Moving Sectors Within A Block Of Information In A Flash Memory Mass Storage Architecture - Patent 5907856

Document Sample
Moving Sectors Within A Block Of Information In A Flash Memory Mass Storage Architecture - Patent 5907856 Powered By Docstoc
					


United States Patent: 5907856


































 
( 1 of 1 )



	United States Patent 
	5,907,856



 Estakhri
,   et al.

 
May 25, 1999




 Moving sectors within a block of information in a flash memory mass
     storage architecture



Abstract

A device is disclosed for storing mapping information for mapping a logical
     block address identifying a block being accessed by a host to a physical
     block address, identifying a free area of nonvolatile memory, the block
     being selectively erasable and having one or more sectors that may be
     individually moved. The mapping information including a virtual physical
     block address for identifying an "original" location, within the
     nonvolatile memory, wherein a block is stored and a moved virtual physical
     block address for identifying a "moved" location, within the nonvolatile
     memory, wherein one or more sectors of the stored block are moved. The
     mapping information further including status information for use of the
     "original" physical block address and the "moved" physical block address
     and for providing information regarding "moved" sectors within the block
     being accessed.


 
Inventors: 
 Estakhri; Petro (Pleasanton, CA), Iman; Berhau (Sunnyvale, CA), Ganjuei; Ali R. (San Ramon, CA) 
 Assignee:


Lexar Media, Inc.
 (Fremont, 
CA)





Appl. No.:
                    
 08/831,266
  
Filed:
                      
  March 31, 1997

 Related U.S. Patent Documents   
 

Application NumberFiling DatePatent NumberIssue Date
 509706Jul., 19955845313
 

 



  
Current U.S. Class:
  711/103  ; 711/156; 711/165; 711/203; 711/206; 711/E12.006; 711/E12.008
  
Current International Class: 
  G06F 12/02&nbsp(20060101); G11C 16/08&nbsp(20060101); G11C 16/06&nbsp(20060101); G06F 3/06&nbsp(20060101); G11C 16/10&nbsp(20060101); G11C 29/00&nbsp(20060101); G06F 11/10&nbsp(20060101); G06F 012/10&nbsp(); G06F 012/02&nbsp()
  
Field of Search: 
  
  




 711/103,156,165,203,206
  

References Cited  [Referenced By]
U.S. Patent Documents
 
 
 
4210959
July 1980
Wozniak

4355376
October 1982
Gould

4405952
September 1983
Slakmon

4450559
May 1984
Bond et al.

4456971
June 1984
Fukuda et al.

4498146
February 1985
Martinez

4525839
July 1985
Nozawa et al.

4616311
October 1986
Sato

4654847
March 1987
Dutton

4710871
December 1987
Belknap et al.

4746998
May 1988
Robinson et al.

4748320
May 1988
Yorimoto et al.

4757474
July 1988
Fukushi et al.

4774700
September 1988
Satoh et al.

4800520
January 1989
Iijima

4896262
January 1990
Wayama et al.

4914529
April 1990
Bonke

4920518
April 1990
Nakamura et al.

4924331
May 1990
Robinson et al.

4953122
August 1990
Williams

5070474
December 1991
Tuma et al.

5226168
July 1993
Kobayashi et al.

5270979
December 1993
Harari et al.

5297148
March 1994
Harari et al.

5303198
April 1994
Adachi et al.

5337275
August 1994
Garner

5341330
August 1994
Wells et al.

5341339
August 1994
Wells

5353256
October 1994
Fandrich et al.

5357475
October 1994
Hasbun et al.

5388083
February 1995
Assar et al.

5430859
July 1995
Norman et al.

5479638
December 1995
Assar et al.

5485595
January 1996
Assar et al.

5524230
June 1996
Sakaue et al.

5544356
August 1996
Robinson et al.

5566314
October 1996
DeMarco et al.

5586285
December 1996
Hasbun et al.



 Foreign Patent Documents
 
 
 
0 557 723
Jan., 1987
AU

0 220 718 A2
May., 1987
EP

0 243 503 A1
Nov., 1987
EP

0 424 191 A2
Apr., 1991
EP

0 489 204 A1
Jun., 1992
EP

0 544 252 A2
Jun., 1993
EP

0 522 780 A2
Nov., 1993
EP

0 686 976 A2
Dec., 1995
EP

93 01908
Aug., 1993
FR

59-45695
Sep., 1982
JP

58-215794
Dec., 1983
JP

58-215795
Dec., 1983
JP

59-162695
Sep., 1984
JP

60-212900
Oct., 1985
JP

61-96598
May., 1986
JP

62-283497
Dec., 1987
JP

62-283496
Dec., 1987
JP

63-183700
Jul., 1988
JP

4-332999
Nov., 1992
JP

84/00628
Feb., 1984
WO



   
 Other References 

Computer Architecture and Parallel Processing, Kai Hwang & Faye A. Briggs, McGraw-Hill Book Co., .COPYRGT.1984, p. 64.
.
"State of the Art: Magnetic VS. Optical Store Data in a Flash", by Walter Lahti and Dean McCarron, Byte magazine dated Nov. 1, 1990, 311, vol. 15, No. 12.
.
Technology Updates, Integrated Circuits, "I-Mbit flash memories seek their role in system design", Ron Wilson, Senior Editor, Computer Design magazine 28 (1989) Mar. 1, No.5, Tulsa OK, US, pp. 30 and 32.
.
1992 Symposium of VLSI Circuits Digest of Technical Papers, "EEPROM for Solid State Disk Applications", S. Mehoura et al., SunDisk Corporation, Santa Clara, CA. R. W. Gregor et al., AT&T Bell Laboratories, Allentown, PA. pp. 24 and 25..
 
  Primary Examiner:  Bragdon; Reginald G.


  Attorney, Agent or Firm: Imam; Maryam



Parent Case Text



CROSS REFERENCE TO RELATED APPLICATION


This application is a continuation-in-part of my prior application Ser. No.
     08/509,706, filed Jul. 31, 1995, now U.S. Pat. No. 5,845,313, entitled
     "Direct Logical Block Addressing Flash Memory Mass Storage Architecture."

Claims  

What is claimed is:

1.  A storage device having nonvolatile memory and being coupled to a host for storing information, organized in blocks in the nonvolatile memory, each block having associated
therewith a logical block address (LBA) and a physical block address (PBA), the LBA provided by the host to the storage device for identifying a block to be accessed, the PBA developed by the storage device for identifying a free location within the
nonvolatile memory wherein the accessed block is be stored, a stored block within the nonvolatile being selectively erasable and further having one or more sectors, the storage device comprising:


a. a memory device for storing a table defined by n LBA rows, each of the LBA rows being uniquely addressable by an LBA and for storing a virtual PBA for identifying the location of the stored block, a move virtual PBA for identifying the
location of a portion of the stored block, and status information including flag means for indicating whether any sectors of the stored block have been moved to the move virtual PBA location within the nonvolatile memory;


b. means for receiving from the host, a block of information identified by a particular LBA to be stored in the nonvolatile memory, for developing the virtual PBA if the particular LBA is "unused" and for developing the move virtual PBA if the
particular LBA is "used";


wherein portions of a block may be stored in more than one PBA-identified location within the nonvolatile memory to avoid an erase operation each time the host writes to the storage device and to avoid transfer of the entire block to a free
location within the nonvolatile memory each time a portion of the block is being re-written.


2.  A storage device as recited in claim 1, wherein the status information of each of the LBA rows further includes a sector move status field for identifying one or more of the sectors of the stored block that are not stored in the location of
the nonvolatile memory identified by the virtual PBA.


3.  A storage device as recited in claim 1, wherein the status information of each of the LBA rows further includes a sector move status field for identifying which of the sectors of the stored block are no longer in the location identified by
the virtual PBA.


4.  A storage device as recited in claim 1 further including one or more nonvolatile memory devices, each device having a plurality of storage locations with each location uniquely addressable by a PBA for storing a sector of a block.


5.  A storage device as recited in claim 4, wherein each of the storage locations of the nonvolatile memory device is further for storing a copy of said flag means.


6.  A storage device as recited in claim 4, wherein each storage location of the nonvolatile devices includes a sector move status location for storing sector move information to identify which sectors of the stored block are moved.


7.  A storage device as recited in claim 3 or 6, wherein upon power-up, the sector move information for each PBA is read from the nonvolatile memory devices and stored in the sector move status field of each corresponding LBA row of the table.


8.  A storage device as recited in claim 4, wherein the stored block is stored in the storage location of one of the nonvolatile devices addressed by the virtual PBA.


9.  A storage device as recited in claim 4, wherein the stored block is stored in the storage location of one of the nonvolatile devices addressed by the move virtual PBA.


10.  A storage device as recited in claim 1 wherein said flag means further includes an "old" flag means for identifying a corresponding block as being "old" when set and a "used" flag means for identifying a corresponding block as being "in use"
when set.


11.  A storage device as recited in claims 3 or 10 wherein if the sector move status field indicates that half of the sectors of the stored block are no longer in the virtual PBA location, the corresponding "old" flag means of the stored block is
set.


12.  A storage device as recited in claim 1 wherein said memory device is comprised of volatile memory.


13.  A storage device as recited in claim 12 wherein said volatile memory is RAM.


14.  In a storage device for use with a host, the storage device having a controller and one or more flash memory devices, a method for accessing information within the flash memory devices under the direction of the controller, the information
organized in sectors with one or more sectors defining a block wherein each block is selectively erasable having associated therewith an LBA (Logical Block Address) provided by the host and a PBA (Physical Block Address) developed by the controller for
identifying an unused location within the flash memory devices wherein a sector may be stored, the method comprising:


(a) allocating a table within the controller defined by rows, each row being individually addressable by an LBA and configured to store a virtual PBA, a moved virtual PBA, and status information for use in determining the location of a sector
that has been moved from the virtual PBA to the moved virtual PBA within the flash memory devices;


(b) providing to the controller, a particular LBA identifying a block being accessed by the host;


(c) developing a PBA in association with the particular LBA;


(d) using the particular LBA to address an LBA row;


(e) storing the PBA associated with the particular LBA in the addressed LBA row;


(f) upon further access of the block identified by the particular LBA, developing a moved virtual PBA;


(g) storing the moved virtual PBA in the addressed LBA row;  and


(h) modifying the status information of the addressed LBA row to indicate whether any sectors within the addressed LBA row have been moved;


wherein sectors of a block are moved to unused locations within the flash memory devices to avoid erase-before-write operations each time the block is accessed.


15.  A method for accessing information as recited in claim 14 wherein the status information further includes a move flag means for indicating whether any portion of the particular block is stored in a location within the flash memory devices
identified by the moved virtual PBA.


16.  A method for accessing information as recited in claim 14, further including storing the table in volatile memory.


17.  A controller device coupled to a host for storing information in nonvolatile memory, the information being organized in blocks with each block having associated therewith a logical block address (LBA) and a physical block address (PBA), the
LBA being provided by the host to the controller device for identifying a block to be accessed, the PBA being developed by the controller device for identifying a location within the nonvolatile memory wherein the accessed block is to be stored, a stored
block within the nonvolatile memory being selectively erasable and further having one or more sectors, comprising:


a. a memory device for storing a table defined by n LBA rows, each of the LBA rows being uniquely addressable by an LBA and for storing a virtual PBA for identifying a first location for storing a block within the nonvolatile memory, a move
virtual PBA for identifying a second location for storing one or more sectors of the stored block within the nonvolatile memory, and status information including a flag for indicating whether any sectors of the stored block have been moved to the move
virtual PBA location within the nonvolatile memory;


b. controller means responsive to a command from the host and operative to store a block of information in the nonvolatile memory, the block being identified by a particular LBA, said controller being operative to develop a virtual PBA if the
particular LBA is "unused" and to develop a move virtual PBA if the particular LBA is "used",


whereby said controller stores an LBA-identified block that may be accessed more than once by the host prior to erasure thereof, in more than one PBA-identified location within the nonvolatile memory thereby avoiding an erase operation each time
the host writes to the controller device and avoiding transfer of an entire block to another location within the nonvolatile memory each time a portion of the block is re-written.


18.  A controller device as recited in claim 17, wherein the status information of each of the LBA rows further includes a sector move status field for identifying one or more of the sectors of a block that are stored in the move virtual PBA
location.


19.  A controller device as recited in claim 17, wherein the status information of each of the LBA rows further includes a sector move status field for identifying which of the sectors of the stored block are in the move virtual PBA location.


20.  A controller device as recited in claim 17, wherein said flags further include both an "old" flag for indicating whether or not the stored block is "old" and a "used" flag for indicating whether the stored block is "in use".
 Description  

BACKGROUND OF THE INVENTION


Field of the Invention


This invention relates to the field of mass storage for computers.  More particularly, this invention relates to an architecture for replacing a hard disk with a semiconductor nonvolatile memory and in particular flash memory.


Computers conventionally use rotating magnetic media for mass storage of documents, data, programs and information.  Though widely used and commonly accepted, such hard disk drives suffer from a variety of deficiencies.  Because of the rotation
of the disk, there is an inherent latency in extracting information from a hard disk drive.


Other problems are especially dramatic in portable computers.  In particular, hard disks are unable to withstand many of the kinds of physical shock that a portable computer will likely sustain.  Further, the motor for rotating the disk consumes
significant amounts of power decreasing the battery life for portable computers.


Solid state memory is an ideal choice for replacing a hard disk drive for mass storage because it can resolve the problems cited above.  Potential solutions have been proposed for replacing a hard disk drive with a semiconductor memory.  For such
a system to be truly useful, the memory must be nonvolatile and alterable.  The inventors have determined that FLASH memory is preferred for such a replacement.


FLASH memory is a transistor memory cell which is programmable through hot electron, source injection, or tunneling, and erasable through Fowler-Nordheim tunneling.  The programming and erasing of such a memory cell requires current to pass
through the dielectric surrounding floating gate electrode.  Because of this, such types of memory have a finite number of erase-write cycles.  Eventually, the dielectric deteriorates.  Manufacturers of FLASH cell devices specify the limit for the number
of erase-write cycles between 100,000 and 1,000,000.


One requirement for a semiconductor mass storage device to be successful is that its use in lieu of a rotating media hard disk mass storage device be transparent to the designer and the user of a system using such a device.  In other words, the
designer or user of a computer incorporating such a semiconductor mass storage device could simply remove the hard disk and replace it with a semiconductor mass storage device.  All presently available commercial software should operate on a system
employing such a semiconductor mass storage device without the necessity of any modification.


SanDisk proposed an architecture for a semiconductor mass storage using FLASH memory at the Silicon Valley PC Design Conference on Jul.  9, 1991.  That mass storage system included read-write block sizes of 512 Bytes to conform with commercial
hard disk sector sizes.


Earlier designs incorporated erase-before-write architectures.  In this process, in order to update a file on the media, if the physical location on the media was previously programmed, it has to be erased before the new data can be reprogrammed.


This process would have a major deterioration on overall system throughput.  When a host writes a new data file to the storage media, it provides a logical block address to the peripheral storage device associated with this data file.  The
storage device then translates this given logical block address to an actual physical block address on the media and performs the write operation.  In magnetic hard disk drives, the new data can be written over the previous old data with no modification
to the media.  Therefore, once the physical block address is calculated from the given logical block address by the controller, it will simply write the data file into that location.  In solid state storage, if the location associated with the calculated
physical block address was previously programmed, before this block can be reprogrammed with the new data, it has to be erased.  In one previous art, in erase-before-write architecture where the correlation between logical block address given by the host
is one to one mapping with physical block address on the media.  This method has many deficiencies.  First, it introduces a delay in performance due to the erase operation before reprogramming the altered information.  In solid state flash, erase is a
very slow process.


Secondly, hard disk users typically store two types of information, one is rarely modified and another which is frequently changed.  For example, a commercial spread sheet or word processing software program stored on a user's system are rarely,
if ever, changed.  However, the spread sheet data files or word processing documents are frequently changed.  Thus, different sectors of a hard disk typically have dramatically different usage in terms of the number of times the information stored
thereon is changed.  While this disparity has no impact on a hard disk because of its insensitivity to data changes, in a FLASH memory device, this variance can cause sections of the mass storage to wear out and be unusable significantly sooner than
other sections of the mass storage.


In another architecture, the inventors previously proposed a solution to store a table correlating the logical block address to the physical block address.  The inventions relating to that solution are disclosed in U.S.  patent application Ser. 
No. 08/038,668 filed on Mar.  26, 1993 now U.S.  Pat.  No. 5,388,083 and U.S.  patent application Ser.  No. 08/037,893 also filed on Mar.  26, 1993 now U.S.  Pat.  No. 5,479,638.  Those applications are incorporated herein by reference.


The inventors' previous solution discloses two primary algorithms and an associated hardware architecture for a semiconductor mass storage device.  It will be understood that "data file" in this patent document refers to any computer file
including commercial software, a user program, word processing software document, spread sheet file and the like.  The first algorithm in the previous solution provides means for avoiding an erase operation when writing a modified data file back onto the
mass storage device.  Instead, no erase is performed and the modified data file is written onto an empty portion of the mass storage.


The semiconductor mass storage architecture has blocks sized to conform with commercial hard disk sector sizes.  The blocks are individually erasable.  In one embodiment, the semiconductor mass storage can be substituted for a rotating hard disk
with no impact to the user, so that such a substitution will be transparent.  Means are provided for avoiding the erase-before-write cycle each time information stored in the mass storage is changed.


According to the first algorithm, erase cycles are avoided by programming an altered data file into an empty block.  This would ordinarily not be possible when using conventional mass storage because the central processor and commercial software
available in conventional computer systems are not configured to track continually changing physical locations of data files.  The previous solution includes a programmable map to maintain a correlation between the logical address and the physical
address of the updated information files.


All the flags, and the table correlating the logical block address to the physical block address are maintained within an array of CAM cells.  The use of the CAM cells provides very rapid determination of the physical address desired within the
mass storage, generally within one or two clock cycles.  Unfortunately, as is well known, CAM cells require multiple transistors, typically six.  Accordingly, an integrated circuit built for a particular size memory using CAM storage for the tables and
flags will need to be significantly larger than a circuit using other means for just storing the memory.


The inventors proposed another solution to this problem which is disclosed in U.S.  patent application Ser.  No. 08/131,495 filed on Oct.  4, 1993 now U.S.  Pat.  No. 5,485,595.  That application is incorporated herein by reference.


This additional previous solution invented by these same inventors is also for a nonvolatile memory storage device.  The device is also configured to avoid having to perform an erase-before-write each time a data file is changed by keeping a
correlation between logical block address and physical block address in a volatile space management RAM.  Further, this invention avoids the overhead associated with CAM cell approaches which require additional circuitry.


Like the solutions disclosed above by these same inventors, the device includes circuitry for performing the two primary algorithms and an associated hardware architecture for a semiconductor mass storage device.  In addition, the CAM cell is
avoided in this previous solution by using RAM cells.


Reading is performed in this previous solution by providing the logical block address to the memory storage.  The system sequentially compares the stored logical block addresses until it finds a match.  That data file is then coupled to the
digital system.  Accordingly, the performance offered by this solution suffers because potentially all of the memory locations must be searched and compared to the desired logical block address before the physical location of the desired information can
be determined.


What is needed is a semiconductor hard disk architecture which provides rapid access to stored data without the excessive overhead of CAM cell storage.


SUMMARY OF THE INVENTION


The present invention is for a nonvolatile memory storage device.  The device is configured to avoid having to perform an erase-before-write each time a data file is changed.  Further, to avoid the overhead associated with CAM cells, this
approach utilizes a RAM array.  The host system maintains organization of the mass storage data by using a logical block address.  The RAM array is arranged to be addressable by the same address as the logical block addresses (LBA) of the host.  Each
such addressable location in the RAM includes a field which holds the physical address of the data in the nonvolatile mass storage expected by the host.  This physical block address (PBA) information must be shadowed in the nonvolatile memory to ensure
that the device will still function after resuming operation after a power down because RAMs are volatile memory devices.  In addition, status flags are also stored for each physical location.  The status flags can be stored in either the nonvolatile
media or in both the RAM and in the nonvolatile media.


The device includes circuitry for performing two primary algorithms and an associated hardware architecture for a semiconductor mass storage device.  The first algorithm provides a means for mapping of host logical block address to physical block
address with much improved performance and minimal hardware assists.  In addition, the second algorithm provides means for avoiding an erase-before-write cycle when writing a modified data file back onto the mass storage device.  Instead, no erase is
performed and the modified data file is written onto an empty portion of the mass storage.


Reading is performed in the present invention by providing the logical block address to the memory storage.  The RAM array is arranged so that the logical block address selects one RAM location.  That location contains the physical block address
of the data requested by the host or other external system.  That data file is then read out to the host.


According to the second algorithm, erase cycles are avoided by programming an altered data file into an altered data mass storage block rather than itself after an erase cycle of the block as done on previous arts.


In an alternative embodiment of the present invention, a method and apparatus is presented for efficiently moving sectors within a block from a first area within the nonvolatile memory to an unused area within the nonvolatile memory and marking
the first area as "used".


Briefly, A preferred embodiment of the present invention includes a method and apparatus for storing mapping information for mapping a logical block address identifying a block being accessed by a host to a physical block address, identifying a
free area of nonvolatile memory, the block being selectively erasable and having one or more sectors that may be individually moved.  The mapping information including a virtual physical block address for identifying an "original" location, within the
nonvolatile memory, wherein a block is stored and a moved virtual physical block address for identifying a "moved" location, within the nonvolatile memory, wherein one or more sectors of the stored block are moved.  The mapping information further
including status information for use of the "original" physical block address and the "moved" physical block address and for providing information regarding "moved" sectors within the block being accessed. 

IN THE DRAWINGS


FIG. 1 shows a schematic block diagram of an architecture for a semiconductor mass storage according to the present invention.


FIG. 2 shows an alternative embodiment to the physical block address 102 of the RAM storage of FIG. 1.


FIG. 3 shows a block diagram of a system incorporating the mass storage device of the present invention.


FIGS. 4 through 8 show the status of several of the flags and information for achieving the advantages of the present invention.


FIG. 9 shows a flow chart block diagram of the first algorithm according to the present invention.


FIG. 10 shows a high-level block diagram of a digital system, such as a digital camera, including a preferred embodiment of the present invention.


FIGS. 11-21 illustrate several examples of the state of a mapping table that may be stored in the digital system of FIG. 10 including LBA-PBA mapping information.


FIG. 22 depicts an example of a nonvolatile memory device employed in the preferred embodiment of FIG. 10.


FIG. 23 shows a high-level flow chart of the general steps employed in writing a block of information to the nonvolatile devices of FIG. 10. 

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT


FIG. 1 shows an architecture for implementation of a solid state storage media according to the present invention.  The storage media is for use with a host or other external digital system.  The mass storage is partitioned into two portions, a
volatile RAM array 100 and a nonvolatile array 104.  According to the preferred embodiment, all of the nonvolatile memory storage is FLASH.  The FLASH may be replaced by EEPROM.  The RAM can be of any convenient type.  The memory storage 104 is arranged
into N blocks of data from zero through N-1.  Each of the blocks of data is M Bytes long.  In the preferred embodiment, each data block is 512 Bytes long to correspond with a sector length in a commercially available hard disk drive plus the extra
numbers of bytes to store the flags and logical block address (LBA) information and the associated ECC.  The memory 104 can contain as much memory storage as a user desires.  An example of a mass storage device might include 100M Byte of addressable
storage.


There are a plurality of RAM locations 102.  Each RAM location 102 is uniquely addressable by controller using an appropriate one of the logical block addresses provided by the host system or the actual physical address of the nonvolatile media. 
The RAM location 102 contains the physical block address of the data associated with the logical block address and the flags associated with a physical block address on the nonvolatile media.


It is possible that the physical block address (PBA) can be split into two fields as shown in FIG. 2.  These fields can be used for cluster addresses of a group of data blocks.  The first such field 290 is used to select a cluster address and the
second such field 292 can be used to select the start address of the logical block address associated with this cluster.


A collection of information flags is also stored for each nonvolatile memory location 106.  These flags include an old/new flag 110, a used/free flag 112, a defect flag 114, and a single/sector flag 116.  Additionally, there is also a data store
122.


When writing data to the mass storage device of the present invention, a controller determines the first available physical block for storing the data.  The RAM location 102 corresponding to the logical block address selected by the host is
written with the physical block address where the data is actually stored within the nonvolatile memory array in 104 (FIG. 1).


Assume for example that a user is preparing a word processing document and instructs the computer to save the document.  The document will be stored in the mass storage system.  The host system will assign it a logical block address.  The mass
storage system of the present invention will select a physical address of an unused block or blocks in the mass storage for storing the document.  The address of the physical block address will be stored into the RAM location 102 corresponding to the
logical block address.  As the data is programmed, the system of the present invention also sets the used free flag 112 in 104 and 293 to indicate that this block location is used.  One used/free flag 112 is provided for each entry of the nonvolatile
array 104.


Later, assume the user retrieves the document, makes a change and again instructs the computer to store the document.  To avoid an erase-before-write cycle, the system of the present invention provides means for locating a block having its
used/free flag 112 in 100 unset (not programmed) which indicates that the associated block is erased.  The system then sets the used/free flag for the new block 112 of 106 and 293 of 100 and then stores the modified document in that new physical block
location 106 in the nonvolatile array 104.  The address of the new physical block location is also stored into the RAM location 102 corresponding the logical block address, thereby writing over the previous physical block location in 102.  Next, the
system sets the old/new flag 110 of the previous version of the document indicating that this is an old unneeded version of the document in 110 of 104 and 293 of 109.  In this way, the system of the present invention avoids the overhead of an erase cycle
which is required in the erase-before-write of conventional systems to store a modified version of a previous document.


Because of RAM array 100 will lose its memory upon a power down condition, the logical block address with the active physical block address in the media is also stored as a shadow memory 108 in the nonvolatile array 104.  It will be understood
the shadow information will be stored into the appropriate RAM locations 102 by the controller.  During power up sequence, the RAM locations in 100 are appropriately updated from every physical locations in 104, by reading the information 106 of 104. 
The logical address 108 of 106 is used to address the RAM location of 100 to update the actual physical block address associated with the given logical block address.  Also since 106 is the actual physical block address associated with the new data 122,
the flags 110, 112, 114, and 116 are updated in 293 of 102 with the physical block address of 106 in 100.  It will be apparent to one of ordinary skill in the art that the flags can be stored in either the appropriate nonvolatile memory location 106 or
in both the nonvolatile memory location and also in the RAM location 102 associated with the physical block address.


During power up, in order to assign the most recent physical block address assigned to a logical block address in the volatile memory 100, the controller will first read the Flags 110, 112, 114, and 116 portion of the nonvolatile memory 104 and
updates the flags portion 293 in the volatile memory 100.  Then it reads the logical block address 108 of every physical block address of the nonvolatile media 104 and by tracking the flags of the given physical block address in the volatile memory 100,
and the read logical block address of the physical block address in the nonvolatile memory 104, it can update the most recent physical block address assigned to the read logical block address in the volatile memory 100.


FIG. 3 shows a block diagram of a system incorporating the mass storage device of the present invention.  An external digital system 300 such as a host computer, personal computer and the like is coupled to the mass storage device 302 of the
present invention.  A logical block address is coupled via an address bus 306 to the volatile RAM array 100 and to a controller circuit 304.  Control signals are also coupled to the controller 304 via a control bus 308.  The volatile RAM array 100 is
coupled for providing the physical block address to the nonvolatile RAM array 400.  The controller 304 is coupled to control both the volatile RAM 100, the nonvolatile array 104, and for the generation of all flags.


A simplified example, showing the operation of the write operation according to the present invention is shown in FIGS. 4 through 8.  Not all the information flags are shown to avoid obscuring these features of the invention in excessive detail. 
The data entries are shown using decimal numbers to further simplify the understanding of the invention.  It will be apparent to one of ordinary skill in the art that in a preferred embodiment binary counting will be used.


FIG. 4 shows an eleven entry mass storage device according to the present invention.  There is no valid nor usable data stored in the mass storage device of FIG. 4.  Accordingly, all the physical block addresses are empty.  The data stored in the
nonvolatile mass storage location `6` is filled and old.  Additionally, location `9` is defective and cannot be used.


The host directs the mass storage device of the example to write data pursuant to the logical block address `3` and then to `4`.  The mass storage device will first write the data associated with the logical block address `3`.  The device
determines which is the first unused location in the nonvolatile memory.  In this example, the first empty location is location `0`.  Accordingly, FIG. 5 shows that for the logical block address `3`, the corresponding physical block address `0` is stored
and the used flag is set in physical block address `0`.  The next empty location is location `1`.  FIG. 6 shows that for the logical block address `4`, the corresponding physical block address `1` is stored and the used flag is set in physical block
address `1`.


The host instructs that something is to be written to logical block address `3` again.  The next empty location is determined to be location `2`.  FIG. 7 shows that the old flag in location `0` is set to indicate that this data is no longer
usable, the used flag is set in location `2` and the physical block address in location `3` is changed to `2`.


Next, the host instructs that something is to be written to logical block address `4` again.  The next empty location is determined to be location `3`.  FIG. 8 shows that the old flag in location `1` is set to indicate that this data is no longer
usable, the used flag is set in location `3` and the physical block address in location `4` is changed to `3`.  (Recall that there is generally no relation between the physical block address and the data stored in the same location.)


FIG. 9 shows algorithm 1 according to the present invention.  When the system of the present invention receives an instruction to program data into the mass storage (step 200), then the system attempts to locate a free block (step 202), i.e., a
block having an unset (not programmed) used/free flag.  If successful, the system sets the used/free flag for that block and programs the data into that block (step 206).


If on the other hand, the system is unable to locate a block having an unset used/ free flag, the system erases the flags (used/free and old/new) and data for all blocks having a set old/new flag and unset defect flag (step 204) and then searches
for a block having an unset used/free flag (step 202).  Such a block has just been formed by step 204.  The system then sets the used/flag for that block and programs the data file into that block (step 206).


If the data is a modified version of a previously existing file, the system must prevent the superseded version from being accessed.  The system determines whether the data file supersedes a previous data file (step 208).  If so, the system sets
the old/new flag associated with the superseded block (step 210).  If on the other hand, the data file to be stored is a newly created data file, the step of setting the old/new flag (step 210) is skipped because there is no superseded block.  Lastly,
the map for correlating the logical address to the physical addresses updated (step 212).


By following the procedure outlined above, the overhead associated with an erase cycle is avoided for each write to the memory 104 except for periodically.  This vastly improves the performance of the overall computer system employing the
architecture of the present invention.


In the preferred embodiment of the present invention, the programming of the flash memory follows the procedure commonly understood by those of ordinary skill in the art.  In other words, the program impulses are appropriately applied to the bits
to be programmed and then compared to the data being programmed to ensure that proper programming has occurred.  In the event that a bit fails to be erased or programmed properly, a defect flag 114 is set which prevent that block from being used again.


FIG. 10 depicts a digital system 500 such as a digital camera employing an alternative embodiment of the present invention.  Digital system 500 is illustrated to include a host 502, which may be a personal computer (PC) or simply a processor of
any generic type commonly employed in digital systems, coupled to a controller circuit 506 for storing in and retrieving information from non-volatile memory unit 508.


The controller circuit 506 may be a semiconductor (otherwise referred to as an "integrated circuit" or "chip") or optionally a combination of various electronic components.  In the preferred embodiment, the controller circuit is depicted as a
single chip device.  The non-volatile memory unit 508 is comprised of one or more memory devices, which may each be flash or EEPROM types of memory.  In the preferred embodiment of FIG. 10, memory unit 508 includes a plurality of flash memory devices,
510-512, each flash device includes individually addressable locations for storing information.  In the preferred application of the embodiment in FIG. 10, such information is organized in blocks with each block having one or more sectors of data.  In
addition to the data, the information being stored may further include status information regarding the data blocks, such as flag fields, address information and the like.


The host 502 is coupled through host information signals 504 to a controller circuit 506.  The host information signals comprise of address and data busses and control signals for communicating command, data and other types of information to the
controller circuit 506, which in turn stores such information in memory unit 508 through flash address bus 512, flash data bus 514, flash signals 516 and flash status signals 518 (508 and 513-516 collectively referred to as signals 538).  The signals 538
may provide command, data and status information between the controller 506 and the memory unit 508.


The controller 506 is shown to include high-level functional blocks such as a host interface block 520, a buffer RAM block 522, a flash controller block 532, a microprocessor block 524, a microprocessor controller block 528, a microprocessor
storage block 530, a microprocessor ROM block 534, an ECC logic block 540 and a space manager block 544.  The host interface block 520 receives host information signals 504 for providing data and status information from buffer RAM block 522 and
microprocessor block 524 to the host 502 through host information signals 504.  The host interface block 520 is coupled to the microprocessor block 524 through the microprocessor information signals 526, which is comprised of an address bus, a data bus
and control signals.


The microprocessor block 524 is shown coupled to a microprocessor controller block 528, a microprocessor storage block 530 and a microprocessor ROM block 534, and serves to direct operations of the various functional blocks shown in FIG. 10
within the controller 506 by executing program instructions stored in the microprocessor storage block 530 and the microprocessor ROM block 534.  Microprocessor 524 may, at times, execute program instructions (or code) from microprocessor ROM block 534,
which is a non-volatile storage area.  On the other hand, microprocessor storage block 530 may be either volatile, i.e., read-and-write memory (RAM), or non-volatile, i.e., EEPROM, type of memory storage.  The instructions executed by the microprocessor
block 524, collectively referred to as program code, are stored in the storage block 530 at some time prior to the beginning of the operation of the system of the present invention.  Initially, and prior to the execution of program code from the
microprocessor storage location 530, the program code may be stored in the memory unit 508 and later downloaded to the storage block 530 through the signals 538.  During this initialization, the microprocessor block 524 can execute instructions from the
ROM block 534.


Controller 506 further includes a flash controller block 532 coupled to the microprocessor block 524 through the microprocessor information signals 526 for providing and receiving information from and to the memory unit under the direction of the
microprocessor.  Information such as data may be provided from flash controller block 532 to the buffer RAM block 522 for storage (may be only temporary storage) therein through the microprocessor signals 526.  Similarly, through the microprocessor
signals 526, data may be retrieved from the buffer RAM block 522 by the flash controller block 532.


ECC logic block 540 is coupled to buffer RAM block 522 through signals 542 and further coupled to the microprocessor block 524 through microprocessor signals 526.  ECC logic block 540 includes circuitry for generally performing error coding and
correction functions.  It should be understood by those skilled in the art that various ECC apparatus and algorithms are commercially available and may be employed to perform the functions required of ECC logic block 540.  Briefly, these functions
include appending code that is for all intensive purposes uniquely generated from a polynomial to the data being transmitted and when data is received, using the same polynomial to generate another code from the received data for detecting and
potentially correcting a predetermined number of errors that may have corrupted the data.  ECC logic block 540 performs error detection and/or correction operations on data stored in the memory unit 508 or data received from the host 502.


The space manager block 544 employs a preferred apparatus and algorithm for finding the next unused (or free) storage block within one of the flash memory devices for storing a block of information, as will be further explained herein with
reference to other figures.  As earlier discussed, the address of a block within one of the flash memory devices is referred to as PBA, which is determined by the space manager by performing a translation on an LBA received from the host.  A variety of
apparatus and method may be employed for accomplishing this translation.  An example of such a scheme is disclosed in U.S.  Pat.  No. 5,485,595, entitled "Flash Memory Mass Storage Architecture Incorporating Wear Leveling Technique Without Using CAM
Cells", the specification of which is herein incorporated by reference.  Other LBA to PBA translation methods and apparatus may be likewise employed without departing from the scope and spirit of the present invention.


Space manager block 544 includes SPM RAM block 548 and SPM control block 546, the latter two blocks being coupled together.  The SPM RAM block 548 stores the LBA-PBA mapping information (otherwise herein referred to as translation table, mapping
table, mapping information, or table) under the control of SPM control block 546.  Alternatively, the SPM RAM block 548 may be located outside of the controller, such as shown in FIG. 3 with respect to RAM array 100.


In operation, the host 502 writes and reads information from and to the memory unit 508 during for example, the performance of a read or write operation through the controller 506.  In so doing, the host 502 provides an LBA to the controller 506
through the host signals 504.  The LBA is received by the host interface block 520.  Under the direction of the microprocessor block 524, the LBA is ultimately provided to the space manager block 544 for translation to a PBA and storage thereof, as will
be discussed in further detail later.


Under the direction of the microprocessor block 524, data and other information are written into or read from a storage area, identified by the PBA, within one of the flash memory devices 510-512 through the flash controller block 532.  The
information stored within the flash memory devices may not be overwritten with new information without first being erased, as earlier discussed.  On the other hand, erasure of a block of information (every time prior to being written), is a very time and
power consuming measure.  This is sometimes referred to as erase-before-write operation.  The preferred embodiment avoids such an operation by continuously, yet efficiently, moving a sector (or multiple sectors) of information, within a block, that is
being re-written from a PBA location within the flash memory to an unused PBA location within the memory unit 508 thereby avoiding frequent erasure operations.  A block of information may be comprised of more than one sector such as 16 or 32 sectors.  A
block of information is further defined to be an individually-erasable unit of information.  In the past, prior art systems have moved a block stored within flash memory devices that has been previously written into a free (or unused) location within the
flash memory devices.  Such systems however, moved an entire block even when only one sector of information within that block was being re-written.  In other words, there is waste of both storage capacity within the flash memory as well as waste of time
in moving an entire block's contents when less than the total number of sectors within the block are being re-written.  The preferred embodiments of the present invention, as discussed herein, allow for "moves" of less than a block of information thereby
decreasing the number of move operations of previously-written sectors, consequently, decreasing the number of erase operations.


Referring back to FIG. 10, it is important to note that the SPM RAM block 548 maintains a table that may be modified each time a write operation occurs thereby maintaining the LBA-PBA mapping information and other information regarding each block
being stored in memory unit 508.  Additionally, this mapping information provides the actual location of a sector (within a block) of information within the flash memory devices.  As will be further apparent, at least a portion of the information in the
mapping table stored in the SPM RAM block 548 is "shadowed" (or copied) to memory unit 508 in order to avoid loss of the mapping information when power to the system is interrupted or terminated.  This is, in large part, due to the use of volatile memory
for maintaining the mapping information.  In this connection, when power to the system is restored, the portion of the mapping information stored in the memory unit 508 is transferred to the SPM RAM block 548.


It should be noted, that the SPM RAM block 548 may alternatively be nonvolatile memory, such as in the form of flash or EEPROM memory architecture.  In this case, the mapping table will be stored within nonvolatile memory thereby avoiding the
need for "shadowing" because during power interruptions, the mapping information stored in nonvolatile memory will be clearly maintained.


When one or more sectors are being moved from one area of the flash memory to another area, the preferred embodiment of the present invention first moves the sector(s) from the location where they are stored in the flash memory devices, i.e.,
510-512, to the buffer RAM block 522 for temporary storage therein.  The moved sector(s) are then moved from the buffer RAM block 522 to a free area within one of the flash memory devices.  It is further useful to note that the ECC code generated by the
ECC logic block 540, as discussed above, is also stored within the flash memory devices 510-512 along with the data, as is other information, such as the LBA corresponding to the data and flag fields.


FIGS. 11-21 are presented to show examples of the state of a table 700 in SPM RAM block 548 configured to store LBA-PBA mapping information for identification and location of blocks (and sectors within the blocks) within the memory unit 508. 
Table 700 in all of these figures is shown to include an array of columns and rows with the columns including virtual physical block address locations or VPBA block address locations 702, move virtual physical address locations or MVPBA block address
locations 704, move flag locations 706, used/free flag locations 708, old/new flag locations 710, defect flag locations 712 and sector move status locations 714.


The rows of table include PBA/LBA rows 716, 718 through 728 with each row having a row number that may be either an LBA or a PBA depending upon the information that is being addressed within the table 700.  For example, row 716 is shown as being
assigned row number `00` and if PBA information in association with LBA `00` is being retrieved from table 700, then LBA `00` may be addressed in SPM RAM block 548 at row 716 to obtain the associated PBA located in 730.  On the other hand, if status
information, such as flag fields, 706-712, regarding a block is being accessed, the row numbers of rows 716-728, such as `00`, `10`, `20`, `30`, `40`, `50`, `N-1` represent PBA, as opposed to LBA, values.  Furthermore, each row of table 700 may be
thought of as a block entry wherein each entry contains information regarding a block.  Furthermore, each row of table 700 may be addressed by an LBA.


In the preferred embodiment, each block is shown to include 16 sectors.  This is due to the capability of selectively erasing an entire block of 16 sectors (which is why the block size is sometimes referred to as an "erase block size".  If an
erase block size is 16 sectors, such as shown in FIGS. 11-21, each block entry (or row) includes information regarding 16 sectors.  Row 716 therefore includes information regarding a block addressed by LBA `00` through LBA `15` (or LBA `00` through LBA
`0F` in Hex.  notation).  The next row, row 718, includes information regarding blocks addressed by LBA `16` (or `10` in Hex.) through LBA `31` (or `1F` in Hex.) The same is true for PBAs of each block.


It should be noted however, other block sizes may be similarly employed.  For example, a block may include 32 sectors and therefore have an erase block size 32 sectors.  In the latter situation, each block entry or row, such as 716, 718, 720 .  .
. , would include information regarding 32 sectors.


The VPBA block address locations 702 of table 700 store information generally representing a PBA value corresponding to a particular LBA value.  The MVPBA block address locations 704 store information representing a PBA value identifying, within
the memory unit 508, the location of where a block (or sector portions thereof) may have been moved.  The move flag locations 706 store values indicating whether the block being accessed has any sectors that may have been moved to a location whose PBA is
indicated by the value in the MVPBA block address location 704 (the PBA value within 704 being other than the value indicated in VPBA block address 702 wherein the remaining block address information may be located).  The used/new flag location 708
stores information to indicate whether the block being accessed is a free block, that is, no data has been stored since the block was last erased.  The old/new flag location 710 stores information representing the status of the block being accessed as to
whether the block has been used and re-used and therefore, old.  The defect flag location 712 stores information regarding whether the block is defective.  If a block is declared defective, as indicated by the value in the defect flag location 712 being
set, the defective block can no longer be used.  Flags 708-712 are similar to the flags 110-114 shown and described with respect to FIG. 1.


Sector move status location 714 is comprised of 16 bits (location 714 includes a bit for each sector within a block so for different-sized blocks, different number of bits within location 714 are required) with each bit representing the status of
a sector within the block as to whether the sector has been moved to another block within the memory unit 508.  The moved block location within the memory unit 508 would be identified by a PBA that is other than the PBA value in VPBA block address
location 702.  Said differently, the status of whether a sector within a block has been moved, as indicated by each of the bits within 714, suggests which one of either the VPBA block address locations 702 or the MBPBA block address locations 704
maintain the most recent PBA location for that sector.


Referring still to FIG. 11, an example of the status of the table 700 stored in SPM RAM block 548 (in FIG. 10) is shown when, by way of example, LBA `0` is being written.  As previously noted, in the figures presented herein, a block size of
sixteen sectors (number 0-15 in decimal notation or 0-10 in hexadecimal notation) is used to illustrate examples only.  Similarly, N blocks (therefore N LBAs) are employed, numbered from 0-N-1.  The block size and the number of blocks are both design
choices that may vary for different applications and may depend upon the memory capacity of each individual flash memory device (such as 510-512) being employed.  Furthermore, a preferred sector size of 512 bytes is used in these examples whereas other
sector sizes may be employed without departing from the scope and spirit of the present invention.


Assuming that the operation of writing to LBA `0` is occurring after initialization or system power-up when all of the blocks within the flash memory devices 510-512 (in FIG. 10) have been erased and are thus free.  The space manager block 548 is
likely to determine that the next free PBA location is `00`.  Therefore, `00` is written to 730 in VPBA block address 702 of row 716 wherein information regarding LBA `0` is maintained, as indicated in table 700 by LBA row number `00`.  Since no need
exists for moving any of the sectors within the LBA 0 block, the MVPBA block address 704 for row 716, which is shown as location 732 may include any value, such as an initialization value (in FIG. 11, `XX` is shown to indicate a "don't care" state).


The value in 734 is at logic state `0` to show that LBA `0` block does not contain any moved sectors.  Location 736 within the used flag 708 column of row 716 will be set to logic state `1` indicating that the PBA `0` block is in use.  The state
of location 738, representing the old flag 710 for row 716, is set to `0` to indicate that PBA `0` block is not "old" yet.  Location 740 maintains logic state `0` indicating that the PBA `0` block is not defective and all of the bits in move status
location 714 are at logic state `0` to indicate that none of the sectors within the LBA `0` through LBA `15` block have been moved.


In FIG. 11, the status information for LBA `0` in row 716, such as in move flag location 706, used flag location 708, old flag location 710, defect flag location 712 and move status location 714 for all remaining rows, 716-728, of table 700 are
at logic state `0`.  It is understood that upon power-up of the system and/or after erasure of any of the blocks, the entries for the erased blocks, which would be all blocks upon power-up, in table 700, are all set to logic state `0`.


At this time, a discussion of the contents of one of the flash memory devices within the memory unit 508, wherein the LBA `0` block may be located is presented for the purpose of a better understanding of the mapping information shown in table
700 of FIG. 11.


Turning now to FIG. 22, an example is illustrated of the contents of the flash memory device 510 in accordance with the state of table 700 (as shown in FIG. 11).  LBA `0`, which within the memory unit 508 is identified at PBA `0` by controller
506 (of FIG. 10) is the location wherein the host-identified block is written.  A PBA0 row 750 is shown in FIG. 22 to include data in sector data location 752.  An ECC code is further stored in ECC location 754 of PBA0 row 750.  This ECC code is
generated by the ECC logic block 540 in association with the data being written, as previously discussed.  Flag field 756 in PBA0 row 750 contains the move, used, old and defect flag information corresponding to the sector data of the block being
written.  In this example, in flag field 756, the "used" flag and no other flag is set, thus, flag field 756 maintains a logic state of `0100` indicating that PBA `0` is "used" but not "moved", "old" or "defective".


PBA0 row 750 additionally includes storage location for maintaining in LBA address location 758, the LBA number corresponding to PBA `0`, which in this example, is `0`.  While not related to the example at hand, the remaining PBA locations of LBA
`0` are stored in the next 15 rows following row 750 in the flash memory device 510.


It will be understood from the discussion of the examples provided herein that the information within a PBA row of flash memory device 510 is enough to identify the data and status information relating thereto within the LBA `0` block including
any moves associated therewith, particularly due to the presence of the "move" flag within each PBA row (750, 762, 764, etc.) of the flash memory.  Nevertheless, alternatively, another field may be added to the first PBA row of each LBA location within
the flash, replicating the status of the bits in the move status location 714 of the corresponding row in table 700.  This field is optionally stored in sector status location 760 shown in FIG. 22 to be included in the first PBA row of each LBA block,
such as row 750, 780 and so on.  Although the information maintained in location 760 may be found by checking the status of the "move" flags within the flag fields 756 of each PBA row, an apparent advantage of using location 760 is that upon start-up (or
power-on) of the system, the contents of table 700 in SPM RAM block 548 may be updated more rapidly due to fewer read operations (the reader is reminded that table 700 is maintained in SPM RAM 548, which is volatile memory whose contents are lost when
the system is power-down and needs to be updated upon power-up from non-volatile memory, i.e. memory unit 508).


That is, rather than reading every PBA row (altogether 16 rows in the preferred example) to update each LBA entry of the table 700 upon power-up, only the first PBA row of each LBA must be read from flash memory and stored in SPM RAM 548 thereby
saving time by avoiding needless read operations.  On the other hand, clearly more memory capacity is utilized to maintain 16 bits of sector status information per LBA.


In the above example, wherein location 760 is used, the value in sector status location 760 would be all `0`s (or `0000` in hexadecimal notation).


In flash memory device 510, each of the rows 750, 762, 764, 768 .  . . , is a PBA location with each row having a PBA row number and for storing data and other information (data and other information are as discussed above with respect to row
750) for a sector within a block addressed by a particular LBA.  Furthermore, every sixteen sequential PBA rows represents one block of information.  That is, PBA rows 750, 762, 764 through 768, which are intended to show 16 PBA rows correspond to LBA
0(shown as row 716 in table 700 of FIG. 11) and each of the PBA rows maintains information regarding a sector within the block.  The next block of information is for the block addressed by LBA `10` (in Hex.) whose mapping information is included in row
718 of table 700, and which is stored in locations starting from `10` (in hexadecimal notation, or `16` in decimal notation) and ending at `1F` (in hexadecimal notation, or `31`) in the flash memory device 510 and so on.


Continuing on with the above example, FIG. 12 shows an example of the state of table 700 when LBA 0 is again being written by the host.  Since LBA 0 has already been written and is again being written without first being erased, another free
location within the memory unit 508 (it may serve helpful to note here that the blocks, including their sectors, are organized sequentially and continuously through each of the flash memory devices of memory unit 508 according to their PBAs such that for
example, the next flash memory device following device 510 picks up the PBA-addressed blocks where flash memory device 510 left off, an example of this is where flash memory device 510 includes PBAs of 0-FF (in Hex.) and the next flash memory device,
which may be 512, may then include 100-1FF (in Hex.)) is located by space manager 544 for storage of the new information.  This free location is shown to be PBA `10` (in Hexadecimal notation, or 16 in decimal notation).  In row 718, where the entries for
LBA `10` will remain the same as shown in FIG. 11 except the used flag in location 742 will be set (in the preferred embodiment, a flag is set when it is at logic state `1` although the opposite polarity may be used without deviating from the present
invention) to indicate that the PBA `10` is now "in use".


The entries in row 716 are modified to show `10` in MVPBA block address location 732, which provides the PBA address of the moved portion for the LBA `00` block.  The move flag in location 734 is set to logic state `1` to indicate that at least a
portion (one or more sectors) of the LBA `00` block have been moved to a PBA location other than the PBA location indicated in location 730 of table 700.  Finally, the bits of the move status location 714 in row 716 are set to `1000000000000000` (in
binary notation, or `8000` in hexadecimal notation), reflecting the status of the moved sectors within the block LBA `00`.  That is, in this example, `8000` indicates that the first sector, or sector `0`, within LBA `00` block has been moved to a
different PBA location.


Referring now to FIG. 22, the state of table 700 in FIG. 12 will affect the contents of the flash memory device 510 in that the moved sector of the LBA `0` block will now be written to PBA `10` in row 780.  Row 780 will then include the data for
the moved sector, which is 512 bytes in size.  With respect to the moved sector information, row 780 further includes ECC code, a copy of the values in flag locations 734-740 of table 700 (in FIG. 12), and LBA `00` for indicating that the data in row 780
belongs to LBA `00` and may further include the move status for each of the individual sectors within the LBA `0` block.


While not specifically shown in the figure, the move flag within location 756 of PBA row 750 is set to indicate that at least a portion of the corresponding block has been moved.  The value stored in the move status location 714 of row 716 (in
FIG. 12), which is `8000` in Hex., is also stored within location 760 of the row 750.  As earlier noted, this indicates that only sector `0` of PBA `0` was marked "moved" and the new block LBA `0` was written to PBA `10` in flash memory.  Without further
detailed discussions of FIG. 22, it should be appreciated that the examples to follow likewise affect the contents of the flash memory device 510.


FIG. 13 shows the status of table 700 when yet another write operation to LBA `00` is performed.  The values (or entries) in row 716 remain the same as in FIG. 12 except that the value in location 732 is changed to `20` (in Hex.  Notation) to
indicate that the moved portion of block LBA `00` is now located in PBA location `20` (rather than `10` in FIG. 12).  As in FIG. 12, the value in move status location 714, `8000`, indicates that the first sector (with PBA `00`) is the portion of the
block that has been moved.


Row 718 is modified to show that the LBA `10` block is now old and can no longer be used before it is erased.  This is indicated by the value in location 744 being set to logic state `1`.  The entries for LBA `20`, row 720, remain unchanged
except that location 746 is modified to be set to logic state `1` for reflecting the state of the PBA `20` block as being in use.  It is understood that as in FIGS. 11 and 12, all remaining values in table 700 of FIG. 13 that have not been discussed
above and are not shown as having a particular logic state in FIG. 13 are all unchanged (the flags are all set to logic state `0`).


Continuing further with the above example, FIG. 14 shows the state of table 700 when yet another write to LBA `0` occurs.  For ease of comparison, there is a circle drawn around the values shown in FIG. 14, which are at a different logic state
with respect to their states shown in FIG. 13.  In row 716, everything remains the same except for the new moved location, indicated as PBA `30`, shown in location 732.  PBA `30` was the next free location found by the space manager 544.  As previously
noted, this value indicates that a portion of the block of LBA `0` is now in PBA `30`; namely, the first sector (shown by the value in 714 of row 716 being `8000`) in that block has been moved to PBA `30` in the flash memory device 510.


Row 718 remains the same until it is erased.  The flags in locations 742 and 744 are set to logic state `0`.  Row 720 also remains unchanged except for the value in its old flag 710 column being modified to `1` to show that the block of PBA `20`
is also old and can not be used until first erased.  Row 722 remains the same except for the value in its used flag 708 column being changed to logic state `1` to show that the block of LBA `30` is now in use.


FIG. 15 is another example of the state of table 700, showing the state of table 700 assuming that the table was at the state shown in FIG. 13 and followed by the host writing to LBA `5`.  Again, the changes to the values in table 700 from FIG.
13 to FIG. 15 are shown by a circle drawn around the value that has changed, which is only one change.


When writing to LBA `5`, it should be understood that the LBA entries of rows 716, 718, 720, etc. are only for LBA `00`, LBA `10`, LBA `20`, so on, and therefore do not reflect an LBA `5` entry.  The reader is reminded that each of the LBA row
entries is for a block of information with each block being 16 sectors in the preferred embodiment.  For this reason, LBA `5` actually addresses the fifth sector in row 716.  Since PBA `20` was used to store LBA `0`, only the sector within PBA `20`,
corresponding to LBA `5`, is yet not written and "free".  Therefore, the data for LBA `5` is stored in PBA `20` in sector `5`.  The move status location 714 of row 716 will be modified to logic state `8400` (in Hex.  Notation).  This reflects that the
location of the first and fifth sectors within LBA `0` are both identified at PBA `20` in the flash memory device 510.  The remaining values in table 700 of FIG. 15 remain the same as those shown in FIG. 13.


FIGS. 16-18 show yet another example of what the state of table 700 may be after either power-up or erasure of the blocks with the memory unit 508.  In FIGS. 16 and 17, the same write operations as those discussed with reference to FIGS. 11 and
12 are performed.  The state of table 700 in FIGS. 16 and 17 resembles that of FIGS. 11 and 12, respectively (the latter two figures have been re-drawn as FIGS. 16 and 17 for the sole convenience of the reader).  Briefly, FIG. 16 shows the state of table
700 after a write to LBA `0` and FIG. 17 shows the state of table 700 after another write to LBA `0`.


FIG. 18 picks up after FIG. 17 and shows the state of table 700 after the host writes to LBA `5`.  As indicated in FIG. 18, LBA `5` has been moved to PBA `10` where LBA `0` is also located.  To this end, MBPBA block address location 732 is set to
`10` in row 716 and the move flag is set at location 734 in the same row.  Moreover, the state of move status location 714 in row 716 is set to `8400` (in Hex.) indicating that LBA `0` and LBA `5` have been moved, or that the first and fifth sectors
within LBA `00` are moved.  Being that these two sectors are now located in the PBA `10` location of the flash memory device 510, the move flag for each of the these sectors are also set in the flash memory device 510.  It should be understood that LBA
`5` was moved to PBA `10` because remaining free sectors were available in that block.  Namely, even with LBA `0` of that block having been used, 15 other sectors of the same block were available, from which the fifth sector is now in use after the write
to LBA `5`.


Continuing on with the example of FIG. 18, in FIG. 19, the state of the table 700 is shown after the host writes yet another time to LBA `0`.  According to the table, yet another free PBA location, `20`, is found where both the LBA `5` and LBA
`0` are moved.  First, LBA `5` is moved to the location PBA `10` to PBA `20` and then the new block of location LBA `0` is written to PBA `20`.  As earlier discussed, any time there is a move of a block (for example, here the block of LBA `5` is moved)
it is first moved from the location within flash memory where it currently resides to a temporary location within the controller 506, namely with the buffer RAM block 522, and then it is transferred from there to the new location within the flash memory
devices.


The used flag in location 746 of row 720 is set to reflect the use of the PBA `20` location in flash memory and the old flag in location 744 is set to discard use of PBA `10` location until it is erased.  Again, in flash memory, the state of
these flags as well as the state of the move flag for both the LBA `0` and LBA `5` sectors are replicated.


FIG. 20 picks up from the state of the table 700 shown in FIG. 18 and shows yet another state of what the table 700 may be after the host writes to LBA `5`.  In this case, the block of LBA `0` is first moved from location PBA `10` within the
flash memory device 510 wherein it is currently stored to location PBA `20` of the flash memory.  Thereafter, the new block being written to LBA `5` by the host is written into location PBA `20` of the flash memory.  The flags in both table 700 and
corresponding locations of the flash memory device 510 are accordingly set to reflect these updated locations.


FIG. 21 also picks up from the state of the table 700 shown in FIG. 18 and shows the state of what the table 700 may be after the host writes to LBA `7`.  In this case, the new block is simply written to location PBA `10` of the flash memory
since that location has not yet been used.  Additionally, three of the bits of the move status location 714 in row 716 are set to show that LBA `0`, LBA `5` and LBA `7` have been moved to another PBA location within the flash memory.  Location 732 shows
that the location in which these three blocks are stored is PBA `10`.


As may be understood from the discussion presented thus far, at some point in time, the number of sectors being moved within a block makes for an inefficient operation.  Thus, the need arises for the user to set a threshold for the number of
sectors within a block that may be moved before the block is declared "old" (the old flag is set) and the block is no longer used, until it is erased.  This threshold may be set at, for example, half of the number of sectors within a block.  This is
demonstrated as follows: For a block having 16 sectors, when 8 of the sectors are moved into another block, the "original" block and the "moved" block (the block in which the moved sectors reside) are combined into the same PBA block.  The combined PBA
block may be stored in a new block altogether or, alternatively, the "original" block may be combined with and moved into the "moved" block.  In the latter case, the "original" block is then marked as "old" for erasure thereof.  If the combined PBA block
is stored in a new block, both of the "original" and the "moved" blocks are marked as "old".


FIG. 23 depicts a general flow chart outlining some of the steps performed during a write operation.  It is intended to show the sequence of some of the events that take place during such an operation and is not at all an inclusive presentation
of the method or apparatus used in the preferred embodiment of the present invention.


The steps as outlined in FIG. 23 are performed under the direction of the microprocessor block 524 as it executes program code (or firmware) during the operation of the system.


When the host writes to a block of LBA M, step 800, the space manager block 544, in step 802, checks as to whether LBA M is in use by checking the state of the corresponding used flag in table 700 of the SPM RAM block 548.  If not in use, in step
804, a search is performed for the next free PBA block in memory unit 508.  If no free blocks are located, an "error" state is detected in 808.  But where a free PBA is located, in step 806, its used flag is marked (or set) in table 700 as well as in
flash memory.  In step 810, the PBA of the free block is written into the VPBA block address 702 location of the corresponding LBA row in table 700.


Going back to step 802, if the LBA M block is in use, search for the next free PBA block is still conducted in step 812 and upon the finding of no such free block, at 814, an "error" condition is declared.  Whereas, if a free PBA location is
found, that PBA is marked as used in table 700 and flash memory, at step 816.  Next, in step 818, the state of the block is indicated as having been moved by setting the move flag as well as the setting the appropriate bit in the move status location 714
of table 700.  The new location of where the block is moved is also indicated in table 700 in accordance with the discussion above.


Finally, after steps 818 and 810, data and all corresponding status information, ECC code and LBA are written into the PBA location within the flash memory.


As earlier indicated, when a substantial portion of a block has sectors that have been moved (in the preferred embodiment, this is eight of the sixteen sectors), the block is declared "old" by setting its corresponding "old" flag.  Periodically,
blocks with their "old" flags set, are erased and may then be re-used (or re-programmed, or re-written).


As can be appreciated, an advantage of the embodiments of FIGS. 10-23 is that a block need not be erased each time after it is accessed by the host because if for example, any portions (or sectors) of the block are being re-written, rather than
erasing the block in the flash memory devices or moving the entire block to a free area within the flash, only the portions that are being re-written need be transferred elsewhere in flash, i.e. free location identified by MVPA block address.  In this
connection, an erase cycle, which is time consuming is avoided until later and time is not wasted in reading an entire block and transferring the same.  Although the present invention has been described in terms of specific embodiments, it is anticipated
that alterations and modifications thereof will no doubt become apparent to those skilled in the art.  It is therefore intended that the following claims be interpreted as covering all such alterations and modification as fall within the true spirit and
scope of the invention.


* * * * *























				
DOCUMENT INFO
Description: Field of the InventionThis invention relates to the field of mass storage for computers. More particularly, this invention relates to an architecture for replacing a hard disk with a semiconductor nonvolatile memory and in particular flash memory.Computers conventionally use rotating magnetic media for mass storage of documents, data, programs and information. Though widely used and commonly accepted, such hard disk drives suffer from a variety of deficiencies. Because of the rotationof the disk, there is an inherent latency in extracting information from a hard disk drive.Other problems are especially dramatic in portable computers. In particular, hard disks are unable to withstand many of the kinds of physical shock that a portable computer will likely sustain. Further, the motor for rotating the disk consumessignificant amounts of power decreasing the battery life for portable computers.Solid state memory is an ideal choice for replacing a hard disk drive for mass storage because it can resolve the problems cited above. Potential solutions have been proposed for replacing a hard disk drive with a semiconductor memory. For sucha system to be truly useful, the memory must be nonvolatile and alterable. The inventors have determined that FLASH memory is preferred for such a replacement.FLASH memory is a transistor memory cell which is programmable through hot electron, source injection, or tunneling, and erasable through Fowler-Nordheim tunneling. The programming and erasing of such a memory cell requires current to passthrough the dielectric surrounding floating gate electrode. Because of this, such types of memory have a finite number of erase-write cycles. Eventually, the dielectric deteriorates. Manufacturers of FLASH cell devices specify the limit for the numberof erase-write cycles between 100,000 and 1,000,000.One requirement for a semiconductor mass storage device to be successful is that its use in lieu of a rotating media hard disk mass storage