Docstoc

Method For Mapping A Tubular Region Near The Heart - Patent 7610073

Document Sample
Method For Mapping A Tubular Region Near The Heart - Patent 7610073 Powered By Docstoc
					


United States Patent: 7610073


































 
( 1 of 1 )



	United States Patent 
	7,610,073



 Fuimaono
,   et al.

 
October 27, 2009




Method for mapping a tubular region near the heart



Abstract

A method is provided for mapping electrical activity within a tubular
     region of or near the heart having a inner circumference, such as a
     pulmonary vein. The method comprises inserting into the heart a distal
     end of a mapping catheter. The mapping catheter comprises an elongated
     tubular catheter body having an outer wall, proximal and distal ends, and
     at least one lumen extending therethrough. The catheter includes a
     mapping assembly comprising a tubular structure comprising a pre-formed
     generally circular main region generally transverse and distal to the
     catheter body and having an outer circumference. The tubular structure
     comprises a non-conductive cover over at least the main region of the
     mapping assembly. A plurality of electrode pairs, each comprising two
     ring electrodes, are carried by the generally circular main region of the
     mapping assembly. The method further comprises contacting the outer
     circumference of the generally circular main region with the inner
     circumference of the tubular region and mapping the electrical activity
     within the tubular region with the electrodes along the generally
     circular main region.


 
Inventors: 
 Fuimaono; Kristine B. (Covina, CA), Haissaguerre; Michel (Talence, FR) 
 Assignee:


Biosense Webster, Inc.
 (Diamond Bar, 
CA)





Appl. No.:
                    
11/706,601
  
Filed:
                      
  February 13, 2007

 Related U.S. Patent Documents   
 

Application NumberFiling DatePatent NumberIssue Date
 10407772Apr., 20037181262
 09943546Aug., 20016711428
 09551467Apr., 20006628976
 60178478Jan., 2000
 

 



  
Current U.S. Class:
  600/374  ; 600/381
  
Current International Class: 
  A61B 5/042&nbsp(20060101)
  
Field of Search: 
  
  

 600/374,381
  

References Cited  [Referenced By]
U.S. Patent Documents
 
 
 
4203430
May 1980
Takahashi

4207873
June 1980
Kruy

4777955
October 1988
Brayton et al.

4801297
January 1989
Mueller

4882777
November 1989
Narula

4920980
May 1990
Jackowski

4960134
October 1990
Webster, Jr.

4984581
January 1991
Stice

5170787
December 1992
Lindegren

5255679
October 1993
Imran

5263493
November 1993
Avitall

5275162
January 1994
Edwards et al.

5327905
July 1994
Avitall

5354297
October 1994
Avitall

5383923
January 1995
Webster, Jr.

5445148
August 1995
Jaraczewski et al.

5456664
October 1995
Heinzelman et al.

5462544
October 1995
Saksena et al.

5487385
January 1996
Avitall

5545200
August 1996
West et al.

5549581
August 1996
Lurie et al.

5582609
December 1996
Swanson et al.

5617854
April 1997
Munsif

5626136
May 1997
Webster, Jr.

5642736
July 1997
Avitall

5656030
August 1997
Hunjan et al.

5673695
October 1997
McGee et al.

5680860
October 1997
Imran

5730127
March 1998
Avitall

5755760
May 1998
Maguire et al.

5797905
August 1998
Fleischman et al.

5800428
September 1998
Nelson et al.

5823955
October 1998
Kuck et al.

5827278
October 1998
Webster, Jr.

5836947
November 1998
Fleischman et al.

5860920
January 1999
McGee et al.

5865800
February 1999
Mirarchi et al.

5879295
March 1999
Li et al.

5882333
March 1999
Schaer et al.

5882346
March 1999
Pomeranz et al.

5931811
August 1999
Haissaguerre et al.

5935102
August 1999
Bowden et al.

5938694
August 1999
Jaraczewski et al.

5951471
September 1999
de la Rama et al.

5984909
November 1999
Lurie et al.

5997526
December 1999
Giba et al.

6002955
December 1999
Willems et al.

6035224
March 2000
West

6064902
May 2000
Haissaguerre et al.

6088614
July 2000
Swanson

6090104
July 2000
Webster, Jr.

6096036
August 2000
Bowe et al.

6106522
August 2000
Fleischman et al.

6120476
September 2000
Fung et al.

6123699
September 2000
Webster, Jr.

6129724
October 2000
Fleischman et al.

6141576
October 2000
Littmann et al.

6146381
November 2000
Bowe et al.

6169916
January 2001
West

6171277
January 2001
Ponzi

6183463
February 2001
Webster, Jr.

6219582
April 2001
Hofstad et al.

6325797
December 2001
Stewart et al.

6468260
October 2002
Bumbalough et al.

6542781
April 2003
Koblish et al.

6628976
September 2003
Fuimaono et al.

6711428
March 2004
Fuimaono et al.

6795721
September 2004
Coleman et al.

6804545
October 2004
Fuimaono et al.

6845257
January 2005
Fuimaono et al.

6987996
January 2006
Fuimaono et al.

7181262
February 2007
Fuimaono et al.

2002/0165441
November 2002
Coleman et al.

2003/0191380
October 2003
Fuimaono et al.

2003/0199746
October 2003
Fuimaono et al.

2004/0143175
July 2004
Coleman et al.

2004/0158139
August 2004
Fuimaono et al.



 Foreign Patent Documents
 
 
 
0 499 491
Aug., 1992
EP

0 928 601
Jul., 1999
EP

0 985 423
Mar., 2000
EP

1 120 082
Aug., 2001
EP

1 050 316
Dec., 2003
EP

2001-245864
Sep., 2001
JP

WO 94/24930
Nov., 1994
WO

WO 95/010225
Apr., 1995
WO

WO 95/13111
May., 1995
WO

WO 97/33526
Sep., 1997
WO



   
 Other References 

M Haissaguerre et al. "Spontaneous Initiation of Atrial Fibrillation by Ecotopic Beats Originating in the Pulmonary Veins", The New England
Journal of Medicine, 339:659-666 (Sep. 3), 1998. cited by other
.
International Search Report dated Sep. 23, 2008 for International application No. EP 05/077543, 10 sheets, indicating relevance of corresponding references in this IDS. cited by other.  
  Primary Examiner: Cohen; Lee S


  Attorney, Agent or Firm: Christie, Parker & Hale, LLP.



Parent Case Text



CROSS-REFERENCE TO RELATED APPLICATION


This application is a continuation of U.S. patent application Ser. No.
     10/407,772, filed Apr. 4, 2003, now U.S. Pat. No. 7,181,262, and entitled
     METHOD FOR MAPPING A TUBULAR REGION NEAR THE HEART, which is a divisional
     of U.S. patent application Ser. No. 09/943,546, now U.S. Pat. No.
     6,711,428, filed Aug. 30, 2001, which is a continuation-in-part of U.S.
     patent application Ser. No. 09/551,467, now U.S. Pat. No. 6,628,976,
     filed Apr. 17, 2000, which claims priority to and the benefit of U.S.
     Provisional Application Ser. No. 60/178,478, filed Jan. 27, 2000, the
     entire contents of which are incorporated herein by reference.

Claims  

What is claimed is:

 1.  A method for mapping electrical activity within a tubular region of or near the heart having a inner circumference, the method comprising: inserting into the heart a
distal end of a mapping catheter comprising: an elongated tubular catheter body having an outer wall, proximal and distal ends, and at least one lumen extending therethrough, an intermediate section having proximal and distal ends, the proximal end of
the intermediate section being attached to the distal end of the catheter body, and a mapping assembly attached to the distal end of the intermediate section, the mapping assembly comprising: a tubular structure comprising a pre-formed generally circular
main region generally transverse and distal to the catheter body and having an outer circumference, wherein the tubular structure comprises a non-conductive cover over at least the main region of the mapping assembly, and a plurality of electrode pairs,
each comprising two ring electrodes, carried by the generally circular main region of the mapping assembly;  contacting the outer circumference of the generally circular main region with the inner circumference of the tubular region;  and mapping the
electrical activity within the tubular region with the electrodes along the generally circular main region.


 2.  The method according to claim 1, wherein the mapping assembly further comprises a support member having shape-memory disposed within at least the main region of the mapping assembly.


 3.  The method according to claim 1, wherein the mapping assembly further comprises a generally straight distal region distal to the main region, the generally straight distal region having an atraumatic design to prevent the distal end of the
mapping assembly from penetrating tissue.


 4.  The method according to claim 1, wherein the mapping assembly further comprises a generally straight proximal region attached to the catheter body and a transition region connecting the proximal region and the main region.


 5.  The method according to claim 1, wherein the generally circular main region has an outer diameter ranging from about 10 mm to about 25 mm.


 6.  The method according to claim 1, wherein the generally circular main region has an outer diameter ranging from about 12 mm to about 20 mm.


 7.  The method according to claim 1, wherein the number of ring electrode pairs along the generally circular main region ranges from about six to about fourteen.


 8.  The method according to claim 1, wherein the mapping assembly comprises ten ring electrode pairs along the generally circular main region.


 9.  The method according to claim 1, wherein the ring electrode pairs are approximately evenly spaced around the generally circular main region.


 10.  The method according to claim 1, wherein the distance between two ring electrodes of each ring electrode pair is less than about 3 mm.


 11.  The method according to claim 1, wherein the distance between two ring electrodes of each ring electrode pair is less than about 2 mm.


 12.  The method according to claim 1, wherein the distance between two ring electrodes of each ring electrode pair ranges from about 0.5 mm to about 1.5 mm.


 13.  The method according to claim 1, wherein at least some of the ring electrodes of the electrode pairs have a length ranging from about 0.4 mm to about 0.75 mm.


 14.  The method according to claim 1, wherein one ring electrode has a length longer than the length of the other ring electrodes.


 15.  The method according to claim 1, wherein one ring electrode has a length ranging from about 1 mm to about 1.5 mm and all of the other ring electrodes each having a length ranging from about 0.4 mm to about 0.75 mm.


 16.  The method according to claim 1, wherein the tubular region is selected from the group consisting of pulmonary veins, the coronary sinus, the superior vena cava, and the inferior vena cava.


 17.  The method according to claim 1, wherein at least about 50% of the outer circumference of the generally circular main region is in contact with the inner circumference of the tubular region.


 18.  The method according to claim 1, wherein at least about 80% of the outer circumference of the generally circular main region is in contact with the inner circumference of the tubular region.


 19.  A method for mapping electrical activity within a pulmonary vein of a patient, the method comprising: inserting into the pulmonary vein a mapping catheter comprising: an elongated tubular catheter body having an outer wall, proximal and
distal ends, and at least one lumen extending therethrough, an intermediate section having proximal and distal ends, the proximal end of the intermediate section being attached to the distal end of the catheter body, a mapping assembly attached to the
distal end of the intermediate section comprising: a tubular structure comprising a pre-formed generally circular main region generally transverse and distal to the catheter body and having an outer circumference, wherein the tubular structure comprises
a non-conductive cover over at least the main region of the mapping assembly, and a plurality of electrode pairs, each comprising two ring electrodes, carried by the generally circular main region of the mapping assembly;  contacting the outer
circumference of the generally circular main region with an inner circumference of the pulmonary vein;  and mapping the electrical activity within the pulmonary vein with the electrodes along the generally circular main region.


 20.  The method according to claim 19, wherein the distance between two ring electrodes of each ring electrode pair is less than about 2 mm.


 21.  The method according to claim 19, wherein the distance between two ring electrodes of each ring electrode pair ranges from about 0.5 mm to about 1.5 mm.


 22.  The method according to claim 19, wherein at least some of the ring electrodes of the electrode pairs have lengths ranging from about 0.4 mm to about 0.75 mm.


 23.  The method according to claim 19, wherein one ring electrode has a length longer than the length of the other ring electrodes.


 24.  The method according to claim 19, wherein one ring electrode has a length ranging from about 1 mm to about 1.5 mm and each of the other ring electrodes has a length ranging from about 0.4 mm to about 0.75 mm. 
Description  

FIELD OF THE INVENTION


The present invention relates to a method for mapping a tubular region of or near the heart, and more particularly, a method for mapping the pulmonary vein.


BACKGROUND OF THE INVENTION


Atrial fibrillation is a common sustained cardiac arrhythmia and a major cause of stroke.  This condition is perpetuated by reentrant wavelets propagating in an abnormal atrial-tissue substrate.  Various approaches have been developed to
interrupt wavelets, including surgical or catheter-mediated atriotomy.  Prior to treating the condition, one has to first determine the location of the wavelets.  Various techniques have been proposed for making such a determination.  None of the
proposed techniques, however, provide for measurement of the activity within a pulmonary vein, coronary sinus or other tubular structure about the inner circumference of the structure.


SUMMARY OF THE INVENTION


A method is provided for mapping electrical activity within a tubular region of or near the heart having an inner circumference, such as a pulmonary vein.  The method comprises inserting into the heart a distal end of a mapping catheter.  The
mapping catheter comprises an elongated tubular catheter body having an outer wall, proximal and distal ends, and at least one lumen extending therethrough.  The catheter includes a mapping assembly comprising a tubular structure comprising a pre-formed
generally circular main region generally transverse and distal to the catheter body and having an outer circumference.  The tubular structure comprises a non-conductive cover over at least the main region of the mapping assembly.  A plurality of
electrode pairs, each comprising two ring electrodes, are carried by the generally circular main region of the mapping assembly.  The method further comprises contacting the outer circumference of the generally circular main region with the inner
circumference of the tubular region and mapping the electrical activity within the tubular region with the electrodes along the generally circular main region. 

BRIEF DESCRIPTION OF THE DRAWINGS


These and other features and advantages of the present invention will be better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein:


FIG. 1 is a side cross-sectional view of an embodiment of the catheter of the invention.


FIG. 2 is a side cross-sectional view of a catheter body according to the invention, including the junction between the catheter body and intermediate section.


FIG. 3 is a cross-sectional view of the intermediate section, including the junction between the intermediate section and the mapping assembly.


FIG. 4 is a schematic perspective view of the mapping assembly according to the invention.


FIG. 5 is a side view of the mapping assembly according to the invention in a clockwise formation.


FIG. 6 is a side view of the mapping assembly according to the invention in a counterclockwise formation rotated 90.degree.  relative to the assembly depicted in FIG. 5.


FIG. 7 is a schematic view of the mapping assembly according to the invention.


FIG. 8 is a schematic view of the mapping assembly according to the invention depicting the relationship between the first and last electrodes.


FIG. 9 is a schematic view of an alternative mapping assembly according to the invention.


DETAILED DESCRIPTION


In a particularly preferred embodiment of the invention, there is provided a catheter having a mapping assembly at its distal end.  As shown in FIG. 1, the catheter comprises an elongated catheter body 12 having proximal and distal ends, an
intermediate section 14 at the distal end of the catheter body, a control handle 16 at the proximal end of the catheter body, and a mapping assembly 17 mounted at the distal end of the catheter to the intermediate section.


With reference to FIG. 2, the catheter body 12 comprises an elongated tubular construction having a single, axial or central lumen 18.  The catheter body 12 is flexible, i.e., bendable, but substantially non-compressible along its length.  The
catheter body 12 can be of any suitable construction and made of any suitable material.  A presently preferred construction comprises an outer wall 20 made of polyurethane or PEBAX.  The outer wall 20 comprises an imbedded braided mesh of stainless steel
or the like to increase torsional stiffness of the catheter body 12 so that, when the control handle 16 is rotated, the intermediate section 14 of the catheter 10 will rotate in a corresponding manner.


The outer diameter of the catheter body 12 is not critical, but is preferably no more than about 8 french, more preferably 7 french.  Likewise the thickness of the outer wall 20 is not critical, but is thin enough so that the central lumen 18 can
accommodate a puller wire, lead wires, and any other desired wires, cables or tubes.  If desired, the inner surface of the outer wall 20 is lined with a stiffening tube (not shown) to provide improved torsional stability.  A particularly preferred
catheter has an outer wall 20 with an outer diameter of from about 0.090 inch to about 0.94 inch and an inner diameter of from about 0.061 inch to about 0.065 inch.


The intermediate section 14 comprises a short section of tubing 22 having three lumens.  The first lumen 30 electrode carries lead wires 50, the second lumen 32 carries a puller wire 64, and the third lumen 34 carries a support member 24.  The
tubing 22 is made of a suitable non-toxic material that is preferably more flexible than the catheter body 12.  A presently preferred material for the tubing 22 is braided polyurethane, i.e., polyurethane with an embedded mesh of braided stainless steel
or the like.  The size of each lumen is not critical, but is sufficient to house the lead wires, puller wire or support member.


The useful length of the catheter, i.e., that portion that can be inserted into the body excluding the mapping assembly 17, can vary as desired.  Preferably the useful length ranges from about 110 cm to about 120 cm.  The length of the
intermediate section 14 is a relatively small portion of the useful length, and preferably ranges from about 3.5 cm to about 10 cm, more preferably 6 from about 5 cm to about 6.5 cm.


A preferred means for attaching the catheter body 12 to the intermediate section 14 is illustrated in FIG. 2.  The proximal end of the intermediate section 14 comprises an outer circumferential notch 26 that receives the inner surface of the
outer wall 22 of the catheter body 12.  The intermediate section 14 and catheter body 12 are attached by glue or the like.


If desired, a spacer (not shown) can be located within the catheter body between the distal end of the stiffening tube (if provided) and the proximal end of the intermediate section.  The spacer provides a transition in flexibility at the
junction of the catheter body and intermediate section, which allows this junction to bend smoothly without folding or kinking.  A catheter having such a spacer is described in U.S.  Pat.  No. 5,964,757, the disclosure of which is incorporated herein by
reference.


At the distal end of the intermediate section 14 is a mapping assembly, as shown in FIGS. 3 to 7.  The mapping assembly is formed from the distal end of the support member 24 covered by a non-conductive covering 28.  The mapping assembly
comprises a generally straight proximal region 38, a generally circular main region and a generally straight distal region 40.  The proximal region 38 is mounted on the intermediate section 14, as described in more detail below, so that its axis is
generally parallel to the axis of the intermediate section.  The proximal region 38 preferably has an exposed length, e.g., not contained within the intermediate section 14, ranging from about 3 mm to about 12 mm, more preferably about 3 mm to about 8
mm, still more preferably about 5 mm inch, but can vary as desired.


The generally circular main region 39 does not form a flat circle, but is very slightly helical, as shown in FIGS. 4 to 6.  The main region 39 has an outer diameter preferably ranging to about 10 mm to about 25 mm, more preferably about 12 mm to
about 20 mm, still more preferably about 15 mm.  The transition region 41 of the straight proximal region 38 and generally circular main region 39 is slightly curved and formed such that, when viewed from the side with the proximal region at the top of
the circular main region as shown in FIG. 5, the proximal region (along with the intermediate section 14) forms an angle .alpha.  with the curved region ranging from about 75.degree.  to about 95.degree., preferably from about 83.degree.  to about
93.degree., more preferably about 87.degree..  The main region 39 can curve in a clockwise direction, as shown in FIG. 5, or a counterclockwise direction, as shown in FIG. 6.  When the assembly 17 is turned 90.degree., as shown in FIG. 6, so that the
transition region 41 is near the center of the main region, the proximal region (along with the intermediate section 14) forms an angle .beta.  with the main region ranging from about 90.degree.  to about 135.degree., preferably from about 100.degree. 
to about 110.degree., more preferably about 105.degree..


The support member 24 is made of a material having shape-memory, i.e., that can be straightened or bent out of its original shape upon exertion of a force and is capable of substantially returning to its original shape upon removal of the force. 
A particularly preferred material for the support member 24 is a nickel/titanium alloy.  Such alloys typically comprise about 55% nickel and 45% titanium, but may comprise from about 54% to about 57% nickel with the balance being titanium.  A preferred
nickel/titanium alloy is Nitinol, which has excellent shape memory, together with ductility, strength, corrosion resistance, electrical resistivity and temperature stability.  The non-conductive covering 28 can be made of any suitable material, and is
preferably made of a biocompatible plastic such as polyurethane or PEBAX


A series of ring electrodes 36 are mounted on the non-conductive covering 28 of the generally circular main region 39 of the mapping assembly 17.  The ring electrodes 36 can be made of any suitable solid conductive material, such as platinum or
gold, preferably a combination of platinum and iridium, and mounted onto the non-conductive covering 28 with glue or the like.  Alternatively, the ring electrodes can be formed by coating the non-conductive covering 28 with an electrically conducting
material, like platinum, gold and/or iridium.  The coating can be applied using sputtering, ion beam deposition or an equivalent technique.


In a preferred embodiment, each ring electrode 36 is mounted by first forming a hole in the non-conductive covering 28.  An electrode lead wire 50 is fed through the hole, and the ring electrode 36 is welded in place over the lead wire and
non-conductive covering 28.  The lead wires 50 extend between the non-conductive covering 28 and the support member 24.  The proximal end of each lead wire 50 is electrically connected to a suitable connector 37, which is connected to a source of RF
energy (not shown).


The number of ring electrodes 36 on the assembly can vary as desired.  Preferably the number of ring electrodes ranges from about six to about twenty, preferably from about eight to about twelve.  In a particularly preferred embodiment, the
assembly carries ten ring electrodes.  The ring electrodes 36 are preferably approximately evenly spaced around the generally circular main region 39, as best shown in FIG. 7.  In a particularly preferred embodiment, a distance of approximately 5 mm is
provided between the centers of the ring electrodes 36.


FIGS. 7 and 8 show a particularly preferred electrode arrangement.  As explained above, the generally circular main region 39 is very slightly helical, although FIGS. 7 and 8 depict the main region as a flat circle, as it would generally appear
when viewed from the distal end of the catheter.  The generally straight distal region 40 forms a tangent relative to the generally circular main region 39 and contacts the main region at a tangent point 43.  A first electrode 36a is provided, which is
the electrode that is on the generally circular main region 39 closest to the proximal region 38.  A second electrode 36b is provided, which is the electrode that is on the generally circular main region 39 closest to the distal region 40.  Preferably,
the first electrode 36a is positioned along the circumference of the generally circular main region 39 at a distance .theta.  of no more than about 55.degree.  from the tangent point, more preferably no more than about 48.degree.  from the tangent point,
still more preferably from about 15.degree.  to about 36.degree.  from the tangent point.  Preferably the second electrode 36b is positioned along the circumference of the generally circular main region 39 at a distance .omega.  of no more than about
55.degree.  from the tangent point, more preferably no more than about 48.degree.  from the tangent point, still more preferably from about 15.degree.  to about 36.degree.  from the tangent point.  Preferably the first electrode 36a is positioned along
the circumference of the generally circular main region 39 at a distance .gamma.  of no more than 100.degree.  from the second electrode 36b, preferably no more than 80.degree.  from the second electrode, still more preferably from about 30.degree.  to
about 75.degree.  from the second electrode.


An alternative electrode arrangement is depicted in FIG. 9.  In this embodiment, the mapping assembly includes a series of ring electrode pairs 35.  Each ring electrode pair 35 comprises two closely-spaced ring electrodes 36.  As used herein, the
term "ring electrode pair" refers to a pair of ring electrodes that are arranged closer to each other than they are to the other adjacent ring electrodes.  Preferably the distance between two electrodes 36 of an electrode pair 35 is less than about 3 mm,
more preferably less than about 2 mm, still more preferably from about 0.5 mm to about 1.5 mm.  The number of electrode pairs 35 can vary as desired, and preferably ranges from 6 to 14 pairs, more preferably 10 pairs.


In a particularly preferred embodiment, the mapping assembly carries 10 pairs of electrodes with a space of approximately 1 mm between the two electrodes 36 of each pair 35.  Preferably each ring electrode 36 is relatively short, having a length
ranging from about 0.4 mm to about 0.75 mm, with the most distal ring electrode 36c being longer than the other ring electrodes, preferably having a length ranging from about 1 mm to about 1.5 mm.  The longer ring electrode provides a signal to the user
when the catheter is being viewed under fluoroscopy.  Specifically, because the mapping assembly is generally circular, it can be difficult for the user to determine which electrodes are placed at a particular location in the heart.  By having one ring
electrode, such as the most distal ring electrode, sized differently from the other ring electrodes, the user has a reference point when viewing the catheter under fluoroscopy.


Regardless of the size and number of the ring electrodes 36, the electrode pairs 35 are preferably approximately evenly spaced around the generally circular main region 39.  The closely-spaced electrode pairs 35 allow for more accurate detection
of near field pulmonary vein potential versus far field atrial signals, which is very important when trying to treat atrial fibrillation.  Specifically, the near field pulmonary vein potentials are very small signals whereas the atria, located very close
to the pulmonary vein, provides much larger signals.  Accordingly, even when the mapping array is placed in the pulmonary vein, it can be difficult for the physician to determine whether the signal is a small, close potential (from the pulmonary vein) or
a larger, farther potential (from the atria).  Closely-spaced bipoles permit the physician to more accurately determine whether he is looking at a close signal or a far signal.  Accordingly, by having closely-spaced electrodes, one is able to target
exactly the locations of myocardial tissue that have pulmonary vein potentials and therefore allows the clinician to deliver therapy to the specific tissue.  Moreover, the closely-spaced electrodes allow the physician to determine the exact anatomical
location of the ostium by the electrical signal.


If desired, additional electrodes (not shown) could be mounted along the intermediate section 14, the generally straight proximal section 39, the transition region 41, and generally straight distal region 40.


The generally straight distal region 40 is provided with an atraumatic design to prevent the distal end of the mapping assembly 17 from penetrating tissue.  In the depicted embodiment, the distal region 40 comprises a tightly wound coil spring 44
made, for example, of stainless steel, such as the mini guidewire commercially available from Cordis Corporation (Miami, Fla.) or a coil having a 0.0045 inch wire size and a 0.009 inch inner diameter, such as that commercially available from Microspring. The coil spring 44 is mounted at its proximal end in a short piece of tubing 45 with polyurethane glue or the like, which is then glued or otherwise anchored within the non-conductive covering 28.  The tubing 45 is less flexible than the non-conductive
covering 28 but more flexible than that support member 24 to provide a transition in flexibility along the length of the mapping assembly 17.  The distal end of the distal region 40 is capped, preferably with polyurethane glue 46, to prevent body fluids
from entering the mapping assembly 17.  In the depicted embodiment, the generally straight distal region 40 has a length of about 0.5 inch, but can be any desired length, for example, ranging from about 0.25 inch to about 1.0 inch.  The generally
straight distal region 40 is preferably sufficiently long to serve as an anchor for introducing the catheter into a guiding sheath, as discussed in more detail below, because the mapping assembly 17 must be straightened upon introduction into the sheath. Without having the generally straight distal region 40 as an anchor, the mapping assembly 17 has a tendency to pull out of the guiding sheath upon its introduction into the guiding sheath.  Any other atraumatic tip design that prevents the distal end of
the mapping assembly from penetrating tissue could be provided.  An alternative design in the form of a plastic ball is described in copending patent application Ser.  No. 09/370,605, entitled "ATRIAL BRANDING IRON CATHETER AND METHOD FOR TREATING ATRIAL
FIBRILLATION", the entire disclosure of which is incorporated herein by reference.  Additionally, if desired, the distal region 40 can be formed, at least in part, of a radiopaque material to aid in the positioning of the mapping assembly 17 under
fluoroscopy.


The junction of the intermediate section 14 and mapping assembly 17 is shown in FIG. 3.  The non-conductive covering 28 is attached to the tubing 22 of the intermediate section by glue or the like.  The support member 24 extends from the third
lumen 32 into the non-conductive covering 28.  The proximal end of the support member 24 terminates a short distance within the third lumen 32, approximately about 5 mm, so as not to adversely affect the ability of the intermediate section 14 to deflect. However, if desired, the proximal end of the support member 24 can extend into the catheter body 12.


The lead wires 50 attached to the ring electrodes 36 extend through the first lumen 30 of the intermediate section 14, through the central lumen 18 of the catheter body 12, and the control handle 16, and terminate at their proximal end in the
connector 37.  The portion of the lead wires 50 extending through the central lumen 18 of the catheter body 12, control handle 16 and proximal end of the intermediate section 14 are enclosed within a protective sheath 62, which can be made of any
suitable material, preferably polyimide.  The protective sheath 62 is anchored at its distal end to the proximal end of the intermediate section 14 by gluing it in the first lumen 30 with polyurethane glue or the like.


The puller wire 64 is provided for deflection of the intermediate section 14.  The puller wire 64 extends through the catheter body 12, is anchored at its proximal end to the control handle 16, and is anchored at its distal end to the
intermediate section 14.  The puller wire 64 is made of any suitable metal, such as stainless steel or Nitinol, and is preferably coated with Teflon.RTM.  or the like.  The coating imparts lubricity to the puller wire 64.  The puller wire 64 preferably
has a diameter ranging from about 0.006 to about 0.010 inch.


A compression coil 66 is situated within the catheter body 12 in surrounding relation to the puller wire 64.  The compression coil 66 extends from the proximal end of the catheter body 12 to the proximal end of the intermediate section 14.  The
compression coil 66 is made of any suitable metal, preferably stainless steel.  The compression coil 66 is tightly wound on itself to provide flexibility, i.e., bending, but to resist compression.  The inner diameter of the compression coil 66 is
preferably slightly larger than the diameter of the puller wire 64.  The Teflon.RTM.  coating on the puller wire 64 allows it to slide freely within the compression coil 66.  The outer surface of the compression coil 66 is covered by a flexible,
non-conductive sheath 68, e.g., made of polyimide tubing.


The compression coil 66 is anchored at its proximal end to the outer wall 20 of the catheter body 12 by proximal glue joint 70 and at its distal end to the intermediate section 14 by distal glue joint 72.  Both glue joints 70 and 72 preferably
comprise polyurethane glue or the like.  The glue may be applied by means of a syringe or the like through a hole made between the outer surface of the catheter body 12 and the central lumen 18.  Such a hole may be formed, for example, by a needle or the
like that punctures the outer wall 20 of the catheter body 12 which is heated sufficiently to form a permanent hole.  The glue is then introduced through the hole to the outer surface of the compression coil 66 and wicks around the outer circumference to
form a glue joint about the entire circumference of the compression coil.


The puller wire 64 extends into the second lumen 32 of the intermediate section 14.  Preferably the puller wire 64 is anchored at its distal end to the distal end of the intermediate section 14, as shown in FIG. 3.  Specifically, a T-shaped
anchor is formed, which comprises a short piece of tubular stainless steel 80, e.g., hypodermic stock, which is fitted over the distal end of the puller wire 64 and crimped to fixedly secure it to the puller wire.  The distal end of the tubular stainless
steel 80 is fixedly attached, e.g., by welding, to a cross-piece 82 formed of stainless steel ribbon or the like.  The cross-piece 82 sits beyond the distal end of the second lumen 32.  The cross-piece 82 is larger than the lumen opening and, therefore,
cannot be pulled through the opening.  The distal end of the second lumen 32 is then filled with glue or the like, preferably polyurethane glue.  Within the second lumen 32 of the intermediate section 14, the puller wire 64 extends through a plastic,
preferably Teflon.RTM., puller wire sheath (not shown), which prevents the puller wire 64 from cutting into the wall of the intermediate section 14 when the intermediate section is deflected.


Longitudinal movement of the puller wire 42 relative to the catheter body 12, which results in deflection of the intermediate section 14, is accomplished by suitable manipulation of the control handle 16.  Examples of suitable control handles for
use in the present invention are disclosed, for example, in U.S.  Pat.  Nos.  Re 34,502 and 5,897,529, the entire disclosures of which are incorporated herein by reference.


In use, a suitable guiding sheath is inserted into the patient with its distal end positioned at a desired mapping location.  An example of a suitable guiding sheath for use in connection with the present invention is the Preface.TM.  Braiding
Guiding Sheath, commercially available from Cordis Webster (Diamond Bar, Calif.).  The distal end of the sheath is guided into one of the atria.  A catheter in accordance with the present invention is fed through the guiding sheath until its distal end
extends out of the distal end of the guiding sheath.  As the catheter is fed through the guiding sheath, the mapping assembly 17 is straightened to fit through the sheath.  Once the distal end of the catheter is positioned at the desired mapping
location, the guiding sheath is pulled proximally, allowing the deflectable intermediate section 14 and mapping assembly 17 to extend outside the sheath, and the mapping assembly 17 returns to its original shape due to the shape-memory of the support
member 24.  The mapping assembly 17 is then inserted into a pulmonary vein or other tubular region (such as the coronary sinus, superior vena cava, or inferior vena cava) so that the outer circumference of the generally circular main region 39 of the
assembly is in contact with a circumference inside the tubular region.  Preferably at least about 50%, more preferably at least about 70%, and still more preferably at least about 80% of the circumference of the generally circular main region is in
contact with a circumference inside the tubular region.


The circular arrangement of the electrodes 36 permits measurement of the electrical activity at that circumference of the tubular structure so that ectopic beats between the electrodes can be identified.  The size of the generally circular main
region 39 permits measurement of electrical activity along a diameter of a pulmonary vein or other tubular structure of or near the heart because the circular main region has a diameter generally corresponding to that of a pulmonary vein or the coronary
sinus.  Additionally, because the main region 39 preferably does not form a flat circle, but instead is somewhat helical, as shown in FIG. 4, it is easier for the user to guide the mapping assembly 17 into a tubular region.


If desired, two or more puller wires can be provided to enhance the ability to manipulate the intermediate section.  In such an embodiment, a second puller wire and a surrounding second compression coil extend through the catheter body and into
an additional off-axis lumen in the intermediate section.  The first puller wire is preferably anchored proximal to the anchor location of the second puller wire.  Suitable designs of catheters having two or more puller wires, including suitable control
handles for such embodiments, are described, for example, in U.S.  patent application Ser.  No. 08/924,611, filed Sep. 5, 1997; Ser.  No. 09/130,359, filed Aug.  7, 1998; Ser.  No. 09/143,426, filed Aug.  28, 1998; and Ser.  No. 09/157,055, filed Sep.
18, 1998, the disclosures of which are incorporated herein by reference.


The preceding description has been presented with reference to presently preferred embodiments of the invention.  Workers skilled in the art and technology to which this invention pertains will appreciate that alterations and changes in the
described structure may be practiced without meaningfully departing from the principal, spirit and scope of this invention.


Accordingly, the foregoing description should not be read as pertaining only to the precise structures described and illustrated in the accompanying drawings, but rather should be read consistent with and as support to the following claims which
are to have their fullest and fair scope.


* * * * *























				
DOCUMENT INFO
Description: The present invention relates to a method for mapping a tubular region of or near the heart, and more particularly, a method for mapping the pulmonary vein.BACKGROUND OF THE INVENTIONAtrial fibrillation is a common sustained cardiac arrhythmia and a major cause of stroke. This condition is perpetuated by reentrant wavelets propagating in an abnormal atrial-tissue substrate. Various approaches have been developed tointerrupt wavelets, including surgical or catheter-mediated atriotomy. Prior to treating the condition, one has to first determine the location of the wavelets. Various techniques have been proposed for making such a determination. None of theproposed techniques, however, provide for measurement of the activity within a pulmonary vein, coronary sinus or other tubular structure about the inner circumference of the structure.SUMMARY OF THE INVENTIONA method is provided for mapping electrical activity within a tubular region of or near the heart having an inner circumference, such as a pulmonary vein. The method comprises inserting into the heart a distal end of a mapping catheter. Themapping catheter comprises an elongated tubular catheter body having an outer wall, proximal and distal ends, and at least one lumen extending therethrough. The catheter includes a mapping assembly comprising a tubular structure comprising a pre-formedgenerally circular main region generally transverse and distal to the catheter body and having an outer circumference. The tubular structure comprises a non-conductive cover over at least the main region of the mapping assembly. A plurality ofelectrode pairs, each comprising two ring electrodes, are carried by the generally circular main region of the mapping assembly. The method further comprises contacting the outer circumference of the generally circular main region with the innercircumference of the tubular region and mapping the electrical activity within the tubular region with the electrodes along the generally ci