Docstoc

Nomenclature - Download Now DOC

Document Sample
Nomenclature - Download Now DOC Powered By Docstoc
					Supplementary information: Nomenclature

The lack of a unified name for this technology could impede its wider adoption and
makes reviewing the literature on the subject very difficult. Optical injection has been
described using over a dozen different names or phrases (Table S1). Some trends in
the literature are clear. The first term of the technique is invariably a derivation of
word laser, optical, or photo, and the second term is usually in reference to injection,
transfection, poration, perforation or puncture. Like many cellular perturbations,
when a single cell or group of cells is treated with a laser, three things can happen: the
cell dies (overdose), the cell membrane is permeabilised, substances enter, and the
cell recovers (therapeutic dose), or nothing happens (underdose). There have been
suggestions in the literature to reserve the term optoinjection for when a therapeutic
dose is delivered upon a single cell (Krasieva et al. 1998; Rhodes et al. 2007;
Venugopalan et al. 2002), and the term optoporation for when a laser generated
shockwave treats a cluster of many (10s to 100s) cells (Krasieva, et al. 1998; Rhodes,
et al. 2007; Soughayer et al. 2000; Venugopalan, et al. 2002). The first definition of
optoinjection is uncontroversial. The definition of optoporation, however, has failed
to be adopted, with a similar number of references using the term to denote the dosing
of single cells (Mohanty et al. 2003; Palumbo et al. 1996; Schneckenburger et al.
2002; Uchugonova et al. 2008) as those using the term to denote the simultaneous
dosing of clusters of many cells (Krasieva, et al. 1998; Rhodes, et al. 2007;
Soughayer, et al. 2000; Venugopalan, et al. 2002).

As the field stands, it is the opinion of the authors that the term optoinjection always
be included as a keyword in future publications, regardless of their own naming
preferences.
Table S1: Nomenclature of optical injection. All terms in the table refer to the same
concept, where a focussed laser is used to transiently permeabilise a cell or group of
cells.

                                 The many names of optical injection
laser beam gene transduction (Zeira et al. 2003)
laser induced optical breakdown (Zohdy et al. 2006)
laser mediated gene transfer (Gao et al. 1995)
laser mediated transfection (Rhodes, et al. 2007)
laser microbeam cell surgery (Tsukakoshi et al. 1984)
laser micropuncture (Badr et al. 2005; Tao et al. 1987)
laser manipulation {Kohli, 2008 #3111}
laser nanosurgery (Kohli & Elezzabi 2009)
laser surgery {Kohli, 2008 #3111}
laser transfection (Kohli et al. 2007; Kurata et al. 1986)
laser-assisted microinjection (Lei et al. 2008; Mohanty, et al. 2003)
laserfection (Rhodes, et al. 2007)
laser-induced transfection (Sagi et al. 2003)
laser poration (Kohli, et al. 2007)
optical nanoinjection (Stracke et al. 2005)
optical permeabilisation (Kohli et al. 2005)
optical transfection (Stevenson et al. 2006; Tsampoula et al. 2007; Tsampoula et al. 2008;
Uchugonova, et al. 2008)
optoinjection (Clark et al. 2006; Krasieva, et al. 1998; Peng et al. 2007; Rhodes, et al. 2007;
Venugopalan, et al. 2002)
opto-injection (Kohli, et al. 2007){Kohli, 2009 #3392}
opto-perforation (Baumgart et al. 2008)
optoporation (Mohanty, et al. 2003; Palumbo, et al. 1996; Schneckenburger, et al. 2002;
Soughayer, et al. 2000; Uchugonova, et al. 2008; Venugopalan, et al. 2002)
optotransfection (Nikolskaya et al. 2006)
photoporation (Paterson et al. 2005; Stevenson, et al. 2006; Tsampoula, et al. 2007)
phototransfection (Barrett et al. 2006; Miyashiro et al. 2009; Sul et al. 2009)
single-cell nanosurgery (Zeigler & Chiu 2009)

                                       Terms agreed by consensus
Optoinjection (or any derivations of laser injection, optical injection, photoinjection): The
transfer of any membrane impermeable substance into a cell using light. A general term that also
encompasses optical transfection.
Optical transfection (or any derivations of laser transfection, optotransfection,
phototransfection): A specific type of optical transfection - the transfer of nucleic acids into a cell
using light for the purposes of eliciting protein translation from those acids. To be in line with the
current definition of transfection in the biological community, non-nucleic acids (such as
fluorophores) cannot, by definition, be optically transfected (only optically injected).
Photoporation (or any derivations of [laser-] or [optical-] or [opto-] or [photo-] AND [-poration]
or [-permeabilisation] or [-puncture] or [-perforation]): The generation of a transient hole or
holes on the plasma membrane (or cell wall) of a cell usually for the purpose of optical injection.
See possible exception: Optoporation
-surgery (such as cell nanosurgery, laser nanosurgery, laser surgery): A general term that
incorporates all of the above definitions, but also includes the concepts of the ablation or optical
manipulation of cell material for other purposes besides pore generation. Examples include
selective cell ablation to purify cell populations, chromosome dissection, cytoskeleton disruption,
organelle ablation, axotomy{Kohli, 2009 #3392}, or the optical tweezing or isolation of
intracellular material.

                                     Terms under deliberation
 Optoporation: Has been suggested to mean the dosing of a cluster of cells with a shockwave
 mediated mechanism, which usually results in a doughnut shaped therapeutic zone (Krasieva, et al.
 1998; Rhodes, et al. 2007; Soughayer, et al. 2000; Venugopalan, et al. 2002). On the contrary, has
 also been synonymously used with the term photoporation(Mohanty, et al. 2003; Palumbo, et al.
 1996; Schneckenburger, et al. 2002; Uchugonova, et al. 2008).
 Laserfection: Has been suggested to mean the dosing of a cluster of cells with a circularly shaped
 therapeutic zone. Term reserved for Cyntellect’s laser-enabled analysis and processing (LEAP)
 system.



Badr, Y. A., Kereim, M. A., Yehia, M. A., Fouad, O. O., & Bahieldin, A. 2005
        Production of fertile transgenic wheat plants by laser micropuncture
        Photochem. Photobiol. Sci. 4, 803-807. (http://dx.doi.org/10.1039/b503658e)
Barrett, L. E., Sul, J. Y., Takano, H., Van Bockstaele, E. J., Haydon, P. G., &
        Eberwine, J. H. 2006 Region-directed phototransfection reveals the functional
        significance of a dendritically synthesized transcription factor Nat. Methods 3,
        455-60. (http://dx.doi.org/10.1039/b503658e)
Baumgart, J., Bintig, W., Ngezahayo, A., Willenbrock, S., Murua Escobar, H.,
        Ertmer, W., Lubatschowski, H., & Heisterkamp, A. 2008 Quantified
        femtosecond laser based opto-perforation of living GFSHR-17 and MTH53 a
        cells Opt. Express 16, 3021-31. (http://dx.doi.org/10.1364/OE.16.003021)
Clark, I. B., Hanania, E. G., Stevens, J., Gallina, M., Fieck, A., Brandes, R., Palsson,
        B. O., & Koller, M. R. 2006 Optoinjection for efficient targeted delivery of a
        broad range of compounds and macromolecules into diverse cell types J.
        Biomed. Opt. 11. (http://dx.doi.org/10.1117/1.2168148)
Gao, Y., Liang, H., & Berns, M. W. 1995 Laser-mediated gene transfer in rice
        Physiol. Plant. 93, 19-24. (http://dx.doi.org/10.1034/j.1399-
        3054.1995.930104.x)
Kohli, V., Acker, J. P., & Elezzabi, A. Y. 2005 Reversible permeabilization using
        high-intensity femtosecond laser pulses: Applications to biopreservation
        Biotechnol. Bioeng. 92, 889-899. (http://dx.doi.org/10.1002/bit.20689)
Kohli, V., & Elezzabi, A. Y. 2009 Prospects and developments in cell and embryo
        laser nanosurgery Wiley Interdisciplinary Reviews: Nanomedicine and
        Nanobiotechnology 1, 11-25. (http://dx.doi.org/10.1002/wnan.29)
Kohli, V., Robles, V., Cancela, M. L., Acker, J., Waskiewicz, A. J., & Elezzabi, A. Y.
        2007 An alternative method for delivering exogenous material into developing
        zebrafish embryos Biotechnol. Bioeng. 98, 1230-1241.
        (http://dx.doi.org/10.1002/bit.21564)
Krasieva, T. B., Chapman, C. F., LaMorte, V. J., Venugopalan, V., Berns, M. W., &
        Tromberg, B. J. 1998 Cell permeabilization and molecular transport by laser
        microirradiation Proc. SPIE 3260, 38-44.
        (http://dx.doi.org/doi:10.1117/12.307113 )
Kurata, S., Tsukakoshi, M., Kasuya, T., & Ikawa, Y. 1986 The Laser Method for
        Efficient Introduction of Foreign DNA into Cultured-Cells Exp. Cell Res. 162,
        372-378.
Lei, M., Xu, H., Yang, H., & Yao, B. 2008 Femtosecond laser-assisted microinjection
        into living neurons J. Neurosci. Meth. 174, 215-8.
        (http://dx.doi.org/10.1016/j.jneumeth.2008.07.006)
Miyashiro, K. Y., Bell, T. J., Sul, J. Y., & Eberwine, J. 2009 Subcellular
        neuropharmacology: the importance of intracellular targeting Trends
        Pharmacol. Sci. 30, 203-11. (http://dx.doi.org/10.1016/j.tips.2009.01.005)
Mohanty, S. K., Sharma, M., & Gupta, P. K. 2003 Laser-assisted microinjection into
        targeted animal cells Biotechnol. Lett. 25, 895-899.
Nikolskaya, A. V., Nikolski, V. P., & Efimov, I. R. 2006 Gene printer: Laser-
        scanning targeted transfection of cultured cardiac neonatal rat cells Cell
        Commun. Adhes. 13, 217-222.
        (http://dx.doi.org/10.1080/15419060600848524)
Palumbo, G., Caruso, M., Crescenzi, E., Tecce, M. F., Roberti, G., & Colasanti, A.
        1996 Targeted gene transfer in eucaryotic cells by dye-assisted laser
        optoporation J. Photochem. Photobiol. B, Biol. 36, 41-46.
        (http://dx.doi.org/10.1016/S1011-1344(96)07335-6)
Paterson, L., Agate, B., Comrie, M., Ferguson, R., Lake, T. K., Morris, J. E.,
        Carruthers, A. E., Brown, C. T. A., Sibbett, W., Bryant, P. E., Gunn-Moore,
        F., Riches, A. C., & Dholakia, K. 2005 Photoporation and cell transfection
        using a violet diode laser Opt. Express 13, 595-600.
        (http://dx.doi.org/10.1364/OPEX.13.000595)
Peng, C., Palazzo, R. E., & Wilke, I. 2007 Laser intensity dependence of femtosecond
        near-infrared optoinjection Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75,
        041903,1-8. (http://dx.doi.org/10.1103/PhysRevE.75.041903)
Rhodes, K., Clark, I., Zatcoff, M., Eustaquio, T., Hoyte, K. L., Koller, M. R.,
        Michael, W. B., & Greulich, K. O. 2007 Cellular Laserfection Methods Cell
        Biol. 82, 309-333. (http://dx.doi.org/10.1016/S0091-679X(06)82010-8)
Sagi, S., Knoll, T., Trojan, L., Schaaf, A., Alken, P., & Michel, M. S. 2003 Gene
        delivery into prostate cancer cells by holmium laser application Prostate
        Cancer Prostatic Dis. 6, 127-130.
Schneckenburger, H., Hendinger, A., Sailer, R., Strauss, W. S. L., & Schmidtt, M.
        2002 Laser-assisted optoporation of single cells J. Biomed. Opt. 7, 410-416.
        (http://dx.doi.org/10.1117/1.1485758)
Soughayer, J. S., Krasieva, T., Jacobson, S. C., Ramsey, J. M., Tromberg, B. J., &
        Allbritton, N. L. 2000 Characterization of cellular optoporation with distance
        Anal. Chem. 72, 1342-1347. (http://dx.doi.org/10.1021/ac990982u)
Stevenson, D., Agate, B., Tsampoula, X., Fischer, P., Brown, C. T. A., Sibbett, W.,
        Riches, A., Gunn-Moore, F., & Dholakia, K. 2006 Femtosecond optical
        transfection of cells: viability and efficiency Opt. Express 14, 7125-7133.
        (http://dx.doi.org/10.1364/OE.14.007125)
Stracke, F., Rieman, I., & Konig, K. 2005 Optical nanoinjection of macromolecules
        into vital cells J. Photochem. Photobiol. B, Biol. 81, 136-142.
        (http://dx.doi.org/10.1016/j.jphotobiol.2005.07.006)
Sul, J. Y., Wu, C. W., Zeng, F., Jochems, J., Lee, M. T., Kim, T. K., Peritz, T.,
        Buckley, P., Cappelleri, D. J., Maronski, M., Kim, M., Kumar, V., Meaney,
        D., Kim, J., & Eberwine, J. 2009 Transcriptome transfer produces a
        predictable cellular phenotype Proc. Natl. Acad. Sci. U S A 106, 7624-9.
        (http://dx.doi.org/10.1073/pnas.0902161106)
Tao, W., Wilkinson, J., Stanbridge, E. J., & Berns, M. W. 1987 Direct Gene-Transfer
        into Human Cultured-Cells Facilitated by Laser Micropuncture of the Cell-
        Membrane Proc. Natl. Acad. Sci. U S A 84, 4180-4184.
Tsampoula, X., Garces-Chavez, V., Comrie, M., Stevenson, D. J., Agate, B., Brown,
        C. T. A., Gunn-Moore, F., & Dholakia, K. 2007 Femtosecond cellular
        transfection using a nondiffracting light beam Appl. Phys. Lett. 91, 053902,1-
        3. (http://dx.doi.org/10.1063/1.2766835)
Tsampoula, X., Taguchi, K., Cizmar, T., Garces-Chavez, V., Ma, N., Mohanty, S.,
        Mohanty, K., Gunn-Moore, F., & Dholakia, K. 2008 Fibre based cellular
        transfection Opt. Express 16, 17007-13.
        (http://dx.doi.org/10.1364/OE.16.017007)
Tsukakoshi, M., Kurata, S., Nomiya, Y., Ikawa, Y., & Kasuya, T. 1984 A Novel
        Method of DNA Transfection by Laser Microbeam Cell Surgery Appl. Phys. B
        35, 135-140. (http://dx.doi.org/10.1007/BF00697702)
Uchugonova, A., Konig, K., Bueckle, R., Isemann, A., & Tempea, G. 2008 Targeted
        transfection of stem cells with sub-20 femtosecond laser pulses Opt. Express
        16, 9357-64. (http://dx.doi.org/10.1364/OE.16.009357)
Venugopalan, V., Guerra, A., 3rd, Nahen, K., & Vogel, A. 2002 Role of laser-induced
        plasma formation in pulsed cellular microsurgery and micromanipulation
        Phys. Rev. Lett. 88, 078103.
        (http://dx.doi.org/10.1103/PhysRevLett.88.078103)
Zeigler, M. B., & Chiu, D. T. 2009 Laser Selection Significantly Affects Cell
        Viability Following Single-Cell Nanosurgery Photochem. Photobiol. 85,
        1218-1224. (http://dx.doi.org/1751-1097)
Zeira, E., Manevitch, A., Khatchatouriants, A., Pappo, O., Hyam, E., Darash-Yahana,
        M., Tavor, E., Honigman, A., Lewis, A., & Galun, E. 2003 Femtosecond
        Infrared Laser - An Efficient and Safe in Vivo Gene Delivery System for
        Prolonged Expression Mol.Ther. 8, 342-350.
        (http://dx.doi.org/10.1016/S1525-0016(03)00184-9)
Zohdy, M. J., Tse, C., Ye, J. Y., & O'Donnell, M. 2006 Optical and acoustic detection
        of laser-generated microbubbles in single cells IEEE Trans. Ultrason.
        Ferroelectr. Freq. Control 53, 117-125.