. Antolak, and A. S. Shiu, A measured data set for evaluating electron-beam dose algorithms, Med. Phys. 46, 950 – 958 (2001). [105] W. G. Cross, J. Hokkanen, H. Jarvinen, F. Mourtada, P. Sipila, C. G. Soares, and S. Vynck- ier, Calculation of beta-ray dose distributions from ophthalmic applicators and comparison with measurements in a model eye, Med. Phys. 28, 1385–1396 (2001). [106] Y. D. Deene, N. Reynaert, and C. D. Wagter, On the accuracy of monomer/polymer gel dosimetry in the proximityof a high-dose-rate 192 Ir source, Phys. Med. Biol. 46, 2801–2825 (2001). [107] C. L. Hartmann Siantar et al., Description and dosimetric veriﬁcation of the PEREGRINE Monte Carlo dose calculation system for photon beams incident on a water phantom, Med. Phys. 28, 1322 – 1337 (2001). [108] J. O. Kim, J. V. Siebers, P. J. Keall, M. R. Arnﬁeld, and R. Mohan, A Monte Carlo study of radiation transport through multileaf collimators, Med. Phys. 28, 2497 – 2506 (2001). [109] M. Lachaine and B. G. Fallone, Cascade analysis for medical imaging detectors with stages involving both ampliﬁcation and dislocation processes, Med. Phys. 28, 501–507 (2001). u [110] W. U. Laub, A. Bakai, and F. N¨sslin, Intensity modulated irradiation of a thorax phantom: comparisons between measurements, Monte Carlo calculations and pencil beam calculation, Phys. Med. Biol. 46, 1695 – 1706 (2001). [111] M. Lachaine, E. Fourkal, and B. G. Fallone, Detective quantum eﬃciency of a direct- detection active matrix ﬂat panel imager at megavoltage energies, Med. Phys. 28, 1364– 1372 (2001). [112] M. Lachaine, E. Fourkal, and B. G. Fallone, Investigation into the physical characteristics of active matrix ﬂat panel imagers for radiotherapy, Med. Phys. 28, 1689–1695 (2001). [113] M. C. Lee, J. Deng, J. Li, S. B. Jiang, and C.-M. Ma, Monte Carlo based treatment planning for modulated electron beam radiation therapy, Phys. Med. Biol. 46, 2177 – 2199 (2001). [114] X. A. Li, L. Ma, S. Naqvi, R. Shih, and C. Yu, Monte Carlo dose veriﬁcation for intensity- modulated arc therapy, Phys. Med. Biol. 46, 2269 – 2282 (2001). [115] H. H. Liu, F. Verhaegen, and L. Dong, A method of simulating dynamic multileaf collima- tors using Monte Carlo techniques for intensity-modulated radiation therapy, Phys. Med. Biol. 46, 2283 – 2298 (2001). [116] X. A. Li, L. Reiﬀel, J. Chu, and S. Naqvi, Conformal photon-beam therapy with transverse magnetic ﬁelds: A Monte Carlo study, Med. Phys. 28, 127 – 133 (2001). [117] X. A. Li, Dosimetric eﬀects of contrast media for catheter-based intravascular brachyther- apy, Med. Phys. 28, 757 – 763 (2001). Printed January 12, 2005 Refereed papers EGSnrc & EGS Bibliography page 10 [118] S.-Y. Lin, T.-C. Chu, and J.-M. Lin, Monte Carlo simulation of a clinical linear accelerator, Applied Rad’n and Isotopes 55, 759 – 765 (2001). [119] X. Li, M. Suntharalingam, and C. Yu, Dosimetry of source stepping for intravascular brachytherapy, Cardiovasc. Radiat. Med. 2(3), 165–172 (2001). [120] G. Malataras, C. Kappas, and D. M. J. Lovelock, A Monte Carlo approach to electron contamination sources in the Saturne-25 and -41, Phys. Med. Biol. 46, 2435 – 2446 (2001). [121] B. M. C. McCurdy, K. Luchka, and S. Pistorius, Dosimetric investigation and portal dose image prediction using an amorphous silicon electronic portal imaging device, Med. Phys. 46, 911 – 924 (2001). [122] Y. Mejaddem, S. Hyodynmaa, R. Svensson, and A. Brahme, Photon scatter kernels for intensity modulating radiation therapy ﬁlters, Phys. Med. Biol. 46, 3215 – 3228 (2001). [123] M. Miften, M. Wiesmeyer, A. Kapur, and C.-M. Ma, Comparison of RTP dose distributions in heterogeneous phantoms with the BEAM Monte Carlo simulation system, J of App Clin Med Phys 2, 21 – 31 (2001). [124] M. Oldham, S. A. Sapareto, X. A. Li, J. Allen, S. Sutlief, O. C. Wong, and J. W. Wong, Practical aspects of in situ 16 O(γ,n)15 O activation using a conventional medical accelerator for the purpose of perfusion imaging, Med. Phys. 46, 1669 – 1678 (2001). [125] M. Olivares, F. DeBlois, E. B. Podgorsak, and J. P. Seuntjens, Electron ﬂuence correction factors for various materials in clinical electron beams, Med. Phys. 28, 1727 – 1734 (2001). o [126] F. C. P. du Plessis, C. A. Willemse, M. G. L¨tter, and L. Goedhais, Comparison of the Batho, ETAR and Monte Carlo dose calculation methods in CT based patient models, Med. Phys. 28, 582–589 (2001). [127] R. Shih, X. A. Li, and J. C. H. Chu, Dynamic wedge versus physical wedge: A Monte Carlo study, Med. Phys. 28, 612–619 (2001). [128] R. Shih, X. A. Li, and W. Hsu, Dosimetric characteristics of dynamic wedged ﬁelds: a Monte Carlo study, Phys. Med. Biol. 46, N281 – N292 (2001). [129] E. Spezi, D. G. Lewis, and C. W. Smith, Monte Carlo simulation and dosimetric veriﬁcation of radiotherapy beam modiﬁers, Phys. Med. Biol. 46, 3007 – 3029 (2001). [130] F. Verhaegen and H. H. Liu, Incorporating dynamic collimator motion in Monte Carlo simulations: an application in modelling a dynamic wedge, Phys. Med. Biol. 46, 287 – 296 (2001). [131] F. Verhaegen and H. Palmans, A systematic Monte Carlo study of secondary electron ﬂuence perturbation in clinical proton beams (70–250 MeV) for cylindrical and spherical ionchambers, Medical Physics 28, 2088–2095 (2001). Printed January 12, 2005 Refereed papers EGSnrc & EGS Bibliography page 11 [132] F. Verhaegen, C. Mubata, J. Pettingell, A. M. Bidmead, I. Rosenberg, D. Mockridge, and A. E. Nahum, Monte Carlo calculation of output factors for circular, rectangular, and square ﬁelds of electron accelerators (6-20 MeV), Med. Phys. 28, 938 – 949 (2001). [133] R. Wang and X. A. Li, Monte Carlo dose calculations of beta-emitting sources for in- travascular brachytherapy: A comparison between EGS4, EGSnrc, and MCNP, Med. Phys. 28, 134 – 141 (2001). 32 [134] R. Wang and X. A. Li, Monte Carlo characterization of a P source for intravascular brachytherapy, Med. Phys. 28, 1776 – 1785 (2001). [135] W. van der Zee and J. Welleweerd, A Monte Carlo study on internal wedges using BEAM, Med. Phys. 29, 876 – 885 (2001). [136] S. Elbakian, E. Gazazian, K. Ispirian, R. Ispirian, and K. Sanosyan, Coherent Radio Radi- ation of 15MeV – 30GeV Electron and Photon Bunches in Thin and Thick Radiators, in Radio Detection of High Energy Particles, AIP Conference Proceedings, Vol. 579, edited by D. Saltzberg and P. Gorham, pages 241 – 248, Melville, NY: AIP, 2001. [137] I. Kawrakow, Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version, Med. Phys. 27, 485 – 498 (2000). [138] I. Kawrakow, Accurate condensed history Monte Carlo simulation of electron transport. II. Application to ion chamber response simulations, Med. Phys. 27, 499 – 513 (2000). [139] F. M. Buﬀa and A. E. Nahum, Monte Carlo dose calculations and radiobiological modelling: analysis of the eﬀect of the statistical noise of the dose distribution on the probability of tumour control, Phys. Med. Biol. 45, 3009–3023 (2000). [140] J. Borg, I. Kawrakow, D. W. O. Rogers, and J. P. Seuntjens, Monte Carlo study of correction factors for Spencer-Attix cavity theory at photon energies at or above 100 keV, Med. Phys. 27, 1804 – 1813 (2000). [141] J. Deng, S. B. Jiang, A. Kapur, J. Li, T. Pawlicki, and C.-M. Ma, Photon beam charac- terization and modelling for Monte carlo treatment planning, Phys. Med. Biol. 45, 411 – 427 (2000). [142] B. A. Faddegon and I. Blevis, Electron spectra derived from depth dose distributions, Med. Phys. 27, 514 – 526 (2000). [143] P. Francescon, C. Cavedon, S. Reccanello, and S. Cora, Photon dose calculation of a three-dimensional treatment planning system compared to the Monte Carlo code BEAM, Med. Phys. 27, 1579 – 1587 (2000). [144] R. Jeraj and P. J. Keall, The eﬀect of statistical uncertainty on inverse treatment planning based on Monte Carlo calculation, Phys. Med. Biol. 45, 3601 – 3613 (2000). [145] I. Kawrakow and M. Fippel, Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC, Phys. Med. Biol. 45, 2163 – 2184 (2000). Printed January 12, 2005 Refereed papers EGSnrc & EGS Bibliography page 12 [146] P. J. Keall, J. V. Siebers, R. Jeraj, and R. Mohan, The eﬀect of dose calculation uncertainty on the evaluation of radiotherapy plans, Med. Phys. 27, 478 – 484 (2000). [147] M. C. Lee and C.-M. Ma, Monte Carlo characterization of clinical electron beams in transverse magnetic ﬁelds, Phys. Med. Biol. 45, 2947–2967 (2000). [148] M. C. Lee, S. B. Jiang, and C.-M. Ma, Monte Carlo and experimental investigations of multileaf collimated electron beams for modulated electron radiation therapy, Med. Phys. 27, 2708 – 2718 (2000). [149] X. A. Li, C. Yu, and T. Holmes, A systematic evaluation of air cavity dose perturbation in megavoltage x-ray beams, Med. Phys. 27, 1011 – 1017 (2000). [150] J. S. Li, T. Pawlicki, J. Deng, S. B. Jiang, E. Mok, and C.-M. Ma, Validation of a Monte Carlo dose calculation tool for radiotherapy treatment planning, Phys. Med. Biol. 45, 2969–2985 (2000). [151] H. H. Liu, T. R. Mackie, and E. C. McCullough, Modeling photon output caused by backscattered radiation into the monitor chamber from collimator jaws using a Monte Carlo technique, Med. Phys. 27, 737 – 744 (2000). [152] C.-M. Ma, T. Pawlicki, S. B. Jiang, J. S. Li, J. Deng, E. Mok, A. Kapur, L. Xing, L. Ma, and A. L. Boyer, Monte Carlo veriﬁcation of IMRT dose distributions from a commercial treatment planning optimization system, Phys. Med. Biol. 45, 2483 – 2495 (2000). [153] D. Marre, I. H. Ferreira, A. Bridier, A. Bjoreland, H. Svensson, A. Dutreix, and J. Chavau- dra, Energy correction factors of LiF power TLDs irradiated in high-energy electron beams and applied to mailed dosimetry for quality assurance networks, Phys. Med. Biol. 45, 3657 – 3674 (2000). [154] C.-M. Ma and S. B. Jiang, Monte Carlo modelling of electron beams from medical accelerators, Phys. Med. Biol. 44, R157 – R189 (2000). [155] M. Miften, M. Wiesmeyer, S. Monthofer, and K. Krippner, Implementation of FFT convolution and multigrid superposition models in the FOCUS RTP system, Phys. Med. Biol. 45, 817 – 833 (2000). [156] R. A. Price and K. Ayyangar, IORT apparatus design improvement through the evaluation of electron spectral distributions using Monte Carlo methods, Med. Phys. 27, 215 – 220 (2000). [157] M. Partridge, Reconstruction of megavoltage photon spectra from electronic portal imager derived transmission measurements, Phys. Med. Biol. 45, N115–N131 (2000). [158] J. Sempau and A. F. Bielajew, Towards the elimination of Monte Carlo statistical ﬂuctua- tions from dose volume histograms for radiotherapy treatment planning, Phys. Med. Biol. 45, 131 – 157 (2000). [159] A. Schach von Wittenau, P. M. Bergstrom, and L. J. Cox, Patient-dependent beam- modiﬁer physics in Monte Carlo photon dose calculations, Med. Phys. 27, 935 – 947 (2000). Printed January 12, 2005 Refereed papers EGSnrc & EGS Bibliography page 13 [160] D. Sheikh-Bagheri, D. W. O. Rogers, C. K. Ross, and J. P. Seuntjens, Comparison of measured and Monte Carlo calculated dose distributions from the NRC linac, Med. Phys. 27, 2256 – 2266 (2000). [161] F. Verhaegen, R. Symonds-Tayler, H. H. Liu, and A. E. Nahum, Backscatter towards the monitor ion chamber in high-energy photon and electron beams: charge integration versus Monte Carlo simulation, Phys. Med. Biol. 45, 3159 – 3170 (2000). [162] F. Verhaegen and I. J. Das, Monte Carlo modelling of a virtual wedge, Phys. Med. Biol. 44, N251 – N259 (2000). oo [163] E. Wieslander and T. Kn¨¨s, A virtual linear accelerator for veriﬁcation of treatment planning systems, Phys. Med. Biol. 45, 2887 – 2896 (2000). [164] M. Alonso, T. Barriuso, M. J. Castaneda, N. Diaz-Caneja, I. Gutierrez, J. J. Sarmiento, and E. Villar, Monte Carlo estimation of absorbed dose to organs in diagnostic radiology, Health Physics 76, 388 – 392 (1999). [165] P. Alaei, B. J. Gerbi, and R. A. Geise, Generation and use of photon energy deposition kernels for diagnostic quality x rays , Med. Phys. 26, 1687 – 1697 (1999). [166] B. A. Faddegon, P. O’Brien, and D. L. D. Mason, The ﬂatness of Siemens linear accelerator x-ray ﬁelds, Med. Phys. 26, 220 – 228 (1999). [167] R. Jeraj, P. J. Keall, and P. M. Ostwald, Comparisons between MCNP, EGS4 and experi- ment for clinical electron beams, Phys. Med. Biol. 44, 705 – 717 (1999). [168] A. Kapur and C.-M. Ma, Stopping-power ratios for clinical electron beams from a scatter- foil linear accelerator, Phys. Med. Biol. , 2321 – 2341 (1999). [169] M. G. Karlsson, M. Karlsson, and C.-M. Ma, Treatment head design for multileaf collimated high-energy electrons, Med. Phys. 26, 2161 – 2167 (1999). [170] X. A. Li, Peak scatter factors for high energy photon beams, Med. Phys. 26, 962 – 966 (1999). [171] C.-M. Ma, E. Mok, A. Kapur, T. Pawlicki, D. Findley, S. Brain, and K. Forster, Clinical implementation of a Monte Carlo treatment planning system, Med. Phys. 26, 2133 – 2143 (1999). [172] G. Mora, A. Maio, and D. W. O. Rogers, Monte Carlo simulation of a typical 60 Co therapy source, Med. Phys. 26, 2494 – 2502 (1999). [173] H. Palmans, W. Mondelaers, and H. Thierens, Absorbed dose beam quality correction factors kQ for the NE2571 chamber in a 5 MV and 10 MV photon beam, Phys. Med. Biol. 44, 647–663 (1999). [174] D. W. O. Rogers, Correcting for electron contamination at dose maximum in photon beams, Med. Phys. 26, 533 – 537 (1999). Printed January 12, 2005 Refereed papers EGSnrc & EGS Bibliography page 14 [175] G. Rossi, M. S. del Rio, P. Fajardo, and J. Morse, Monte Carlo simulation of the X-ray response of a germanium microstrip detector with energy and position resolution, Nucl. Inst. Meth. A 432, 130 – 137 (1999). [176] A. Schach von Wittenau, L. J. Cox, P. M. Bergstrom, W. P. Chandler, C. L. Hartmann- Siantar, and R. Mohan, Correlated histogram representation of Monte Carlo derived medical accelerator photon-output phase space, Med. Phys. 26, 1196 – 1211 (1999). o [177] R. Sj¨gren, M. G. Karlsson, and M. Karlsson, Methods for the determination of eﬀective monitor chamber thickness, Med. Phys. 26, 1871 – 1873 (1999). [178] F. Verhaegen, A. E. Nahum, S. Van de Putte, and Y. Namito, Monte Carlo modelling of radiotherapy kV x-ray units, Phys. Med. Biol. 44, 1767 – 1789 (1999). [179] K. De Vlamynck, H. Palmans, F. Verhaegen, C. De Wagter, W. De Neve, and H. Thierens, Dose measurements compared with Monte Carlo simulations of narrow 6 MV multileaf collimator shaped photon beams, Med. Phys. 26, 1874–1882 (1999). [180] W. van der Zee and J. Welleweerd, Calculating photon beam characteristics with Monte Carlo techniques, Med. Phys. 26, 1883 – 1892 (1999). [181] H. Zaidi, Relevance of accurate Monte Carlo modeling in nuclear medical imaging, Med. Phys. 26, 574 – 608 (1999). [182] G. G. Zhang, D. W. O. Rogers, J. E. Cygler, and T. R. Mackie, Monte Carlo investigation of electron beam output factors vs size of square cutout, Med. Phys. 26, 743 – 750 (1999). [183] K. M. Ayyangar and S. B. Jiang, Do we need Monte Carlo treatment planning for linac based radiosurgery? A case study, Med. Dosim. 23, 161 – 168 (1998). [184] B. A. Faddegon, J. Balogh, R. Mackenzie, and D. Scora, Clinical considerations of Monte Carlo for electron radiotherapy treatment planning, Radiation Physics and Chemistry 53, 217 – 227 (1998). [185] I. Kawrakow and A. F. Bielajew, On the representation of electron multiple elastic- scattering distributions for Monte Carlo calculations, Nuclear Instruments and Methods 134B, 325 – 336 (1998). [186] I. Kawrakow and A. F. Bielajew, On the condensed history technique for electron transport, Nuclear Instruments and Methods 142B, 253 – 280 (1998). [187] A. Kapur, C.-M. Ma, E. C. Mok, and A. L. Boyer, Monte Carlo calculations of electron beam output factors for amedical linear accelerator, Phys. Med. Biol. 43, 3479 – 3494 (1998). [188] C.-M. Ma, Characterization of computer simulated radiotherapy beams for Monte Carlo treatment planning, Radiation Phys. Chem. 53, 329 – 344 (1998). [189] Y. Namito, H. Hirayama, and S. Ban, Improvements of low-energy photon transport in EGS4, Radiation Phys. Chem. 53, 283 – 294 (1998). Printed January 12, 2005 Refereed papers EGSnrc & EGS Bibliography page 15 [190] D. Sheikh-Bagheri and P. N. Munro, A Monte Carlo study of veriﬁcation imaging in high dose rate Brachytherapy, Med. Phys. 25, 404 – 414 (1998). a [191] L. M. N. T´vora and E. J. Morton, Photon production using a low energy electron expansion of the EGS4 code system, Nucl. Inst. Meth. B 143, 253 – 271 (1998). [192] F. Verhaegen, I. J. Das, and H. Palmans, Monte Carlo dosimetry study of a 6 MV stereo- tactic radiosurgery unit, Phys. Med. Biol. 43, 2755 – 2768 (1998). [193] G. G. Zhang, D. W. O. Rogers, J. E. Cygler, and T. R. Mackie, Eﬀects of changes in stopping-power ratios with ﬁeld size on electron beam ROFs, Med. Phys. 25, 1711 – 1724 (1998). [194] G. X. Ding, D. W. O. Rogers, J. E. Cygler, and T. R. Mackie, Electron ﬂuence correction factors used in conversion of dose in plastic to dose in water, Med. Phys. 24, 161 – 176 (1997). [195] X. A. Li, D. Salhani, and C.-M. Ma, Characteristics of orthovoltage x-ray therapy beam at extended SSD for applications with end plates, Phys. Med. Biol. 42, 357 – 370 (1997). [196] H. H. Liu, T. R. Mackie, and E. C. McCullough, Calculating output factors for photon beam radiotherapy using a convolution/superposition method based on a dual source photon beam model, Med. Phys. 24, 1975 – 1985 (1997). [197] H. H. Liu, T. R. Mackie, and E. C. McCullough, Calculating dose and output factors for wedged photon radiotherapy ﬁelds using a convolution/superposition method, Med. Phys. 24, 1714 – 1728 (1997). [198] H. H. Liu, T. R. Mackie, and E. C. McCullough, A dual source photon beam model used in convolution/superposition dose calculations for clinical megavoltage x-ray beams, Med. Phys. 24, 1960 – 1974 (1997). [199] C.-M. Ma, B. A. Faddegon, D. W. O. Rogers, and T. R. Mackie, Accurate characterization of Monte Carlo calculated electron beams for radiotherapy, Med. Phys. 24, 401 – 416 (1997). [200] B. Nilsson, A. Montelius, P. Andreo, and J. Johansson, Correction factors for parallel-plate chambers used in plastic phantoms in electron dosimetry, Phys. Med. Biol. 42, 2101 – 2118 (1997). [201] L. E. Adam, M. E. Bellemann, G. Brix, and W. J. Lorenz, Monte Carlo-based analysis of PET scatter components, J Nucl. medicine 37, 2024 – 2029 (1996). [202] A. F. Bielajew, A hybrid multiple-scattering theory for electron-transport Monte Carlo calculations, Nucl. Inst. Meth. B111, 195 – 208 (1996). [203] D. T. Burns, G. X. Ding, and D. W. O. Rogers, R50 as a beam quality speciﬁer for selecting stopping-power ratios and reference depths for electron dosimetry, Med. Phys. 23, 383 – 388 (1996). Printed January 12, 2005 Refereed papers EGSnrc & EGS Bibliography page 16 [204] J. L. Chartier, B. Grosswendt, G. F. Gualdrini, H.Hirayama, C.-M. Ma, F. Padoani, N. Petoussi, S. M. Seltzer, and M. Terrissol, Reference ﬂuence-to-dose-equivalent con- version coeﬃcients and angular-dependence factors for 4-element ICRU tissue, water and PMMA slab phantoms irradiated by broad electron beams, Radiation Protection Dosimetry 63, 7 – 14 (1996). [205] G. X. Ding, D. W. O. Rogers, and T. R. Mackie, Mean energy, energy-range relationship and depth-scaling factors for clinical electron beams, Med. Phys. 23, 361 – 376 (1996). a [206] D. Hannallah, T. C. Zhu, and B. E. Bj¨rngard, Electron disequilibrium in high-energy x-ray beams, Med. Phys. , 1867 – 1871 (1996). [207] I. Kawrakow, Electron transport: multiple and plural scattering, Nuclear Instruments and Methods B108, 23 – 34 (1996). [208] I. Kawrakow, Electron transport: longitudinal and lateral correlation algorithm, Nuclear Instruments and Methods B114, 307 – 326 (1996). [209] P. N. Mobit, A. E. Nahum, and P. Mayles, The energy correction factor of LiF ther- moluminescent dosemeters in megavoltage electron beams: Monte Carlo simulations and experiments, Med. Phys. 41, 979 – 993 (1996). [210] B. Nilsson, A. Montelius, and P. Andreo, Wall eﬀects in plane-parallel ionization chambers, Phys. Med. Biol. 41, 609 – 623 (1996). [211] G. X. Ding, D. W. O. Rogers, and T. R. Mackie, Calculation of stopping-power ratios using realistic clinicalelectron beams, Med. Phys. 22, 489 – 501 (1995). [212] B. J. Foote and V. G. Smyth, The modelling of electron multiple-scattering in EGS4/PRESTAand its eﬀect on ionization-chamber response, Nucl. Inst. Meth. B100, 22 – 30 (1995). [213] E. E. Furhang, C.-S. Chui, and M. Lovelock, Mean mass energy absorption coeﬃcient ratios for megavoltage x-ray beams, Med. Phys. 22, 525 – 530 (1995). [214] X.-Q. Lu and L. M. Chin, A direct approach for the determination of absorbed dose fromelectron beams using non-water phantoms, Med. Phys. 22, 2083 – 2091 (1995). [215] X. A. Li and D. W. O. Rogers, Electron mass scattering powers: Monte Carlo and analytical calculations, Med. Phys. 22, 531 – 541 (1995). [216] D. M. J. Lovelock, C. S. Chui, and R. Mohan, A Monte Carlo model of photon beams used in radiation therapy, Med. Phys. 22, 1387 – 1394 (1995). [217] C.-M. Ma and A. E. Nahum, Monte Carlo calculated stem eﬀect corrections for NE2561 andNE2571 chambers in medium-energy x-ray beams, Phys. Med. Biol. 40, 63 – 72 (1995). [218] C.-M. Ma and A. E. Nahum, Calculations of ion chamber displacement eﬀect corrections for medium-energy x-ray dosimetry, Phys. Med. Biol. 40, 45 – 62 (1995). Printed January 12, 2005 Refereed papers EGSnrc & EGS Bibliography page 17 [219] Y. Namito, S. Ban, and H. Hirayama, Compton scattering of 20 to 40-keV photons, Phys. Rev. A 51, 3036 – 3043 (1995). [220] D. W. O. Rogers, B. A. Faddegon, G. X. Ding, C.-M. Ma, J. Wei, and T. R. Mackie, BEAM: A Monte Carlo code to simulate radiotherapy treatment units, Med. Phys. 22, 503 – 524 (1995). [221] F. Verhaegen and J. Seuntjens, Monte Carlo study of electron spectra and backscatter dose in the vicinity of media interfaces for monoenergetic photons of 50 - 1250 keV, Radiation Research 143, 334 – 342 (1995). [222] E. L. Chaney, T. J. Cullip, and T. A. Gabriel, A Monte Carlo study of accelerator head scatter, Med. Phys. 21, 1383 – 1390 (1994). [223] X. A. Li and D. W. O. Rogers, Reducing Electron Contamination for Photon-Beam-Quality Speciﬁcation, Med. Phys. 21, 791 – 798 (1994). [224] C.-M. Ma, R. T. Knight, A. E. Nahum, and W. P. M. Mayles, An investigation of the response of a simple design of plane-parallel chamber, Phys. Med. Biol. 39, 1593 – 1608 (1994). [225] C.-M. Ma, Implementation of a Monte Carlo radiation transport code on aparallel computer system, Parallel Computing 20, 991 – 1005 (1994). [226] Y. Namito, S. Ban, and H. Hirayama, Implementation of Doppler broadening of Compton- scattered photons into the EGS4 code, Nucl. Inst. Meth. A349, 489 – 494 (1994). [227] K. E. Sixel and E. B. Podgorsak, Buildup region and depth dose maximum of megavoltage x-ray beams, Med. Phys. 21, 411 – 416 (1994). [228] C. M. Wells, T. R. Mackie, M. B. Podgorsak, M. A. Holmes, N. Papanikolaou, P. J. Reck- werdt, J. Cygler, D. W. O. Rogers, A. F. Bielajew, D. Schmidt, and J. K. Muehlenkamp, Measurements of electron dose distribution near inhomogeneities using a plastic scintillator detector, Int. J. Radiat. Oncol. Biol. Phys. 29, 1157 – 1165 (1994). [229] P. Andreo, J. Medin, and A. F. Bielajew, Constraints on the multiple scattering theory of e Moli`re in Monte Carlo simulations of the transport of charged particles, Med. Phys. 20, 1315 – 1325 (1993). [230] A. F. Bielajew, R. Wang, and S. Duane, Incorporation of single scattering in the EGS4 Monte Carlo code system: Tests of Moliere theory, Nuc Inst Meth B82, 503 – 512 (1993). [231] B. A. Faddegon and D. W. O. Rogers, Comparisons of thick-target bremsstrahlung calculations by EGS4 and ITS, Nuc. Inst. Meth. A327, 556 – 565 (1993). [232] M. A. Holmes, T. R. Mackie, W. Sohn, P. J. Reckwerdt, T. J. Kinsella, A. F. Bielajew, and D. W. O. Rogers, The application of correlated sampling to the computation of electron beam dose distributions in heterogeneous phantoms using the Monte Carlomethod, Phys. Med. Biol. 38, 675 – 688 (1993). Printed January 12, 2005 Refereed papers EGSnrc & EGS Bibliography page 18 [233] A. Kosunen and D. W. O. Rogers, Beam Quality Speciﬁcation for Photon Beam Dosimetry, Med. Phys. 20, 1181 – 1188 (1993). [234] C.-M. Ma and A. E. Nahum, Dose conversion and wall correction factors for Fricke dosimetry in high-energy photon beams: analytical model and Monte Carlo calculations, Phys. Med. Biol. 38, 93 – 114 (1993). [235] C.-M. Ma and A. E. Nahum, Eﬀect of size and composition of central electrode on the response of cylindrical ionisation chambers in high-energy photon and electron beams, Phys. Med. Biol. 38, 267 – 290 (1993). [236] C.-M. Ma and A. E. Nahum, Correction factors for Fricke dosimetry in high-energy electron beams, Phys. Med. Biol. 38, 423 – 438 (1993). [237] C.-M. Ma and A. E. Nahum, Calculation of absorbed dose ratios using correlated Monte Carlo sampling, Med. Phys. 20, 1189 – 1199 (1993). [238] C.-M. Ma, D. W. O. Rogers, K. R. Shortt, C. K. Ross, A. E. Nahum, and A. F. Bielajew, Wall correction and absorbed dose conversion factors for Fricke dosimetry: Monte Carlo calculations and measurements, Med. Phys. 20, 283 – 292 (1993). [239] Y. Namito, S. Ban, and H. Hirayama, Implementation of linearly-polarized photon scat- tering into the EGS4 code, Nuclear Instruments and Methods A322, 277 – 283 (1993). [240] D. W. O. Rogers, How accurately can EGS4/PRESTA calculate ion chamber response?, Med. Phys. 20, 319 – 323 (1993). [241] P. Andreo and A. Fransson, Estimation of uncertainties in stopping-power ratios using Monte Carlo methods, Appl. Radiat. Isotop. 43, 1425 – 1426 (1992). o [242] A. Ahnesj¨, M. Saxner, and A. Trepp, A pencil beam model for photon dose calculation , Med. Phys. 19, 263 – 273 (1992). [243] A. F. Bielajew and D. W. O. Rogers, A standard timing benchmark for EGS4 Monte Carlo calculations, Medical Physics 19, 303 – 304 (1992). [244] M. Conti, A. Del Guerra, D. Mazzei, P. R. andW. Bencivelli, E. Bartolucci, A. Messineo, V. Rosso, A. Stefanini, U. Bottigli, P. Randaccio, and W. R. Nelson, Use of the EGS4 Monte Carlo code to evaluate the response of HgI2 and CdTe detectors for photons in the diagnostic energy range, Nuclear Instruments and Methods A322, 591 – 595 (1992). [245] B. A. Faddegon, C. K. Ross, and D. W. O. Rogers, Measurement of collision stopping powers of graphite, aluminum and copper for 10 and 20 MeV electrons, Phys. Med. Biol. 37, 1561 – 1571 (1992). [246] C.-M. Ma and A. E. Nahum, A new algorithm for EGS4 low-energy electron transport to account for the change in discrete interaction cross-section with energy, Nucl. Instr. Meth. B72, 319 – 330 (1992). [247] D. W. O. Rogers and B. A. Faddegon, Re-evaluation of total stopping power of 5.3 MeV electrons inpolystyrene, Phys. Med. Biol. 37, 969 – 983 (1992). Printed January 12, 2005 Refereed papers EGSnrc & EGS Bibliography page 19 [248] D. W. O. Rogers, Calibration of Parallel–Plate Ion Chambers: Resolution of Several Problems by Using Monte Carlo Calculations, Medical Physics 19, 889 – 899 (1992). [249] M. Udale, Monte Carlo calculations of electron beam parameters for three Philips linear accelerators, Phys. Med. Biol. 37, 85 – 105 (1992). [250] S. Walker, A. F. Bielajew, M. Hale, and D. Jette, Installation of EGS4 Monte Carlo code on an 80386-based microcomputer, Med. Phys. 19, 305 – 306 (1992). [251] A. Del Guerra, W. R. Nelson, and P. Russo, A simple method to introduce K-edge sampling for compounds inthe code EGS4 for X-ray element analysis, Nuclear Instruments and Methods A306, 378 – 385 (1991). [252] B. A. Faddegon, C. K. Ross, and D. W. O. Rogers, Angular distribution of bremsstrahlung from 15 MeV electrons incident on thick targets of Be, Al and Pb, Medical Physics 18, 727 – 739 (1991). [253] C.-M. Ma and A. E. Nahum, Bragg-Gray theory and ion chamber dosimetry for photon beams, Phys. Med. Biol. 36, 413 – 428 (1991). [254] C. Malamut, D. W. O. Rogers, and A. F. Bielajew, Calculation of water/air stopping- power ratios using EGS4 with explicit treatment of electron - positron diﬀerences, Med. Phys. 18, 1222 – 1228 (1991). [255] D. W. O. Rogers, The role of Monte Carlo simulation of electron transport in radiation dosimetry, Int’l J of Appl. Radiation and Isotopes, 42, 965 – 974 (1991). [256] T. Tabata, P. Andreo, and R. Ito, Analytic ﬁts to Monte Carlo calculated depth-dose curves of 1– to 50–MeV electrons in water, Nucl. Instr Meth. B58, 205 – 210 (1991). [257] C. Thomason, T. R. Mackie, and M. J. Lindstrom, Eﬀect of source encapsulation on the energy spectra of 192 Ir and 137 Cs seed sources, Phys. Med. Biol. 36, 495 – 505 (1991). [258] C. Thomason, T. R. Mackie, M. J. Lindstrom, and P. D. Higgins, The dose distribution surrounding 192 Ir and 137 Cs seed sources, Phys. Med. Biol. 36, 475 – 493 (1991). [259] P. Andreo, Depth-dose and stopping-power data for monoenergetic electronbeams, Nucl. Instr. Meth. 51, 107 – 121 (1990). [260] B. A. Faddegon, C. K. Ross, and D. W. O. Rogers, Forward directed bremsstrahlung of 10 – 30 MeV electrons incident on thick targets of Al and Pb, Medical Physics 17, 773 – 785 (1990). [261] B. A. Faddegon, L. Van der Zwan, D. W. O. Rogers, and C. K. Ross, Precision response estimation, energy calibration, and unfolding of spectra measured with a large NaI detector, Nucl. Inst. Meth. A301, 138 – 149 (1990). [262] S. S. Kubsad, T. R. Mackie, M. A. Gehring, D. J. Misisco, B. R. Paliwal, M. P. Mehta, and T. J. Kinsella, Monte Carlo and convolution dosimetry for stereotactic radiosurgery, Int. J. Radiation Oncology Biol. Phys. 19, 1027 – 1035 (1990). Printed January 12, 2005 Refereed papers EGSnrc & EGS Bibliography page 20 [263] C. Manfredotti, U. Nastasi, R. Marchisio, C. Ongaro, G. Gervino, R. Ragona, S. Angle- sio, and G. Sannazzari, Monte Carlo simulation of dose distribution in electron beam radiotherapy treatment planning, Nucl. Instr. Meth. A291, 646 – 654 (1990). [264] D. W. O. Rogers and A. F. Bielajew, Wall attenuation and scatter corrections for ion chambers: measurements versus calculations, Phys. Med. Biol. 35, 1065 – 1078 (1990). [265] R. K. Rice and L. M. Chin, Monte Carlo calculations of scatter to primary ratios for normalization of primary and scatter dose, Phys. Med. Biol. 35, 333 – 338 (1990). [266] P. Andreo and A. Fransson, Stopping-power ratios and their uncertainties for clinical electron beam dosimetry, Phys. Med. Biol. 34, 1847 – 1861 (1989). o [267] A. Ahnesj¨, Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media , Med. Phys. 16, 577 – 592 (1989). [268] P. Andreo, A. Brahme, A. E. Nahum, and O. Mattsson, Inﬂuence of energy and angular spread on stopping-power ratios for electron beams, Phys. Med. Biol. 34, 751 – 768 (1989). a [269] B. E. Bj¨rngard, J.-S. Tsai, and R. K. Rice, Doses on the central axes on narrow 6-MV x-ray beams, Med. Phys. 17, 794 – 799 (1989). [270] H. Hirayama and D. K. Trubey, Eﬀects of incoherent and coherent scattering on the exposurebuildup factors of low-energy gamma rays, Nucl. Sci. Eng. 99, 145 – 156 (1988). [271] T. R. Mackie, A. F. Bielajew, D. W. O. Rogers, and J. J. Battista, Generation of energy deposition kernels using the EGS Monte Carlo code, Phys. Med. Biol. 33, 1 – 20 (1988). [272] D. W. O. Rogers, G. M. Ewart, A. F. Bielajew, and G. van Dyk, Calculation of Elec- tron Contamination in a 60 Co Therapy Beam, in “Proceedings of the IAEA International Symposium on Dosimetry in Radiotherapy” (IAEA, Vienna), Vol 1 , 303 – 312 (1988). [273] M. Udale, A Monte Carlo investigation of surface doses for broad electron beams, Phys. Med. Biol. 33, 939 – 954 (1988). o [274] A. Ahnesj¨, P. Andreo, and A. Brahme, Calculation and application of point spread functions for treatment planning with high energy photon beams, Acta Oncol. 26, 49 – 57 (1987). [275] A. F. Bielajew and D. W. O. Rogers, PRESTA: The Parameter Reduced Electron-Step Transport Algorithm for electron Monte Carlo transport, Nuclear Instruments and Methods B18, 165 – 181 (1987). [276] K. Han, D. Ballon, C. Chui, and R. Mohan, Monte Carlo simulation of a cobalt-60 beam, Med. Phys. 14, 414 – 419 (1987). [277] C. Manfredotti, U. Nastasi, R. Ragona, and S. Anglesio, Comparison of three dimensional Monte Carlo simulation and the pencil beam algorithm for an electron beam from a linear accelerator, Nucl. Instr. Meth. A255, 355 – 359 (1987). Printed January 12, 2005 Refereed papers EGSnrc & EGS Bibliography page 21 [278] R. Mohan, C. Chui, and L. Lidofsky, Diﬀerential pencil beam dose computation model for photons, Med. Phys. 13, 64 – 73 (1986). [279] V. G. Smyth and A. C. McEwan, Interface artefacts in Monte Carlo calculations, Phys. Med. Biol. 31, 299 – 301 (1986). [280] K. R. Shortt, C. K. Ross, A. F. Bielajew, and D. W. O. Rogers, Electron Beam Dose Distributions Near Standard Inhomogeneities, Phys. Med. Biol. 31, 235 – 249 (1986). [281] A. F. Bielajew and D. W. O. Rogers, Interface artefacts in Monte Carlo calculations, Phys. Med. Biol. 31, 301 – 302 (1986). [282] J. C. Cunningham, M. Woo, D. W. O. Rogers, and A. F. Bielajew, The Dependence of Mass Energy Absorption Coeﬃcient Ratios on Beam Size and Depth in a Phantom, Medical Physics 13, 496 – 502 (1986). [283] R. Mohan, C. Chui, and L. Lidofsky, Energy and angular distributions of photons from medical linear accelerators, Med. Phys. 12, 592 – 597 (1985). [284] D. W. O. Rogers and A. F. Bielajew, Calculated buildup curves for photons with energies up to 60 Co, Med. Phys. 12, 738 – 744 (1985). [285] D. W. O. Rogers, A. F. Bielajew, and A. E. Nahum, Ion chamber response and Awall correction factors in a 60 Co beam by Monte Carlo simulation, Phys. Med. Biol. 30, 429 – 443 (1985). [286] H. Mach and D. W. O. Rogers, A Measurement of Absorbed Dose to Water per Unit Incident 7 MeV Photon Fluence, Phys. Med. Biol. 29, 1555 – 1570 (1984). [287] J. A. Rawlinson, A. F. Bielajew, P. Munro, and D. M. Galbraith, Theoretical and ex- perimental investigation of dose enhancement due to charge storage in electron-irradiated phantoms, Med. Phys. 11, 814 – 821 (1984). [288] D. W. O. Rogers, Low energy electron transport with EGS, Nucl. Inst. Meth. 227, 535 – 548 (1984). [289] H. Mach and D. W. O. Rogers, An Absolutely Calibrated Source of 6.13 MeV Gamma-rays, IEEE Trans. on Nuclear Science NS-30, 1514 – 1517 (1983). [290] P. L. Petti, M. S. Goodman, T. A. Gabriel, and R. Mohan, Investigation of buildup dose from electron contamination of clinical photon beams, Med. Phys. 10, 18 – 24 (1983). [291] P. L. Petti, M. S. Goodman, J. M. Sisterson, P. J. Biggs, T. A. Gabriel, and R. Mohan, Sources of electron contamination for the Clinac–35 25–MV photon beam, Med. Phys. 10, 856 – 861 (1983). [292] D. W. O. Rogers, More realistic Monte Carlo calculations of photon detector response functions, Nucl. Instrum. Meth. 199, 531 – 548 (1982). [293] W. P. Swanson, Improved calculation of photoneutron yields released by incident electrons, Health Physics 37, 347 – 358 (1979). Printed January 12, 2005 Refereed papers

DOCUMENT INFO

Shared By:

Categories:

Tags:

Stats:

views: | 20 |

posted: | 1/26/2011 |

language: | English |

pages: | 21 |

OTHER DOCS BY dfsdf224s

How are you planning on using Docstoc?
BUSINESS
PERSONAL

By registering with docstoc.com you agree to our
privacy policy and
terms of service, and to receive content and offer notifications.

Docstoc is the premier online destination to start and grow small businesses. It hosts the best quality and widest selection of professional documents (over 20 million) and resources including expert videos, articles and productivity tools to make every small business better.

Search or Browse for any specific document or resource you need for your business. Or explore our curated resources for Starting a Business, Growing a Business or for Professional Development.

Feel free to Contact Us with any questions you might have.