Package of Practices of the Important Horticultural Crops MANGO Ganoderma Extract

Document Sample
Package of Practices of the Important Horticultural Crops MANGO Ganoderma Extract Powered By Docstoc


Venkataramannagudem, West Godavari District – 534 101 (A.P.)

                                                     Page No.
Agro climatic Zones of Andhra Pradesh
Horticultural Zones of Andhra Pradesh

Watermelon and Muskmelon

Bell Pepper
Elephant Foot Yam
Sweet Potato

Leafy Vegetables
Indian Spinach

                   SPICES AND CONDIMENTS
                     PLANTATION CROPS
Oil palm
Black Pepper
                      FLOWER CROPS
                     AROMATIC PLANTS
Lemon Grass

                                 MEDICINAL PLANTS
Safed Musli
Sweet Flag
Long Pepper
Glory Lily
Dry Land Horticulture
Forest Plants
Post Harvesting Equipment

Composition of Manures and Fertilizers
Guide for Mixing Fertilizers
Chemical Fertilizer Combinations and Dosage Chart
Herbicides available in the Market
Control of Perennial Weeds in Orchards
Some insecticidal materials for common household use
Insecticides their Common names and Trade names with Formulations
Preparation of Fungicides
Fungicides their Common names and Trade names with Formulations
List of Banned Pesticides
Ready reckoner for dissolving insecticides
Guidelines to the farmers for spraying insecticides
Compatability chart of Chemical Fertilizers and Pesticides
Compatability chart of Pesticides, Fungicides and Biopesticides


       Andhra Pradesh is the fifth largest state in India with an area of 2,76,254 It is
located in southern part of country and extends from 12 O to 19O North Latitude and 76O to
84O East Longitude. The State has three geopolitical regions consisting of 23 districts. Soil
and climate are the two main factors that determine cropping in any area and the
distribution of total rainfall chiefly determines the agro-climatic zones of the state. Based on
this, the State has been divided into seven agro-climatic zones.
I Krishna – Godavari Zone
       This zone consists of the districts of East Godavari (excluding uplands), West
Godavari, Krishna, Guntur and the contiguous areas of Khammam, Nalgonda and Prakasam
districts. This zone receives an annual rainfall of 800-1100 mm. The maximum and minimum
temperatures during sough west monsoon period ranged from 32 O to 36OC and 23O to 24OC,
respectively. The important soil groups are deltaic alluvium, red soils with clay base, black
cotton soils, red loamy, coastal sands and saline soils.
II North Coastal Zone
       This zone comprises most of Srikakulam, Vizianagaram and Visakhapatnam districts
(excluding tribal hill areas) and upland areas of East Godavari district. Annual rainfall is 1000
to 1100 mm. Maximum and minimum temperatures during the south west monsoon ranges
from 33O to 35OC and 26O to 27OC, respectively. The soils are predominantly red with clay
base. There are small pockets of acidic laterite soils with pH 4.0 to 5.0.
III Southern Zone
       This zone includes the districts of Nellore and Chittoor, southern parts of Prakasam
and Cuddapah and eastern part of Anantapur. The annual average rainfall from north east
monsoon is 700 to 1000mm and 300 to 450 mm during south west monsoon. The maximum
and minimum temperatures during south west monsoon range from 36 O to 40OC and 23O to
25OC, respectively. The important soils group is of red loamy soils which are shallow to
moderately deep.
IV North Telangana Zone
       This zone includes the districts of Adilabad, Karimnagar, Nizamabad, Medak (except
southern borders) Warangal (except north-west portion) Eastern of Nalgonda and
Khammam (except extreme southern and eastern parts). The annual average rainfall is 900
to 1150 mm, mostly from south west monsoon. The maximum and minimum temperatures
during south west monsoon range from 32O to 37OC and 21O to 25OC, respectively. Red soils
are predominant in the zone which includes chalkas, red sandy deep red loamy and very
deep black cotton soils are also seen in some parts of the zone.

V Southern Telangana Zone
        The districts of Ranga Reddy, Mahaboobnagar (except southern border) Nalgonda
(except south-east border) north western part of Warangal and southern part of Medak
constitute this zone. The annual average rainfall is 700 to 900 mm. the maximum and
minimum temperatures during south west monsoon range from 28 O to 34OC and 22O to
23OC, respectively. It is a predominantly red soil tract having red earths with loamy subsoils
i.e. chalkas.
VI Scarce Rainfall Zone
        This zone consists of Kurnool, Anantapur, western parts of Prakasam and northern
parts of Cuddapah. The average annual rainfall ranges from 500 to 750 mm. The maximum
and minimum temperatures during south west monsoon range from 32O to 36OC and 24O to
30OC, respectively. The important soil groups are red earths with loamy soils i.e., chalkas.
Red sandy soils and black cotton soils are also seen in some pockets.
VII High Altitude and Tribal Areas
        This zone consists of the areas along the northern borders of the State in the
districts of Srikakulam, Vizianagaram, Visakhapatnam, East Godavari and Khammam. These
areas are inhabited by tribals and large areas lying at high altitudes upto 1000 m above
M.S.L. with high annual rainfall over 1400 mm.


        Andhra Pradesh is essentially a tropical zone. However, depending upon the
prevailing climate in the state, it is classified as 2 main fruit growing zones viz., Tropical
zone and Subtropical zone
1. Tropical zone
        This zone is again subdivided into 3 subzones viz., Arid tropical, humid tropical and
coastal humid tropical.
a) Arid tropical zone
        It includes western parts of Adilabad, Karimnagar, Nellore, Prakasam, Guntur,
Krishna, West Godavari, Nalgonda, Medak, Khammam, Nizamabad, Mahaboobnagar,
Kadapa, Kurnool and Anantapur. In this zone high temperatures prevail throughout the year,
moderate to scanty rainfall in received from both South-West and North East Monsoons. The
fruits grown in this zone are Mango, Grape, Banana, Sweetorange, Lime, Custardapple,
Guava etc.,

b) Humid tropic
         Heavy rains are received in this zone. Hence, the humidity is more. Based on the
amount of rainfall this zone is again subdivided into 2 zones
i) Heavy rainfall areas
         It includes Polavaram, Rampachodavaram talukas of West Godavari distirct where
150-200 cm rainfall is received annually. The elevation will be 600 m. from mean sea level
and high humidity prevails in this regions.
ii) Low rainfall areas
         Parts of Adilabad, Warangal, Kurnool and Kadapa come under this zone with annual
rainfall of 100 to 150 cm.
         The fruits grown in this zone are Banana, Sweetorange, Guava, Papaya, Grape and
c) Coastal humid tropic
         It includes the coastal areas from Nellore to Srikakulam. The average annual rainfall
is 75-100 cm., majority of which is received from South-West monsoon and to a small extent
from North-East monsoon. In this zone humidity is high due to high rainfall as well as due to
presence of sea at close proximity. Banana, Cashew, Pineapple and Coconut are grown in
this zone.
2. Sub-tropical zone
         This zone is sub-divided into two viz., Arid sub-tropical and Humid sub-tropical based
on the amount of rainfall received
a) Arid sub-tropical areas
         Average annual rainfall received is 75-100 cm and the elevation is 450 m. above
mean sea level. The climate is cold between October and February. This area includes
Hyderabad and Rangareddy districts, Horsley hills of Chittoor district and Penukonda taluk of
Ananthapur district. Fruits like Grape, Orange, Phalsa, Mandarin, Seethaphal and Lime are
cultivated in these areas.
b) Humid sub-tropical areas
         The average annual rainfall in this zone is upto 200 cm and the elevation ranger upto
620 m above MSL. The zone includes parts of Visakhapatnam and Srikakulam districts. Fruits
like Peach, Japanese plum, Avocado, Litchi, Jack fruit and Cocoa can be grown in these


                                     (Mangifera indica L.)

        Mango is considered as king of fruits. Andhra Pradesh is the second largest mango
growing state in the country with an area of about 4.31 lakh hectares and annual production
of 43.5 lakh metric tons. In Andhra Pradesh mango occupies 68 per cent of the total area
under fruits. 24 % of the total production of mango in India is from Andhra Pradesh. The
mango is grown extensively in Krishna, Vijayanagaram, Vishakapatnam, West and East
Godavari, Kadapa, Warangal, Nalgonda, Adilabad, Medak and Rangareddy district.
        Mango is well adapted to tropical climate. High humidity and cloudy weather at the
time of flowering are not favourable as they affect pollination and fruit set and encourage
diseases. Rains during flowering are detrimental to the crop.
        Alluvial and sandyloams are ideal for mango cultivation. It can be grown even on
lighter soils like chalkas and dubbas when properly manured. Alkaline and saline soils should
be avoided. The most desirable soils for mango should be of medium texture, deep (2 to 2.5
m) well drained with low water table (below 180 cms in all seasons) and have a pH range of
6.0 to 7.5. Mango cannot tolerate high soil salt content (not more than 0.05 %).
Banganpalli (Baneshan)
        Banganpalli is the leading commercial variety of the state. The tree is medium in size
and regular in bearing. The fruit is large, with is golden yellow color. The flesh of fruit is
firm, fibreless. The fruit quality is very good with good keeping quality. It is tolerant to
hoppers and winds.
Totapari (Bangalora, Collector, Chittoor mamidi)
        Totapari is better suited to dry regions, more regular and prolific yielder. The tree is
medium size. Fruit medium to large, skin thick, golden yellow colour, flesh firm, fibre less,
fruit quality poor to medium. The keeping quality is good. The bearing in Totapari is later
than Banganpalli. Tree brittle and more susceptible to hoppers and cyclone damage
compared to Banganpalli.
Suvarnarekha (Sundari, Lal Sundari)
        This variety is popular in Srikakulam and Visakhapatnam districts. Fruit is medium in
size, skin medium thick, light cadmium with a blush of red, flesh soft, fibreless. Fruit quality
medium to good, bearing heavy and regular.           Suvarnarekha is moderately tolerant to

hoppers and susceptible to powdery mildew. The keeping quality of the fruit is good. This
variety is suitable for export.
        Neelum is a late variety, more popular in Rayalaseema region. Fruit are medium in
size. Skin medium thick, yellow in colour. The flesh is fibreless and fruit quality is good,
Neelum is a regular and heavy bearer. However, the fruit does not attain good size in
Telangana region.
        Dashehari is a commercial variety of North India and found suitable for growing in
North Telangana Zone. The tree is medium in size. Fruit is small to medium, skin medium
thick and yellow in colour. The flesh is firm, fibreless with good fruit quality. However,
Dashehari is irregular in bearer, susceptible to hoppers and powdery mildew.
        Peddarasam is popular in Godavari and Krishna districts. The tree is medium in
height, with large fruit. The fruit turns greenish yellow when ripe. The fruit juice is
abundant, fibrous and sub-acidic. The bearing is regular and early.
        Chinnarasam is popular in Nuzividu area of Krishna district. The tree is medium in
size. The fruit is medium in size with abundant juice, characteristic strong flavor with fairly
good keeping quality. The fruit quality is very good. The bearing is regular and heavy.
        The tree is medium to large size. The fruit is medium with abundant juice and short
and soft fiber. The fruit quality is good. The bearing is regular and heavy, midseason,
susceptible to powdery mildew and moderately tolerant to hoppers. Fruit keeping quality
Mahmooda Vikarabad
        A dwarf variety suited for high density planting. The tree is small in size. The fruit is
medium, skin thin, yellowish green, flesh moderately firm, fibreless. The fruit quality very
good to best. The bearing is regular, heavy, midseason to late, susceptible to hoppers,
tolerates wind. The fruit keeping quality is good.
Chirutapudi Goa (Royal Special)
        Royal special gives second crop (September-October) apart from main season. Tree
is medium in size. The fruit is medium, juice abundant with good fruit quality. The bearing is
regular, mid-season to late, moderately tolerant to hoppers, less susceptible to winds.

        It is a pickle variety, regular bearer, fruit size is medium to large. It is a late variety.
        A hybrid between Rumani and Mulgoa. Fruit medium to large flesh melting, fibreless
juice, fruit quality and bearing better than parents, stands transportation well. This hybrid
was released from Horticultural Research Station, Anantharajupet.
        This hybrid was released from H.R.S., Anantharajupet. It is a hybrid between Neelum
and Baneshan. The fruits are medium in size with firm fibreless flesh. The fruit matures 15
days later than Baneshan and catches the late market.
        It is a hybrid between Neelum and Himayuddin. The fruits are medium sized
weighing on an average 200 g each and intermediate between the parents in shape. The
skin is smooth, flesh is firm, melting and fibreless with characteristic flavor. It is abundantly
juicy, very sweet in taste and rich in chemical constituents. Each tree bears 500 to 700 fruits
regularly and comes to harvest in the last week of May.
        This hybrid is developed by crossing Neelum with Yerramulgoa. The fruits are akin to
Neelum but bigger in size and smooth skinned. The flesh is firm, melting, fibreless,
moderately juicy and very sweet in taste with a delightful flavour. The fruit weighs 270 g
and is rich in nutrients. It has a regular bearing habit and produces 1000 fruits just like
Neelum and comes to harvest in the month of May.
Swarna Jehangir
        It is a hybrid between Chinna Suvarnarekha and Jehangir and inherits the attractive
colour of the former parent and the size and quality of the latter. The fruit resembles
Jehangir in shape and skin characters, but slightly less in size weighing 230 g. The flesh is
moderately firm, fibreless, abundantly juicy and very sweet with pleasant flavour. It excels
both the parents in yield and bears 600 fruits. The fruits are harvested in the month of June
and stands transport very well.
        It is a hybrid of Rumani X Neelum released from Sangareddy. Fruits very attractive
and large, looks like Rumani. It is a dwarf variety, suitable for high density planting. About
500 plants can be accommodated per hectare adopting a spacing of 4.5 m either way.
Tolerant to powdery mildew and hoppers.

         It is a cross between Dashehari and Neelum. Amrapali is precocious, distinctly dwarf,
highly regular and prolific in bearing and has good fruit quality. Since Amrapali is a short
statured variety, the planting distance can be reduced considerably.
         It is a cross between Neelum and Alphonso. It has good qualities of Alphanso in fruit
characters with semi dwarf growing habit. The formation of spongy tissue is absent.
         It is a cross between Neelum and Dahsehari. The tree is medium in size and regular
bearer. The fruits are large, elongated, good quality and bears in cluster.
Arka Aruna
         It is a cross between Banganpalli and Alphonso released from IIHR, Bangalore. It is
regular bearer. The fruit are large (500-700 g) and attractive, fibreless with sweet flesh.
Arka Puneet
         It is a cross between Alphonso and Banganpalli released from IIHR, Bangalore. It is
regular bearer with medium size fruit (200-300 g) with very attractive red colour, fibreless
Arka Anmol
         It is a cross between Alphonso and Janardhan Pasand released from IIHR,
Bangalore. The tree is semi dwarf, regular bearer with orange colour flesh. The fruit has
long shelf life and hence suitable for export.
         It is a back cross between Ratna and Alphonso. It has paper thin seed which weighs
about 6.8 g.
Planting Material
         Mango is commercially propagated by Veneer grafting. One or two year old veneer
grafts should be collected from an authentic source. The grafts should have a minimum of 4
whorls of leaves with strong graft union.
Planting and spacing
         The plantation of mango should be taken up at the beginning of the monsoon (June-
July). In areas with heavy rainfall planting should be done at the end of rainy season. The
pit of size 1m x 1m x 1m should be dug and filled with top soil, well mixed with 25 kg
farmyard manure and 2 kg superphosphate and 100 gm of Folidol powder to avoid termite
damage. Planting distances can be around 7 to 10 meters depending on soil depth and
vigour of the variety planted. Even 12 meters spacing may be necessary in very deep and

fertile soils. The graft should be planted with ball of earth and press the soil all around the
base. The graft joint should be above ground level. Stake the plant to prevent wind damage.
Remove root-stock sprouts below the graft joint.
Manures and fertilizers
       To improve the texture of soils, add adequate tank silt and FYM. Sowing of the green
manure crop (20 kg sun hemp/10 kg diancha/acre) with the onset of monsoon Fertilizer and
incorporating 45 days after sowing. The fertilizers schedule for mango for different ages is
as follows
                 Age of the tree     Nitrogen Phosphorus           Potash
                                           grams / tree
                 First year          100        100                100
                 Second Year         200        200                200
                 Third Year          300        300                300
                 Forth Year          400        400                400
                 Fifth Year          500        500                500
                 Sixth Year          600        600                600
                 Seventh Year        700        700                700
                 Eight Year          800        800                800
                 Ninth Year          900        900                900
                 Tenth Year          1000       1000               1000

   Fertilizers should be applied through placement in circular trenches around the trunk. For
    the 10 years age and above trees the fertilizer should be applied at 1.5 m away from the
   Manures and fertilizers should be generally done in the beginning of monsoon. Irrigation
    should be given after the application of fertilizers. Wherever irrigation is available it is
    advantageous to apply half of the recommended dose of fertilizers after fruit set.
   For the correction of micronutrient deficiency, spraying of ZnSO 4 5 g , Boran 2 g and 10
    g urea per liter of water is recommended at the onset of monsoon.
   Spraying of KNO3 @ 10 g/l during November helps in opening of the flower bud and
    uniform flowering.
       Pruning to remove criss –cross branches may be done so that center of the tree is
opened out and inner branches are exposed to sunlight. Pruning of the dried twigs and
branches should be done with pruning saw during June-July. Pruning in mango encourages
production of new shoots.
       Inter crops like vegetables, low growing field crops and fruits like Phalsa or Papaya
can be profitably grown in alleys in young orchards. Red gram is not advisable as it is an

alternative host to mealy bug. In old orchards shade tolerating crops like ginger, turmeric
etc., can be taken.
       Two ploughing in the inter spaces, once at the beginning and another at the end of
the monsoon keep the orchard weed free and facilitate rain water percolation.
       Pruning to remove criss –cross branches may be done so that center of the tree is
opened out and inner branches are exposed to sunlight.
   Mango responds well to irrigation, particularly at fruit set and developmental phases.
The young plants at bearing stage should be irrigated frequently.
      In bearing trees, for obtaining good flowering, irrigation must be stopped at least 2
       months before flowering period. Stopping of irrigation creates stress and encourages
       flower bud formation.
      Irrigation should be given fruit set and thereafter at regular intervals during fruit
       development period, beginning from fruit set stage to full development stage.
      For better quality irrigation should be stopped 20-30 days before maturity/harvesting
       the crop.
      As far as possible irrigation should be give with drip system. Drip irrigation not only
       conservers water but also increases water use efficiency.
      For conservation of rain water, rows (in rectangular system of planting) should be
       along the contour in sloppy locations.
Fruit Drop
       Fruit drop in mango occurs when the fruits are at pea stage of development.
Moisture deficiency, nutrient deficiency and hormonal imbalance are the causes for the
mango fruit drop. Fruit drop can be controlled by spraying 2,4 – D at 10 ppm or
Naphthalene acetic acid (NAA) at 20 ppm twice at an interval of 15 days during the early
stage (peanut stage) of fruit development.
Irregular Bearing
       Irregular bearing in mango is due to imbalance in nutrient status of the plant.
Balanced manuring and fertilizer application and irrigation will keep the tree healthy and
vigorous and prevent the irregular bearing. Pruning of weak, dead criss cross shoots to open
the canopy of the tree is suggested to regulate the bearing in old trees.
Top Working
       Top working is done to replace the inferior seedling mango by know variety. The
trees are beheaded upto 1.5 m height in August to September months i.e., after receding of

heavy rainy. Allow 4-5 vigorous shoots to grow. Grafting on the shoots is done by veneer
grafting on the shoots of pencil thickness. Once the graft is successful, remove the shoots
arising from the seedling tree. Prune the new shoots to get more branches. The young
shoots arising from grafts should be protected.
Harvesting and packing
       Early harvest of fully developed but not matured fruit starts in April to catch the early
Northern markets. However, the fruits harvested without reaching maturity will not ripen
properly. Normal harvest commences when few “Patukayalu” or “Shakh” fall from the tree.
In case of pickle mangoes, time of harvest is relatively more flexible and any time between
stone hardening and attainment of physiological maturity. Harvesting the fruits with a long
poll having a net at the end (Gowka) or Dapoli harvester and lowering them gently on a
gunny cushion minimizes the injuries. The minimum total soluble content for harvesting
without sacrificing the quality is 9.0 in case of Banganpalli and 8.5 for Dashehari. For
judging the maturity, fruit samples from various directions of the tree are taken and dropped
in a bucket of water, the dipped fruits being indicative of correct maturity.
       The fruits should be harvested with 7 cm stock and taken to the packhouse in plastic
crates. Desapping of the fruits should be done by keeping the fruits in inverted position in
the desapping nets for about 3-4 hours. Desapping of mango fruits prevent the sap injury
on the fruits. After desapping the stock of the fruits are cut up to 1 cm. The desapped fruits
are washed thoroughly in the running water to remove the dirt and other extraneous
material. For export, the mango fruits are graded as per the international guidelines of the
importing country. The fruits are then packed in the Corrugated fiber board baskets with
stock end pointing upward to avoid injury to the fruits.
Post Harvest Technology
       The mango fruits can be stored for 8-10 days at room temperatures. However, under
cold storage the fruits can be stored up to 25 days at 12.5          C and relative humidity of 80-
90 %. Mango fruits cannot be stored below 12.5         C as it causes the chilling injury.
Plant protection
Mango hopper (Tenemanchu purugu) (Idioscopus clypealis , Idioscopus nitidulus
Amritodus atkinsoni )
       Damage is caused by sucking sap from tender leaves and inflorescence. Ovipositional
punctures also cause damage to tender leaves and inflorescence. Severely infested leaves
become curled and inflorescence gets dried. Affected parts are covered with honeydew and
sooty mould.

       One spray with carbaryl @ 3 gms/litre of water in November before panicle
formation ensuring that tree trunks are also thoroughly drenched during the spray. During
full length stage of panicle but before full bloom full bloom stage spraying with endosulfan
@ 2 ml /litre of water or Dimethoate @ 2 ml /litre of water or imida cloprid @ 0.3 ml/ litre of
water if incidence of hoppers is high (more than 5-10 per panicle).After fruit set at pea size
stage spraying with imida cloprid @ 0.3 ml/ litre of water or thiamethoxam @ 0.4 gm/ litre
of water.
Mealybug (Drosicha mangiferae, Rastrococcus iceryodies)
       Nymphs and adults suck the plant sap and reduce the vigor of the plant. Excessive
and continuous draining of plant sap causes wilting and finally drying of infested tissue.
They also secrete honey dew, a sticky substance, which encourages the development of a
fungus Maliola mangiferae, resulting in sooty mould. R iceryodies is serious in South India.
They are considered more important because if the control measures are not taken timely,
the crop may be destroyed completely.
       Plough orchard during summer to expose eggs to natural enemies and sun heat.
Remove weeds like Clerodendron infortunaturm which are additional hosts.            After mud
plastering 25 cm width 400 gauge alkathene sheet may be fastened to the tree trunk 30 cm
above the ground level in the month of December- January or use at sticky band on tree
trunk to prevent migration of crawlers from soil to trees, one week before their emergence.
       Raking the soil around the tree trunk and mixing of chlorpyriphos (1.5% dust) @250
gm per tree. The dust may also be sprinkled below the alkathene band on the tree.
       Spray NSKE 4% or crude garlic oil 1% or Dimethoate 0.06 % or Acephate @ 2 gm/lt
or Spirotetramat @ 0.3 ml/lit of water
Shoot Borer (Chlumetia transversa)
       It causes serious damage to new flush of mango. The affected shoots wilt droop and
finally get dried. The infested trees become stunted in growth and the shoot into which this
larva is bored dies and does not flower subsequently flowering is inhibited. Young trees up
to the age of 8-10 years are more damaged.
       Do not retain minor flushes during off season. Apply relatively higher dosage of
potash. Prune the infested the shoots and burn. Spray at bud – sprouting stage with
Carbaryl 0.1 % followed by Dimethoate 0.04% or Quinalphos 0.5% at 15 days interval from
commencement of new flesh.

Stem Borer (Kaandam tolughu purugu) Batocera rufomaculata
        Damage is caused by the grub of this beetle as it feeds inside the stems, boring
upwards and resulting in drying of branches and in severe cases attacked tree is killed.
Grubs with robust body feeding on inside tissues will be observed when there is severe
       The grubs can be extracted through hooked wires and then destroyed. Sthe insect
can be controlled by injecting in hole 0.02% dichlorvos ( DDVP) or 0.05% endosulphan @
5 ml/holes or Celphos (aluminium phosphate) one tablet (3g) per hole and then holes may
be sealed with mud .
Stone or Nut Weevil (Sternochaetus mangiferae, S.frigidus )
        It is a common pest of mango in southern India. Another species, S. frigidus,of the
pest is found in Assam and Bengal. Sweeter varieties such as Alphonso, Bangalora, Neelum,
etc. are more prone to attack by this pest. Female lays eggs on the epicarp of partially
developed fruits or under the rind of ripening fruits. Newly emerged grubs bore through the
pulp, feed on seed coat and later cause damage to cotyledons. Pupation takes place inside
the seed. Discolouration of the pulp adjacent to the affected portion has been observed.
Eggs are minute and white in colour. Adult weevils are 5 to 8 mm long, stout and dark
brown in colour. Life-cycle is completed in 40 to 50 days during June-July. Adults hibernate
until the next fruiting season. There is only one generation in a year. Extent of damage in
susceptible cultivars like Neelum, Totapuri and Banganpalli varies from 60 to 65 %.
       Collect fallen infested fruits and destroy. Spraying of apply sticky band at upper end
of the trunk to prevent migration of weevils to branches for egg laying on fruits during
February- March. Keep the tree basins clean to prevent hiding of diapausing weevils. Spray
during of season (December – January) on tree trunk up to 2m height with fenthion
0.05%or Carbayl 0.1% or Deltamethrin 00025% six weeks after fruit set (especially at
marble stage) and second spray may be given after 15 days.
Thrips (Rati Mangu) (Thrips hawaiiensis, Scirtothrips dorsalis)
       Thrips appear during flowering and fruiting stages where their infestation can be
recognized during January on flowers and developing fruits causing „Mangu‟ though initial
infestation result in flower drop. Their impact on young fruits are seen in terms of rough
surface as well as deshaping of fruits.

         It can be controlled by spraying thiamethoxam @ 0.4 gm / litre of water or acephate
1.5 ml/lt of water or fipronil 2 ml / lt of water.
Leaf Webber (Orthaga euadrusalis)
          The infestation is severe in shady conditions. Old orchards with lesser space
between tree canopies have more infestation than open orchards. The larvae of Orthaga spp
web the leaves and the terminal shoots into clusters which harbor several of them in the
initial stage. The larvae are gregarious in the beginning and feed by scrapping the leaf
surface. Late instar larvae feed on whole leaf lamina leaving only midrib. Severs attack leads
to drying of shoots / branches and reduction in fruit yield.
         Supervise the orchard once in a month and search for webbed shoots. Prune the
infested shoots and destroy them along with larvae during April – July. After pruning 2 to 3
sprays starting from last week of July at 15 days interval with Carbaryl 0.2% or quinalphos
0.05% have been found effective in controlling the pest.
Shoot gall psylla (Apsylla cistellata)
         It is a very serious pest of mango in many parts of India, particularly in Terai region
of U.P., North Bihar and West Bengal. This pest creates green conical galls in leaf axis. The
activity of the pest starts from August. The galls dry out after emergence of psyllid adults in
March. The galls are usually seen during September-October. Consequently, there is no fruit
set. There is only one generation of the pest in a year.
        The galls with nymphs inside should be collected and destroyed to prevent carryover of
the pest. The pest can effectively be controlled by spraying monocrotophos (0.05%) or
dimethoate (0.06%) or quinalphos (0.05 %) at 2 week intervals starting from the middle of
August. The use of same chemical for every spray should be avoided.
Mango fruit borer (Deanolis albizonalis)
            In coastal Andhra Pradesh the incidence of mango fruit borer is slowly increasing
and assuming      as a serious problem on mango in some areas. The incidence is found right
from pea size upto maturity stage. In initial stages upto 6-10 larvae are found in one fruit.
fruits in one bunch are prone to attack due to migration of grown up larvae to neighboring
fruits as in case of nut weevil Newly emerged larvae bore through the pulp, feed on seed
coat and later cause damage to cotyledons.
        After mango harvest removal of Dead wood from the tree

      Removal of diapausing stage of Mango fruit borer from cracks and crevices in the
       bark and dried twigs
      Removal and destruction of damaged and MFB infested fruits especially at pea and
       marble stages of the fruit
      In Second fort night of January spray of chloripyriphos 2.5 ml or dichlorovas 1.5 ml
       or carbaryl 3 gms per litre of water especially in those garden where previous
       incidence of this recorded. Repeat spray of chloripyriphos 2.5 ml or dichlorovas 1.5
       ml or carbaryl 3 gms or Neem oil 3ml + chloripyriphos 1 ml per litre of water at
       marble stage of the fruit. The sprayings should be preferably carried out during
       evening hours
      Spraying of NSKE 5 % at 10 days interval during the months of April and May upto
       15 days before harvest
Red mite (Erra nalli) (Oligonychus mangiferous)
       These mites both in nymphal and adult stages infest mango leaves. Their presence
reflects in terms of scrapped chlorophyll resulting in yellowish tinge on upper side and white
webs on underside of leaf.
       It can be controlled by spraying wettable sulphur 3gm/ litre of water or diafenthiuron
1 ml /lt of water.
Powdery midew ( Budida Rogam) Oidium mangifere
       Powdery mildew is one of the most serious diseases of mango affecting almost all
the varieties, Some times, as high as 70-80 per cent crop loss has been recorded on
individual plant basis.
       The characteristic symptom of the disease is the white superficial powdery fungal
growth on leaves, stalks of panicles, flowers and young fruits. The affected flowers and
fruits drop pre-maturely reducing the crop load considerably or might even prevent the fruit
set. Rains or mists accompanied by cooler nights during flowering are congenial for the
disease spread. The fungus parasitizes young tissues of all parts of the inflorescence, leaves
and fruits.
       Following three sprays of fungicides at 15 days interval recommended for effective
control of the disease Wettable sulphur 3-4 g/lit of water or Calixin 1 ml/lit or 1 ml
Karathane / lit. water).

Anthracnose (Macha Rogam) Colletotrichum gloeosporiodes
       The anthracnose disease is of widespread occurrence. The disease causes serious
losses to young shoots, flowers and fruits under favourable climatic conditions of high
humidity, frequent rains and a temperature of 24-32oC. It is also affects fruits during
storage. The disease produces leaf spot; blossom blight, withertip, twig blight and fruit rot
symptoms. Tender shoots and foliage are easily affected which ultimately cause die back of
young branches. Older twigs may also be infected through wounds which in severe cases
may be fatal.
       Black spots develop on panicles as well as on fruits. Severe infection destroys the
entire inflorescence resulting in no setting of fruits. Young infected fruits develop black
spots, shrivel and drop off. Fruits infected at mature stage carry the fungus into storage and
cause considerable loss during storage, transit and marketing. The fungus perpetuates on
twigs and leaves of mango or other hosts.
       Dead twigs should be pruned to reduce inoculum potential Trees may be sprayed
twice with Carbendazim @ 1g/lit or Thiophenate methyl 1g/lit at 15 days interval during
flowering to control blossom infection. Spraying of copper fungicides (0.3%) is
recommended for the control of foliar infection.
Bacterial canker (Xanthomonas campestris pv. mangiferaeindicae)
          The disease causes fruit drop (10-70%), yield loss (10-85%) and storage rot (5-
100%). Many commercial cultivars of mango including Langra, Dashehari, Amrapali, Mallika,
and Totapuri are susceptible to this disease. The disease is found on leaves, petioles, twigs,
branches and fruits, initially producing water-soaked lesions and later turning into typical
cankers. The disease first appears as minute water-soaked irregular lesions on any part of
leaf or leaf lamina. The lesions are light yellow in colour but with age, enlarge and turn dark
brown to black. They become angular, cankerous and raised, and are surrounded by
chlorotic halos. Several lesions coalesce to form irregular necrotic cankerous patches. In
severe infections the leaves turn yellow and drop off. Cankerous lesions appear on petioles,
twigs and young fruits. The water soaked lesions also develop on fruits which later turn dark
brown to black. They often burst open, releasing highly contagious gummy ooze containg
bacterial cells. The fresh lesions on branches and twigs are water soaked which later
become raised and dark brown in colour with longitudinal cracks but without any ooze.
      Seedling certification, inspection and orchard sanitation.
      Three sprays of streptocycline (100 ppm) or Agrimycin-100 (100 ppm) after first

        visual symptom at 10-days intervals.
       Monthly sprays of Bavistin (1000 ppm) or copper oxychloride (3000 ppm) were also
        found effective.
                                       (Musa sapientum)
        Banana is cultivated in an extent of 60,000 ha. in the State. It is the third important
fruit crop after mango and citrus, occupying 8% of the fruit growing area in the State.
Although it is cultivated in almost all the districts, it is extending in East Godavari, West
Godavari, Cuddapah, Guntur, Krishna, Visakhapatnam, Vijayanagaram and Kurnool districts.
        Banana performs very well under humid tropical condition but can be cultivated
successfully even under humid or semi arid sub tropical conditions. The growth and yield of
most of the varieties are better at a temperature range of 25-30oC.
        Almost all the agricultural soils are suitable if they are deep, well drained and neutral
in reaction. Black loams, red loams and sandy loams of uplands are most suited. The soils
should be atleast more than 75 cm deep with water table lower than 1.0 to 1.2m, pH 6.5 to
7.5 and less than 1.5% salts.
        It requires well drained soils having a depth of at least 1m. The ideal PH is around
6.5 to 7.5.
Karpura Chakkarakeli (Poovan, Ginni)
        This is a popular table banana and the foremost commercial variety contributing to
70% of the total crop area. It is hardy and grows extremely vigorous, under perennial
garden and wet land systems of cultivation. Easily recognized by its pinkish-purple midribs
and big cylindrical bunches of tightly packed, short, plump, bottlenecked fruits. The fruits
are of medium size and have a distinct tip. The rind is thin and pulp cream coloured with a
sub-acid taste. The bunches keep well, the fingers holding even at late ripeness, with
attractive bright yellow colour. The plant is immune to Panama disease and is virtually
immune to „Leaf spot‟. It is also tolerant to poor soils and drought but susceptible to winds.
Suitable for transport. Each bunch weighs 15-18kgs with 9-10 hands and 130-160 fruits. The
duration is 12 months and the spacing is 2 x 2m.
Tella Chakkarakeli (Godavari Chakkarakeli)
        This variety is considered the best of bananas in Circar districts. The plant is thin and
medium size easily recognized by whitish petiolor margins. It is not a prolific clone. The
bunches are small and loose with short stout slightly curved fruits glistening green and fairly

rounded with a conspicuous apex. The rind is thick, pulp yellowish and too soft but tasty
with characteristic pleasant aroma. The fruit is ripe inside, even when the rind is partially
yellow and greenish at the tips. It is highly priced in the market for its characteristic taste,
aroma and quality. The keeping quality is poor. The attachment of the fruit to the cushion is
very fragile when raw and is very strong when ripe. It is tolerant to Panama disease but
highly susceptible to Erwenia wilt and Sigatoka leaf spot diseases. Each bunch weighs 8-10
kgs with 5-6 hands and 60-70 fruits. The duration is 12 months and the spacing is 1.8 x
Amruthapani (Rastali)
        This is a choice table fruit. It fetches premium price over Dwarf Cavendish and
Poovan. The plant suckers moderately and is        tall and does not bear heavily. The fruit is
better in size to Poovan, more rounded with a glossy green colour and the tip is less
pronounced. The rind is thin and develops and ivory yellow colour when ripe. The flesh is
white, rather firm but tasty with a characteristic flavour. Occassionally hard lumps develop in
the pulp which is a drawback. It is highly resistant to leaf spot but very susceptible to
Panama disease. Each bunch weighs 20-23 kgs with 8-10 hands and 100-120 fruits. The
duration is 12-13 months and the spacing 2 x 2m.
Robusta/Grand Naine (Pedda paccha arati)
        It is semi-tall with a little more stature than dwarf varieties. The petiole margins are
spread out and tinged purple. It is little less susceptible to wind damage. It has a slightly
thicker and more rigid bunch stalk, it is a heavy yielder. The fruits are big, slightly angular,
and curved. The ribs are not distinct. The rind colour continues to be light green. The pulp is
creamy white, soft and buttery. The seed core is prominent. It is suitable for the entire state
and occupying the major banana area in the state. It is very susceptible to Erwenia rot
bunchy top and leaf spot but immune to panama disease.. Each bunch weighs 25-28 kgs
with 10-11 hands and 130-160 frutis. The duration is 10-11 months and the spacing 1.8 x
Vamanakeli (Dwarf cavandish, Basrai, Chinna paccha arati, Potti arati, Gidda
Vamanakeli, Bhushavali, Chitavali)
     This is the most wide spread clone in existence. It bears well under a wide range of
conditions and is the basis of nearly all the sub tropical banana trades. It suckers sparsely.
Its low stature makes it less susceptible to wind damage than most other banana. But in
winter in the subtropics, the stature permits chilling which a taller clone may avoid, and it is
susceptible to „Choke‟. The petiole is short, thick and axial channel wide open. Bunches are
heavy, compact and pendant. Persistant male flowers are noted. The fruit size is medium to
big. The flesh is pale yellow and sweet. The fruit turns yellow on ripening in winter but

remains green in summer. Its main defect is poor keeping quality. It is very susceptible to
leaf spot and bunchy top but immune to Panama disease. It is suitable for the entire State
but poor ratooner. Each bunch weighs 12-15 kgs with 8-10 hands and 120 fruits. The
duration is 11 months and the spacing is 1.5 x 1.5 m.
Cooking Varieties
       This is the foremost cooking variety of the State. The fruits are long, slightly curved
with prominent ridges and blunt apex. The rind is thick and green with whitish pulp. The
male bud is also used for culinary purpose. Suitable for entire State. It is resistant of Leaf
spot but is susceptible to Panama disease. Each bunch weighs 15 kgs with 5-6 hand and 70-
80 fruits. The duration is 13 months and the spacing is 2 x 2m.
Kovvur Bontha
              It is a cooking variety and a sport with heavier bunches of bigger size and
superior quality fruits. Fruits are larger, stout with less prominent ridges and bottle neck
apex. The rind is thick and green with whitish pulp. The plants are tall sturdy and sucker
freely, waxy bloom is present over petioles and young regions, susceptible to     rhizome rot
disease. Tolerant to Sigatoka leaf spot,good cooking quality and it is the only cooking
banana variety commercially cultivated in Andhra Pradesh Fruit bunches are heavy, pendent
and not compact, suitable for the entire State. Each bunch weighs 16-18 kgs with 6-7 hands
and 75-90 fruits. The duration is 13 months and the spacing is 2 x 2m.
Season of planting
       Banana can be planted through out the year but planting during June to September
is recommended. For Cavendish varieties and Tella chekkerakeli planting in the month of
June is the optimum time to avoid leaf spot diseases.
       Conventional bananas are propagated through sword suckers of 1.5-2 kg weight
selected from healthy gardens.
       Tissue cultured plants are becoming popular among farmers as they are not only
virus free but also results in uniform and synchronized harvest, gives 35-45% higher yields
over conventional planting material.
       Healthy sword suckers of 3 months age having strong base, gradually tapering to
slender point with one or two narrow sword like leaves at the tip are preferred for planting,
since it grows faster and comes to bearing early compared to water suckers. Suckers from
high yielding and healthy plant crop are selected. If the suckers are small the crop duration
is longer but with more number of fruit. If the suckers are bigger the crop duration is

shorter with less number of fruit but of better size. For traditional varieties corms weighing
1.5-2.0 kg and for Cavendish clone corms weighing 1.25-1.5 kg may be preferred.
Selection of suckers and planting
       If any damage is noticed to the corm of the suckers at the time of separation of the
sucker from the mother plant, the damaged portion of the corm may be clearly sliced off.
The top portion of the pseudostem of the sucker may be given a slant cut leaving six inches
pseudostem over the corm. This will facilitate easy draining of plant sap, rain water etc.,
leading to successful establishment of the sucker. But in coastal region the top portion of
sucker is retained while planting and deheaded to 2/3 size in about 20 days when growth is
visible to maintain uniform height of the plantation. All the old roots of the rhizome should
also be trimmed.
Sucker treatment
       The suckers thus prepared should be dipped in 0.25% Monocrotophos (2.5ml in 1
litre) and 0.5%Copper Oxy chloride (5g in 1 litre) solution for 15-20min and then planted.
       The selected field must be     ploughed with mould board plough to a depth of 25-30
cm and allowed to dry for two weeks. Before planting the field should have fine tilth. The
dug up pits may be allowed to dry for 10 days before planting. Just before planting of the
suckers, the dug up soil or fresh top earth mixed with (compost) farmyard manure 10kg,
50g folidol may be filled to three quarters of the pit.
       Banana suckers should not be planted either too deep or too shallow. The suckers
must be planted in the centre of the pit in such a way that the corm and another two inches
of pseudostem over it should submerge in the soil. Press the soil around the sucker to avoid
air spaces, to give firm stand to the stem and for better sprouting of the suckers.
Sucker treatment
       When sword suckers are used as a plant material the corms should be pared and
dipped in a solution of 2.5 ml of Monocrotophos and 5g. of Copper oxychloride per litre for
15 minutes before planting.
      Karpura Chakkerakeli, , Amritapani,            :         2.0 X 2.0 m
       Kovvur Bontha
      Tella Chakkerakeli, Robusta, Grand Naine       :         1.8 X 1.8 m
      Dwarf Cavendish (Vamanakeli)                   :         1.5 X 1.5 m

         While planting the pits of 45 cm3, should be filled with 5Kg FYM, 250 g Neem cake,
 300 g of super phosphate.
 Gap filling
         Generally the banana suckers strike roots within 10 to 15 days after planting.
 Maintaining optimum population for unit area always leads to higher yields. So gap filling
 should be done within 20 days to ensure uniformity in the crop stand.
 Manures and fertilizers
         200 – 250g of Single Super Phosphate should be applied per pit before planting. 200
 g each of Nitrogen and Potash per plant has to be given as top dressing in 4 equal split
 doses for heavy soils .For light soils 300g each of N & K fertilizers per plant should be given
 in 6 equal splits. Green manuring with sunhemp or Cow pea may be done immediately after
 planting with 50 kg seed/ha and ploughed in after 35 days.
         The doses of fertilizers and time of application varies with the duration of variety and
 also soil type.
      Variety           Fertilizers         No of splits      Dose       Days after planting
                        to be given                           /each
                        N     K         Heavy     Light       N     K    For Heavy     For     light
                                        soils     soils                  soils         soils
Karpura                 200 200         4         6           50    50   45,90,135,    30,60,90,
chekkerakeli,                                                            180           120,150,180
Kovvur bontha
Grand Naine, Dwarf 200 200              4         6           50    50   40,80,120, 25,50,75,
Cavendish                                                                160         100,125,150
Tellachekkerakeli  250 250                       5            50    50   35,70,105,140,175

         Spraying of Sulphate of Potash (K2SO4) @ 0.5% at 5 and 20 days after last hand
 opening improves fruit grade and quality.
         The plants are either pot watered or irrigated immediately after planting. About 30-
 40 weekly irrigations (2.0 acre inches) are required for banana crop. When the summer
 temperature crosses 37.8OC irrigation on every 4th day is essential. Light irrigation after
 every manuring is essential.
         Inadequate irrigations to banana leads to delayed flowering, delayed maturity of
 fingers, reduced size in bunch and also poor keeping quality of fruits. Quality of fruit will also
 be reduced if inadequate irrigations are given in summer leading to sun scorching.

       Fertilizer use efficiency is more with increased number of splits.
       Under fertigation, for heavy soils 50% of RDF and for light soils 75% of RDF is
        sufficient to harvest higher yield and also reduces the crop cycle by 20 days.
       Under this 80% of the N&K fertilizers should be given in 20 split doses          before
        shooting at weekly intervals starting from 6th week after planting to 25th week after
       Remaining 20% of the N& K fertilizers should be given after shooting in 4 splits at
        weekly intervals from 33rd to 36th week after planting.
       Under fertigation 50% of the recommended dose (Applied at weekly intervals) is
        sufficient to harvest higher yield than RDF and reduces the crop cycle by 20 days.
        Short duration leguminous crops like blackgram, greengram variety Cowpea variety
and lab-lab are grown as intercrops. Vegetable crops like lady‟s finger, ridge gourd tomato,
onion and leafy vegetables can also be grown.             In East Godavari, Visakhapatnam,
Visakhapatnam, Vizianagaram and Srikakulam agency tracts, turmeric, ginger, sweet potato,
colocasia, diascorea and amorphophalus are traditional intercrops in banana. With
intercropping, the crop duration of banana is extended from 20 to 40 days but the yields are
not affected. Amorphophallus alone or the association with colocasia under banana is
        Where pure crops are grown, it is desirable to mulch the garden immediately after
planting with banana trash at the rate of 15 t/ha. Mulching controls weeds, conserves
moisture, hastens growth and improves yields.
        Banana starts bearing      suckers from 2-3 months after planting. Desuckering or
pruning is the removal of unwanted suckers. These suckers have to be removed periodically
as otherwise they compete with the mother plant for water and nutrients, resulting in lower
bunch weight and therefore total yield. It may also lead to heavy incidence of leaf spot
disease due to congestion in the interspaces, lack of aeration, sunshine, and high dampness,
Desuckering with sickle at 15-20 days interval, right from the beginning till flowering is to be
        The sucker thus removed may grow again. The improved method of desuckering is
as follows, a flattened crowbar or an iron rod of 1.2m long and 1.25cm diameter flattened at
one end and provided with wooden handle at the other end should be used for digging out

the sucker with a bit of its corm, once in 35 days up to flowering. Once the plant starts to
flower, the mother plant should not be disturbed. So, after shooting desuckering should be
done by cutting suckers to the ground level with the help of sickle. This method has given
good results in research and farmer‟s fields.
       However for ratoon crop one good sucker should be left when the crop has attained
50 % flowering.
       In a young banana garden luxurious weed growth is seen as the crop is given heavy
doses of organic and inorganic fertilizers, frequent irrigation and more of sunlight. Therefore
in young plantation (upto 4 months age) weeding has to be done at 15-20 days interval. As
the crop grows, the light intensity gets reduced and hence it is sufficient that weeding is
done at monthly intervals from them on. Where problematic weeds like Cyperus rotundus is
predominant split application of Glyphosate spray @ 2.0 lt/ha effectively controls nut grass
and other weeds, as well as induced early shooting and superior yields.
       Apart from cultural practices, an integrated management of weeds by inter cropping
cowpea, soil mulching with sugarcane trash or paddy straw or spraying of glycel (100 ml of
glycel + 100 g Ammonium sulphate in 10/lit. of water) gives good results.. While spraying,
care should be taken to avoid drift hazard.
After care
       The dry and diseased leaves should be removed and destroyed regularly. Soil
mounding is done in the eighth month, and a follower is left for ratoon. At flowering the
plants are propped up with bamboos to protect from strong winds or gales in coastal region.
After flowering is completed, the male flower bud is removed. An insecticidal cum fungicidal
spray at this stage ensures fruits. The flag leaf should be bent on the peduncle and tied to
protect from sun scorching.
Harvesting and Post harvest Technology
       Banana bunches are harvested in about 2 to 3 months time after flowering. Fully
matured bananas are round and free from angular shape and produce metallic sound, when
tapped. Bananas meant for long distances are cut at 75 to 80 per cent maturity. The
bunches with long peduncles are cut to the maximum possible height on the plant.
       Immediately few green leaves are wrapped around and carried by carts, bicycles,
rickshaws or lorries to the marketing yard, where they are sold either by auction or by
bargain to the retailers through a mediating agency for commission. The retailers normally
provide smoke to the bunches for 24 hours in airtight rooms to make them ripe. During
ripening the chlorophyll gradually breaks down and the yellow pigments begin to develop

until the whole fruit turns bright yellow. In this process of ripening starch is converted into
sugar by the action of enzymes and the astringency disappears. The research findings show
that banana fruits can be stored well under 62 to 65O F with 85 to 90% of moisture up to 3
weeks.    By using polythene bags and potassium permanganate, keeping quality can be
         Fruits are harvested at ¾ the maturity when the angles become less prominent and
fruits on upper hand turn light green in color.
         The average yield of different varieties of banana ranges from 50-60t/ha.
Plant protection
Rhizome Weevil (Cosmopolites sordidus) (Mukku purugu, Dumpa puchchu)
         It causes dead hearts in banana. The grubs of weevil burrow into the rhizome of the
banana plant. The tunnels are mostly circular and increase in size with the growth of the
grubs. Injury to corm prevents nourishment going to the plant. Leaves turn yellow, wither
and die prematurely. In heavily infected plantations production is low. Later the corm will
decay and the plant may die of. Adult weevil feeds on decaying and dried banana plants.
The borers spread from plantation to plantation through planting material.
         Suckers must be selected from healthy gardens. The suckers thus selected may be
trimmed and dipped in monocrotophos @ 0.2% solution and planted. Application of 10gm
carbofuron granules per plant will keep away the weevil and also Phorate (10g) granules at
10g per plant to control the pest.
Banana Rust Thrips (Chaetanaphothrips signipennis) (Tuppu Tegulu)
         The pest has yellowish white shaded wings. It causes smoky or red discoloration
between individual fingers. The skin becomes reddish brown, roughened and dull in
appearance, superficial cracks appear in the discolored skin. The fruits may also split.
         Dipping in monocrotophos 0.2% (2 ml/lit) solution to control the spread of the
insect. Spray the bunches after emergence with Dimethoate @ 0.2% (2 ml/lit) for effective
control of the pest.
Root or Burrowing Nematodes (Radopholus similes) (Veru Toluchu Purugu)
         The first visible symptom is a small dark spot on the root. The nematode deposits
eggs in the root tissue and when these hatch the larvae also feed on the root. The damaged
tissue is reduced and individual fruits are small. Affected plants do not respond to fertilizers,

irrigation or cultural practices. Nematode population is built up rapidly in ratoon crops.
Decline is accompanied by leaf chlorosis.
       Phytosanitary measures are effective. Selection of suckers from infested areas should
be eliminated. The land should be ploughed thoroughly and left fallow or planted with a crop
not affected by nematode for atleast six months. Bananas should not be planted until the
soil is free from nematodes for atleast six months. Sugarcane has been shown to be a good
alternate crop. Corms of suckers used for planting should be trimmed carefully. Treatment
of suckers with carbofuran 3g granules (45 g/sucker) is suggested as a control measure and
this should be followed by post application twice at 3 monthly intervals in the filed.
Fruit fly (Dacus cucurbitae, Coquillet)
       Banana fruit fly is minor and sporadic and will lay eggs into both green and ripening
fruit. Adult female fruit flies lay their eggs in the fruit and the maggots develop as the fruit
matures destroying the flesh. Oviposition sites can provide entry for rot producing
organisms. The maggots destroy the flesh, and secondary rots, which enter through the
oviposition puncture, cause fruit breakdown. The damage is usually concentrated on
bunches suffering from physical damage or where mixed ripening of bunches is occurring
because of poor plantation management.
       Avoid physical damage to bunches since damaged fruit will attract ovipositing
females. Maintain good-growing conditions and healthy plants to prevent 'mixed ripe'
bunches. Harvest fruit at the green mature stage. Cut up bunches left unharvested in the
field to speed up breakdown and prevent field breeding. Remove neglected plantings to
reduce build up of fruit fly. Pheromone trapping with methyl eugenol and replenishing the
traps every fortnight during fruit development stage.
Panama Wilt (Fusarium Oxysporum) (Panama Tegulu)
       It is a soil born disease. The mycelium of the fungus spreads through the vascular
bundles, leaving a brown or dark red strain in rhizome and pseudostem. First the lower
leaves become yellow and at the lower parts of the petioles or midribs, the leaves collapse
and hand down around the plant. In younger plants the unfurling leaf goes yellow first and
dies off. The time for infection and wilting is about two months. The disease spreads to
other gardens through planting material and also through irrigation or rain water. The
variety Amrutapani is highly susceptible to this disease.

       Planting disease-free materials, avoiding ill-drained soils, growing resistant varieties
like Dwarf Cavandish, Robusta and Karpura Chakkarakeli and growing wet paddy preceeding
banana will ensure against incidence of Panama disease in banana plantations. Badly
affected clumps should be destroyed after uprooting the corm.
Leaf Spot (Sigatoga) (Mycospharella Musicola, Sigatoga Aakumacha Tegulu)
       Premature death of large areas of the plants, leaf surface and in some cases, the
entire leaf is affected. In severe cases, the fruit does not develop or mature since the
photosynthetic area is drastically reduced. In less severe cases, the size of the bunches
drastically reduced. The fruit may also ripen pre-maturely with abnormal flavour. The
earliest symptoms seen in the infested plants are small chlorotic spots or streaks on the
leaves. Later on, they unite into bands, parallel to the leaf lateral veins. The streaks darken
and expand laterally to form elliptical brown spots on leaves. When numerous spots form
closely they all unit and form large dead patches. In warm humid weather they spread and
form large dead patches. In warm humid weather the spread of the disease will be quick
and severe.
      Proper sanitation should be maintained in the gardens.
      Dry and diseased leaves should be removed and destroyed.
      Proper drainage, clean cultivation, timely desuckering and optimum spacing should
       be followed.
       Two pre-monsoon sprayings with Dithane M-45 @ 0.25% or Chlorothalonil @ 0.2%
and two post monsoon sprayings at 10 days interval with Tridemorph or Propiconozole 0.1%
will prevent the incidence and the spread of disease.
Viral diseases
Bunchy top virus (Transmitted by aphids)
       It is a virus disease. The first leaf affected shows green streaks, on the secondary
veins, on the under side of the leaf lamina on the midrib and petiole. The streaks are about
0.75mm wide and vary in length upto 2.5cm. Powdery bloom covers the midrid and petioles.
Subsequently the other infected leaves show the same symptoms. The leaves will be brittle
and show maginal chlorosis and curling. The affected plants are highly stunted and the
leaves are reduced in size and crowded at throat showing, rosette appearance. The infected
plants may throw small bunches which will not develop or often fail to flower. The disease is
transmitted by the insect vector aphids i.e., pentalonia nigronervosa.

       Affected plants are characterized by marked stunting and bunching of leaves. The
crown leaves are undersized, narrow and chlorotic. Broken dark green streaks on
pseudostem, sheaths, midrib and secondary veins are conspicuous. The disease causes total
loss in yield as the affected plants do not flower.
       Rogue and remove diseased plants. Control insect vectors through insecticides.
Fortnightly sprays of Dimethoate or Methyldemeton @2ml/lit reduce the aphid population.
       Diseased plants must be destroyed as soon as the symptoms of infection are noticed.
But before removing the diseased plants they may also be sprayed with metacystox 0.05%
(2 ml/lit) or dimethoate 0.06% (2 ml/lit) to keep the plants free from insect vector. Disease
free suckers must be selected for planting new gardens.
Streak virus (Transmitted by mealybug)
       Karpura chekkerakeli is highly susceptible to this disease. Early   symptoms      are
discontinuous yellow streaks along the blade or midrib which turn into discoloured patches.
Necrosis appears on the lower side of the sheath, eventually leading to drying of leaves,
causing 30-40% losses in yield.
       Disease free suckers should be planted.
Bract mosaic (Transmitted by aphids)
       The disease is characterized by the development of black streaks on the petiole,
yellow or pinkish colouration on pseudostem and mosaic like purple spindle shaped streaks
on the bract. In severe cases, pink streaks continue on the lower surface of the midrib.
Suckers show unusual reddish brown streaks at emergence and separation of leaf sheath
from central axis. Clustering of leaves at crown with at traveller‟s palm appearance,
elongated peduncle and half filled hands are its characteristic symptoms. Yield losses are
recorded to be 75-90%.
       Use disease free planting material.
Infectious chlorosis
       Symptoms vary greatly from very mild streaking on the leaves to stunting, interveinal
necrosis and death of the plant. Stunted plants have a rosette appearance due to bunching
of leaves. The most invariable symptom is the presence of yellow streaking on the older
leaves with the streaks usually running from the mid rib to the edge of the blade. The
disease causes yield loss up to 50-60%.

        The disease can be checked by destroying the diseased stools and planting disease
free suckers in the new areas. Weeds should be checked by spraying herbicides and growing
cucurbits as inter crops should be avoided.
Mosaic (Transmitted by infected suckers)
        The disease is characterized by mosaic or discontinuous linear or spindle shaped
streaks on the leaf, either generally distributed over the leaf lamina or in bands of half in
inch or more in width, extending from margin to midrib. Severely affected leaves show
greenish-yellow mottled look. The infected plants remain stunted in growth. The disease is
caused by a strain of TMV. It causes 5-10% losses in yield.
        Use virus free planting material. Infected plants must be rogued out from the field to
avoid further spread.

                                          (Citrus Sps)
        Sweet orange and Acidlime are the two chief commercial citrus fruits grown in
Andhra Pradesh. Lemons, Pummeloes and Mandarins are cultivated in limited areas. Andhra
Pradesh has and area of 2,53,261 hectares under citrus producing 3.53 million tones
annually and holds first rank in acidlime production.
        The state provides congenial climatic condition for production of citrus fruits. Tropical
climate with moderate rainfall i.e., 750 mm and absence of strong winds are ideally suited to
kagzi lime and Sweet orange. They can be grown successfully even upto an elevation of
900m above mean sea level.
        A well drained loamy soil of uniform texture upto depth of 2-3 m having good fertility
is considered ideal for its cultivation. The plant is highly sensitive to water-logged situation.
Heavy soils, if well drained, yield good crops but the cultivation becomes difficult p H 6.5 to
7.5 ideal.
        The water table should not rise within one metre from ground level. A high water
table for permanent or fluctuating nature and low lying locations are unsuitable.
Sweet Orange
       This variety is a high yielder and popular in South India. Individual tree bears 1000
to 2000 fruits. The fruit is almost spherical in shape and attractively coloured when fully

manure. It weighs 140 to 150 g. The base and apex are evenly rounded. The peel is thin
and ragrery little. The segments are 10 to 12. Number of seeds 14. Brix 8.5 o to 9o. Juirce
49%, acidity 0.65% and ascorbic acid 47 mg/100 g of juice.
       Batavian variety (Bathayee) closely resembles sathgudi except for the green and
yellow patches that develop due to basketing and mostly grown in coastal districts.
       It is grown in some parts of Telangana. The fruit develops prominent furrows on skin
and a circular grove at the stylar end. It is having rough and thick skin and tastes sweeter
and has more seeds compared to Sahgudi orange. It lacks flavour and inadequate blending
of acidity with sugars. It is found to grow well and produce yields equal to Sathgudi. The
fruit is spherical, smooth and weighs about 200g. The segments 14, brix 8.5 O, acidity 0.44%
and juice content 43%. The fruits are of good quality.
       The variety commonly grown in the State is Kagzi lime which is susceptible to
canker. Canker tolerant varieties, Balaji (By AICRIP, Tirupati) and Petlur selection (Pre-
released variety by Citrus Research Station, Petlur) were developed. The annual yield varies
from 3000 to 5000 fruits per tree. The fruit weighs 40 to 50g. It is spherical, smooth and
develops attractive yellow colour when fully ripe. The peel is very thin, adhering to
segments. The juice sacs are slender and spindle shaped, juice 47%, and brix 6 to 7 O,
acidity 6.8 to 7% and ascorbic acid 25 to 27 mg/100 g of juice. The average number of
seeds is 12.
       Red Fleshed: Pulp is red in colour, brix 8%, acidity 0.7% and is sweet in taste.
       Generally acidlime is propagation by seed and sweet oranges by budding. For raising
seedlings, freshly extracted seeds should be sown, 2.5cm X 7.5 cm apart on raised seed
beds prepared from well pulverized and heavily manured soil with decayed leaf mold or well
rotted cow dung. The seeds are sown in May-June or Septemebr-October and the seedlings
will be ready for transplanting after 6 to 8 months of sowing. In case of aicd lime, when
they attain pencil thickness. They are budded in case of sathgudi. Bud material should be
procured from the virus free parent trees.
       The seedbeds are taken care of to be free from damping-off by drenching the soil
with 1% Bordeaux mixture/metalaxyl 3g/lit of water.

        For Sathgudi orchards one year old, healthy and vigorously growing budlings have to
be selected. Rangapur lime root-stock is recommended for Sweet orange.
        In the case of acidlime, pammelo and lemon (gajanimma) or rangapur lime root-
stocks can be used.
        Pits of 1 meter cube are dug in square system at a spacing of 6m for acidlime and 6-
8m for sweet oranges and filled with a mixture of tank silt, red earth and farmyard manure.
Two or three kilos of bone meal or super phosphate per pit need to ber applied. Planting of
seedlings and budlings may be done after rainy season to avoid heavy rains and stagnation
of water in the soil.
        The plants selected should be free from viruses, pests and diseases. While planting
care should be taken to see that the bud-joint does not get into the soil. The plants have to
be staked immediately to avoid wind damage.
Manures and Fertilizers
                              Sathgudi & Pummelo               Acidlime & Lemons
      Age of the plant        N      P2O5    K2O              N        P2O5   K2O
                            (gms)   (gms)   (gms)           (gms)     (gms)  (gms)
      1st year               300       70     80             375       150    200
      2nd year               600      140    160             750       300    400
      3rd year               900      210    240             1125      450    600
      4th year               1200     280    320             1500      600    600
      5th year & above       1500     350    400             1500      600    800

        Nitrogen is applied in the form of FYM and oil cakes each at 25% and the remaining
50% with chemical fertilizers. While P2O5 in the form of super phosphate and K2O in the
form of sulphate of potash. Manures are applied in 2 to 3 equal doses i.e. first dose in
December-January, 2nd done in June-July, 3rd dose in September, Potash application can be
reduced if the soil is rich in this nutrient. A mixture of zinc sulphate 0.5%, manganese
sulphate 0.2%, boric acid 0.1%, urea 1% and lime 0.4% has to be sprayed two or three
times in a year to control chlorosis in leaves.
       In severe cases of chlorosis,   a composite spray of the micronutrients given below has
to be sprayed on new flush.
       Zinc sulphate                   …      5g
       Copper sulphate                 …      3g
       Magnesium sulphate              …      2g
       Ferrous sulphate                …      2.5g
       Manganese sulphate              …      2g
       Borax                           …      1g
       Lime                            …      6g
       Urea                            …      10g
       Water                           …      1 lit

Purning and Taining
       The plants should be trained to grow straight and to build a strong frame work.
Root-stock sprouts, water suckers and dead wood should be removed periodically and the
cut ends are smeared with Bordeaux paste.
       During prebearing period short growing crops like groundnut, ragi, bajra wheat and
vegetables (except solanaceous crops) can be profitably grown in the inter spaces. In the
bearing orchards green manure crops like sunnhemp, greengram, cowpea etc., are raised
and incorporated into the soil during the monsoon period.
       Young trees have to be regularly watered throughout the year during the dry season.
The practice of applying water close to the tree trunks should be avoided as it is conducive
to the development of collar rot, gummosis and other fungal diseases. Double ring system of
irrigation should be adopted for advantage. The basins may be enlarged from year to year
so as to accommodate adequate irrigation water for growing tree. Under normal conditions
citrus plants required 18 to 25 irrigation per year. Depending on the climate citrus requires
irrigation once in 7 to 15 days interval.     But during the flowering and fruit maturity stage
there must be sufficient moisture in the soil. Other wise there will be flower and fruit drop in
the plantation.
       After weeding and manuring, application of dry-leaf mulch or paddy husk to a
thickness of 8 cm in the basin keeps down the weed growth and decreases the number of
irrigations, while improving the fruit quality.
       Shallow ploughing may be taken up during monsoon season to avoid damage to
fibrous root-system. The soil in the basin is likely to become hard under continuous irrigation
and therefore it should be given a light hand-digging with spade after every three irrigations
so as to maintain porosity and tilth. Under no circumstances should weeds be allowed to
grow rampant in the orchard.
Control of Fruit drop
       Early and pre-harvest fruit drop is common in citrus fruits. To control this
physiological disorder, it is a better to give three sprays of 2,4-D at 10 ppm (1g/100lit), one
at the time of flowering, the second one month after fruitset and the third one month before
harvest which is beneficial and increases the yield considerably minimizing the fruit drop.

Harvesting and Post-harvest Technology
        Bearing starts from third year onwards in acidlime and 5th year onwards in Sathgudi.
The sweet orange in South India produces two crops a year regularly with a variable third
crop. Main harvest is from December to February and second one from June to September
and third one, if there is, in March to June. Limes are harvested throughout the year, but
mainly, May to August (80%), January-August (14%) and September-December (6%),
Pummeloes, between August-December.
        Harvesting is done after fully maturity of fruits only. During fully maturing stage
there is change of color of fruit, increasing in sweetness.    Usually a fruit will take 8 to 9
months time from flower to fruit measure stage in sweet orange. Where as in acid lime it
takes 4.5 months time. In sweet orange harvesting done once in change color from green
to yellow indicated, where as the in acidlime harvesting is done, once the fruit reaches
fully, size, green color and kept in the stroge till the fruit color changes to yellow and send
to the market.
        During the harvesting care in taken to avoid damage to the fruit skin. Damaged
fruits will have less price.
Storage and Marketing
        Storage life of Sathgudi can be enhanced by dipping the fruits for 30 seconds in 2 to
3% wax emulsion mixed with 2,4-D at 50 ppm and air drying before packing. In the case of
acid lime also the fruits can be similarly treated and packed in alkathene lined gunnies to
increase the storage life. The fruits are then packed in gunnies to increase the storage life.
The fruits are then packed in gunnies providing paddy straw before transport to distant
markets. The sweet orange fruits can be preserved for longer periods in cold storage at 0 to
2OC and acid lime at 7 to 9OC in a relative humidity of 85 to 90%.
        The citrus fruits are valued for the vitamin „C‟ and phosphorus content. Several
delicious fruit products like refreshing drinks, pickles etc., are prepared. They are the main
source for preparation of peel oil, citric acid, citrate of lime and cosmetics which have
international market value.
Plant Protection
Leaf miner (Phyllocnistis citrella)
       The caterpillar mines into the leaves of young flush, showing glistening and zig zag
mines on them. The affected leaves curl, deform and the plant appears sickly.

        Spraying of chemicals like monocrotophos 1.6 ml or fenvalerate 0.2 ml or
imidacloprid (confidor 100 SL) 0.5 ml or profenophos 2 ml per liter of water immediately
after the appearance of fresh foliage and 2nd spray after a week period is recommended. But
care should be taken that the same chemicals should not be sprayed repeatedly.
Citrus leaf weevils (Myllocerus sp)
        The weevils cut the leaves from margins
        Spraying of monocrotophos 0.05% or carbaryl 0.15% two or three times at 10 days
Citrus butterfly (Papilio demoleous)
        The caterpillar is severe in nursery and young plantations causing defoliation of the
young plants. It is dark grayish brown in colour with whitish oblique patches when young.
        Spray fenetrothion 0.05% or diazonan 0.05% or phosphamidon 0.04% or
monocrotophos 0.04% @ 10-20 litres/tree.
Bark and Stem borer (Indarabela tetraonis)
        The caterpillar bores into stems and branches and forms long galleries of silk overlaid
with small fragments of wood and frass. The larva comes out from this gallery and feeds on
the barks.
        The wooden particles, silk and bored holes plugged with excreta should be cleaned
and poured with Endosulfan or Malathion or Kerosene or Petrol using an ink pillar. Then the
hole is sealed with clay so that the larva dies within the tunnel.
Green mites (Olygonychus citri, Tetramychus spp. )
        Infested leaves from upper side become stippled and later on turn grey on yellow.
Infested fruits remain often small in size and drop.
      Spraying of water soluble Sulfer 3g or propargite 2ml or Dicofol 3.5 ml/lt of water 2
times in 10 days interval is recommended for mite control.
Mangu mites or Pinkish Brown Blotch (Phyllcoptes oleiverus)
        The mite causes pinkish brown blotch on fruits, there by reducing the market value
of the fruit.

        Spraying with Wettable sulphur 3g or Propargite 2ml/ Dicofol 3.5ml or Propargite 2ml
per liter of water in September, October and November months, 3 times at monthly intervals
is recommended. The spraying should coincide with the marble stage of the fruit.
Fruits sucking moths (Othreis maternal, O.fullonica, Achoea janata, O.ancilla )
        These moths pierce the ripening fruits and suck juice. The affected fruits rot and
drop. The moths will be acitive during dusk. The larvae develop on the weeds.
   1.      Rotten and fallen fruits attract the adult moths. So affected dropped fruits should
           be collected and destroyed.
   2.      Moths get attracted to light. So during fruit ripening period light traps along with
           basins containing fruit juice + 1% sugar + 1ml Malathion or kerosene bait
           solutions are to be arranged here and there in the field. So that the moths get
           attracted to light, fell down and die in the baited basins kept under the light
   3.      Bait prepared with 15g lead arsinate + 1kg jaggery or molassus + 5 liters of
           water with a little vinegar and kept in the field here and there to attract the
   4.      Just before the ripening period of the fruits itself bagging of fruits either with 300
           gauge polythene bags or palm leaf bags helps to reduce the pest attack and in
           the same way the bagged fruits with alternate green and yellow marking look
           attractive to the consumers.
   5.      The adult lives for 8 days, and it feeds only 6 days. In remaining 2 days it lays
           egg on Menispermaceae family weeds on the field bunds. The larvae feed on the
           weeds and pupal period is also completed on weeds itself. Only adults damage
           the sweet orange fruits. So, by destructing Menispermaceous weeds on field
           bunds and near by places we can reduce the pest attack.
Aphids (Toxoptera citricidus and T.auranti)
        The pest attacks the tender shoots, as a result of which the shoots get curled and
growth checked. They also transmit Tristetza virus which causes decline of citrus.
        Spray with Imidacloprid (confidor 200 SL) 0.5ml or Dimethoate 2ml per liter of water
is recommended.

Citrus Psylla (Diaphornia citri)
       Adults and nymphs suck sap from flush as a result of which the leaf curls and flowers
drop. Greening pathogen is transmitted by this insect.
       Spray with Imidacloprid (confidor 200 SL) 0.5ml or Dimethoate 2ml per liter of water
is recommended.
Mealybugs (Planococcus citri, P.pacificus, Icerya purchasi)
       The mealy bugs infest tender shoots and fruits. Severe infestation causes premature
fruit drops and affects plant growth. Presence of sooty mould and white mealy bugs no
fruits and shoots are the symptoms.
       Spraying of Methyl parathion 2ml or Monocrotophos 1.6ml per liter of water 2 times
at 15 days interval is recommended.
Snow scales (Pinnaspis aspidistrae)
       Small white insets in large Number colonize on all plant parts like fruits, leaves,
branches, trunk etc. and suck sap from them, thus devitalizing the tree.
       It is recommended that the tree trunk is rubbed with pieces of gunny bags, then
sprayed with Metasystox or Dimethoate 2ml per liter of water completely covering the
damaged parts.
Termites (Odontotermes (Termes) obesus, Microtermes obesi)
       Feed on roots and stem bases near the ground level. The severely infested trees
often dry
       Mud galleries on tree trunk should be scraped off and dusted with lindane powder or
Chloriphyriphos solution @ 3-5 ml/liter of water should be well mixed with soil around the
tree basins using hand hoes.
Red tree ants (Oecophylla smargdina)
       Although these ants do not feed on any plants, they spread all over the trees and
nests of leaves, thereby causing great nuisance. Indirectly harmful by protecting aphids and
coccids and hinders fruit harvest.
       The ant nests on the tree should be disturbed and dusted with lindane powder to
control the tree ants.

Nematodes (Tylenchulus semipenetrans , Meloidogyne spp., )
        Slow decline, die back, rootlets shortened, swollen and irregular. Soil adhere to
gelatinous matrix of the egg mass, galls on roots, reduction in yield.
   1. Seedlings should be selected from nematode tree nurseries.
   2. During replanting of the nurseries neem cake or castor cake or pongamia cake
        should be applied @ 60-80 kgs per one cent area.
   3. Do not grow solanaceous crops or bhendi, banana crops in citrus orchards.
   4. Apply 130-160g Furadon or 40-80g Thimmet granules per plant basin. After 3
        months, based on plant age applies 15-25 kg neem or castor or pongamia cakes per
        plant for every 6 months.
Fungal diseases
Leaf fall and Fruit rot (Akuralu or Kaya Kullu Tegulu) ( Phytophthora palmivora )
       Water soaked leisions develop on leaves and fruits, resulting in their drop.
        Two sprays of 0.1% Bordeaux mixture, once before the beginning of monsoon and
the other at the end of the monsoon are suggested.
Gummosis or Root-rot (Banka or Veru kullu Tegulu) (Phytophthora citrophthora,
Phytophthora parasitica, Phytophthora palmivora )
      The bark at the collar region peels off allowing gum exudation.
   1.      Selection of proper site with adequate drainage.
   2.      Graft union of the plant should be well above the soil (high budding: 30-46 cm or
   3.      Double ring method, with an inner ring at about 45cm and an outer ring around
           the tree, should be followed. It prevents the irrigation water from coming in
           direct contact with the trunk.
   4.      Scrape the gum portions of affected bark and apply Bordeaux paste or copper
           oxychloride paste on the affected portions. Apply of Bordeaux paste to the tree
           trunks upto 2 feet height is recommended once a year.
   5.      Spray Carbendazim (1%) on twigs and branches twice at 15 days interval to
           prevent Diplodia gummosis.
Diplodia Gummosis (Diplodia Banka Tegulu) (Diplodia natalensis)
        The affected branches show oozing of gummy substance out of bark splitting.
        Similar treatment as in rootrot is suggested.

Dry Root rot (Fusarium solani)
      Infected roots become blackened and the bark portion of the roots easily peeled off
from the root. Infected plant shows heavy flowering and fruiting and the plant dies before
the fruits reach maturity stage.
   Root rot in acidlime and sweet orange can be controlled effectively when the plants are
detected at early infection stage and by using integrated management practices.
   1.      For the diseased trees, apply 20 lit of 1% Bordeaux mixture or 0.2% Carbendizim
           (2g/lit of water) at the tree basin immediately after the next day of irrigation.
   2.      Initial symptoms of root rot appear generally in summer season. Apply leaf
           mulches or agricultural wastes such as paddy husk, groundnut husk, dried
           leaves, black gram or green gram husk, saw dust to the infected trees at 2-3 inch
   3.      Immediately after the start of rains (August- September), apply green leaf
           manures      such   as   neem,    Crotalaria   juncea,   Cassia   auriculata,   Cissus
           quadrangularis, Vigna species below the soil in the tree basin. On top of the
           manure, apply single super phosphate (1kg/tree), mix thoroughly deep in to the
           soil. Green leaf manures helps in increasing the biocontrol agent populations
           such as Trichoderma in the soil and there by disease control.
   4.      Apply 10 kg mixture of Trichoderma culture for each tree (mix 1 kg Trichoderma
           culture + 90 kg FYM + 10 kg neem cake, kept it aside for 4-5 days) at the trunk
           basins and mix it well. Repeat the same after 6 months. Application of 5 kg of
           this mixture every year to the healthy trees prevents root rot.
Ganoderma root rot (Ganoderma or Puttagodugu or Puttakokku Tegulu)
(Ganoderma lucidum)
     The entire plant wilts and dies in extreme cases. The roots become weak and pliable.
Numerous brackets like objects are produced at the base of the stem and also in the trunk
to some height.
        These mushrooms also infect Coconut, Mango, Jackfruit trees. So, collect and
destroy the mushrooms on these crops. Continuously watch for the mushrooms, particularly
in rainy season and destroy them. Cut the diseased older trunk portions and apply Bordeaux
paste. Apply 1 lit / Sq.m area of carbendazim (1gm / liter of water) or Aureofungin sal (1.5g
/ 5 liters of water) or Tridemorph (2.5g / liter of water).

Twig blight (Colletotrichum gloeosporioides, Botryodiplodia theobromae)
        Light brown to dark brown discolouration of leaves. They get defoliated. The naked
twigs have profused black coloured fructification on grayish twigs.
        Pruning and burning of the affected twigs before the rainy season followed by
spraying of 0.1% Carbendazim (10gm in 10 lit of water) or Copper oxychloride 3g / lit of
water twice at monthly interval reduces the disease.
Powdery mildew (Budida Tegulu) (Acrisporium tingitanium)
        White powdery growth is formed on the surface of the leaves.
        Spraying of Karathane 0.1% or Wettable Sulphur 0.2% twice at 15 days interval
reduces the disease incidence.
Felt disease (Septobasidium spp)
       Soft felt like leathery fungal growth encircles petiole, leaf base, twigs, branches and
fruit stacks. The causal fungus grows over the surface and it does not penetrate the bark
        Pruning and destruction of diseased twigs before the onset of monsoon. Spraying of
Monocrotophos (1.6ml) with Mancozeb (2g) or Captan (2g / lt of water) controls the scale
insects and the disease.
Pink disease (Pellicularia salmonicolour)
        Whitish mycelial growth appears on the infected twigs. Later white or pink pustules
appear on the twigs. When the bark is severely infected, it gets shredded, and the wood is
exposed. Longitudinal cracking and gumming of the branches may also take place.
        Cut-off the diseased twigs, which are drying after rainy season and destroy them.
Apply Bordeaux paste on the cut surface of the twigs.
Pre harvest stem end rot (Gloeosporium limetticola)
        Brown colored round spot appears at the stem end of the fruit and the rotting
spreads gradually throughout the fruit. As the disease advances, the color charges from
brown to chestnut brown. The fungus spreads up to 2-3 cm in the stem and rots that
portion. Some of the affected fruits drop off. Some rot and dry on the tree attached to the
fruit stalk.

          The infected and dried fruits should be pruned along with the fruit stalks and
destroyed. Spray 10g of Carbendazim in 10 lit of water and apply three times at monthly
intervals in June, July and August months. Spray should cover thoroughly the leaves and
Greasy spot (Mycospherella citri)
          Symptoms include oily, chestnut brown spots or blister like lesions on underside of
mature leaves. Smaller spots coalesce and become larger. The disease is severe in rainy and
winter season. Heavily infected leaves drop off before reaching maturity and the twigs are
          Spray Copper oxychloride 30g / 10 lt of water or 25g Zeneb (0.25% in 10 lt of water)
twice in June, July at 20 days interval. Spray should cover the lower surface of the leaves
Longitudinal bark and wood splitting disease (Botryodiplodia theobromae)
          The symptoms first appear as two longitudinal splits on trunk and branches. The
splits gradually deepen in to inner woody portions of the stem and appear as a canal. The
tissue within the splits is dead and the branches above the split region dries up from top to
          Spray Carbendazim (10g/10 lt of water) twice at 15 days interval when the initial
symptoms are observed. Spray should cover the trunk and branches thoroughly. Apply
Bordeaux mixture (1lt / 1 sq.m area) the next day after irrigation. Cut and destroy dried up
twigs and branches before spray.
Bacterial diseases
          Canker and Greening are the two main bacterial diseases of citrus.
Canker (Gajji or Bobbara Tegulu) (Xanthomonas auxonopodis Pv. Citrii)
          Corky out growths develop on the leaves, fruits and twigs. The disease is serious in
acid lime.
    1. Canker tolerant acidlime variety „Balaji‟ was developed by Citrus Research Station,
          Tirupati. The variety is canker, tolerant and high yielding. Farmers can obtain the
          variety from Citrus Research Station, Tirupati.
    2. Diseased twigs and branches should be pruned and destroyed before the rainy

    3. Spray Streptocycline (1g) + Copper oxychloride (30g) in 10lt of water, twice on
        young flushes in rainy season at 20 days interval.
    4. Control of leaf miner in acidlime orchards can reduce canker.
    5. To prevent canker on fruits, spray the above chemicals on small fruits twice at
        monthly interval. Spray should cover entire fruits.
    6. If canker is present on trunk and main branches, scrap that portion and apply
        Bordeaux paste on the effected area.
Greening disease (Leptobacterium asiaticum)
        Leaf patterns include chlorosis resembling zinc deficiency (some times dotted with
green islands), and yellowing of veins. Reduction in fruit size and die-back of twigs are also
noticed. The pathogen is spread by use of infected bud wood and by the citrus psylla
(Diaphornia citri)
    1. Selection of certified disease free budlings.
    1. Application of Dimethoate to control psylla (as in case of psylla control).
Viral diseases
Tristeza disease (Quick decline or die-back)
        Decay of roots, die-back of twigs, diminished fruit-set, vein-clearing in leaves and
stem pittings are symptoms of tristeza virus. The disease is transmitted by budding and by
certain aphids including (Toxoptera citricida, Aphis gossypi and A.craccivora)
        The disease is distributed throughout the world. It affects mostly acidlime orchards.
Symptoms are very clear in lime trees. Tristeza affected trees look chloratic and sickly in the
early stages. Gradually the leaves drop and the defoliated twigs show die-back. The
declining trees die gradually but some times apparently healthy trees die suddenly. Diseased
trees usually blossom heavily. They bear small sized fruits. As the fruits develop, the tree
wilts partly or completely. Vein clearing in young leaves of acidlime, which is seen
intermittently when viewed against light is a characteristic symptoms.
        In sweet orange the specific symptoms of tristiza is stem pitting on the root stocks
such as Jambhiri. It is fine pitting of inner face of bark in the portion of trunk below the bud
union. The disease primarily spreads through the use of diseased bud wood by the
nurserymen. Under field conditions, the disease is transmitted by the aphid, Taxoptera
        Tolerant rootstocks such as sweet orange, trifoliate orange, Cleopatra mandarin and
Rangpurlime have to be used. Budded plants free from the virus are to be planted.

Mosaic disease
       Symptoms appear on leaves and fruits. Affected leaves show irregular yellow or light
green patches alternating with normal green areas. Reduction in leaf size and leaf drop is
observed. Fruits show depressed yellow patches and elevated green areas. Reduction in fruit
size is common. The disease is transmitted through infected bud wood.
Bud union crease disease
       In the diseased plants stem looks swollen near the bud joint. When the bark near the
bud joint is cut open, honey colored mark is visible on the wood. When the disease is severe
and mark is visible around the stem, transport of food material is not possible and the roots
may die. The disease is observed on sweet orange plants grafted on Jambhiri root stocks
but not on Rangpurlime root stocks (in Ananthapur district).
Yellow corky vein disease
       The disease occurs in sweet orange and acid lime trees. The disease initially
produces yellowing of mid-rib and lateral veins. In advanced stages mid-rib becomes corky
on the lower surface and the leaves finally curl. The disease is transmitted through infected
bud wood.
Control measures for viral diseases
       There are no effective practical treatments to cure citrus trees once they are infected
with viral diseases such as tristeza, mosaic, bud union crease, yellow corky vein etc.,
Propagation of the plants should not be done from diseased trees. Some times identification
of viral diseases in the plants is difficult. So, farmers should buy the bud sticks from Citrus
Research Station, Tirupati. At the center, the bud sticks are supplied after indexing the
plants for viral diseases. When the farmers use such indexed bud sticks and graft them on
Rangpurlime root stocks, they can minimize the viral diseases to maximum extent.
Lime Bark Eruptions (Nimma Beradu Pokkulu)
       Yellowish brown corky bark eruptions develop around the branches. This disease has
become serious in acid lime plantations.
       In the early stages, light scraping of such portions and application of Bordeaux paste
can relieve the incidence.
                                       (Vitis vinifera L.)

       Grape is one of the most remunerative crops of the present times. The total area
under Grape in Andhra Pradesh is about 2.76 thousand hectares with estimated annual
production of 58 thousand tons. It is mainly grown in the districts of Ranga Reddy,

Hyderabad, Ananthapur and Chittoor. In Anantapur two crops in a year could be harvested
due to favourable climatic conditions.
Season and Climate
        The main cropping season in Andhra Pradesh is February to April. In Rayalaseema
region, Ananthapur district, two crops of Anab-e-Shahi is taken per year once in November
to December and another in May. Warm and dry weather is ideal for grapes. It is grown
successfully in our country at a temperature range from 15 O to 40oC and a rainfall to 50 to
60 cm. the total amount of rainfall is not the criteria but the distribution of rainfall in
important for successful grape growing. There should be clear weather about 3-4 months
during cropping period. Cloudy weather, high humidity, low temperature and rains during
flowering and berry development are detriemental as they are congenial to the spread of
        The soils should be well drained. It grows well at pH range from 6.5 to 7.5. The red
soils of Telangana called „Chalka‟ soils and black loamy soils with more of coarse fraction are
ideal for grape. Sticky clay soils should be avoided.
        Important commercial varieties
Seeded Varieties
     Vigorous, seeded, very heavy yielder, average weight of bunch 800g, bunch very
large, slightly shouldered or conical, well filled, berries large to very large, oval, pale,
excellent keeping quality, low total soluble solids (T.S.S) 16-17%, total titratable acidity 0.45
to 0.56%.
        Medium vigour, seeded, medium yielder, bunch medium to large, well filled berries
black, large and elongated, pulp firm high quality, T.S.S. 22%, good shipper, late maturity,
uneven ripening.
Bangalore Blue
        Grown in Penugonda area in Ananthapur district, medium vigour, seeded, medium
yield, bunches small and compact, berries small to medium, spherical, thickf skin which
separates, dark blackish purple, pulp pale green, T.S.S. 18-19%, titratable acidity 0.8 to
0.9%, good quality.

Gulabe (Karachi, Panneer drakhsa, Muscat)
         Mostly grown in Tamil Nadu, medium vigour, seeded, medium yielder, bunches small
and loose, berries small, coloured, spherical with thich skin, good keeping quality, T.S.S.
upto 28% early maturity, uneven ripening.
         Vigorous seeded, moderately yielder, bunch medium to large elongated and
cylindrical, well filled, berries large and elongated, pale green coloured, good keeping
quality, late maturity.
         Medium vigour, seeded, medium yielder, bunches small to medium and loose, colour
purple to black, berries medium in size and spherical. T.S.S. 21.0%, acidity 0.79 to 0.81%.
Resistant to anthracnose and downy mildew diseases.
Pusa Navrang
Seedless Varieties
Thompson seedless (Kishmish, Bedana)
         Vigorous, seedless, bunch small to medium, conical to cylindrical, compact, berries
small, ellipsoidal, pale, good quality T.S.S. upto 22%.
Kishmish charni
         Medium vigour, seedless and black colour well filled berries, medium yielder,
bunches moderate to medium, T.S.S. 22 to 24 per cent, total titratable acidity 0.4 to 0.6 per
Kishmish Rozoviz
         Medium vigour, seedless and coloured, medium yielder, bunch small to medium,
conical with shoulders, compact, berries small, spherical, purplish black in colour, T.S.S.
22%, acidity 0.48 to 0.5%
         Mutant of Thompson seedless. It has got all characteristics of Thompson seedless
and yields more.
Flame Seedless
         It is propagated by stem cuttings. Matured canes from productive vines should be
selected preferably from the October prunings. Ideal canes are those which are medium in
vigour i.e. 0.7 to 0.8 cm in diameter with internodal length of 8 to 10 cm cuttings of about

25 to 30 cm size with 4 to 5 nodes are selected and they are planted in well prepared flat
beds, leaving two nodes above the soil surface. To control insect pests like termites in
nursery beds at periodical intervals, treat the soil with heptachlor. The rooted cuttings will
be ready for planting in about three months.
Lay out
       The plot selected for planting grape should be well levelled. The land should be
ploughed well and raise a green manure viz., sun hemp during monsoon and incorporate
insitu in August and September. A bower is erected with stone pillars and galvanised iron
wire before planting.
       Spacing to be adopted varying with variety, soil and method of training. The most
commonly adopted spacing for Anab-e-Shahi around Hyderabad is 4.5 x 4.5 m (500
plants/ha) and for Thompson seedless 3.0 x 3.0 m (1.112 plants/ha).
       The planting of rooted cuttings should be taken up only after erection of “pendal” or
bower. One month in advance of planting, pits of 90cm x 90cm x 90cm are dug and allowed
to weather. While digging the top half-depth of soil is separately heaped and some trash
may be burnt before filling. The top soil is mixed with 50 kg of farmyard manure, 5 kg of
castor cake and 3 kg of super phosphate ande pit is filled with this mixture. After filling,
water is given to pits. The soil in the pit will sink and it should be filled with some more
mixture to make it to ground level. In the centre of pits 25 g of 2% folidor is dusted at the
time of planting. The rooted cuttings are planted in pits without causing damage to roots.
The best time for planting is October.
       Training is a very important operation in grapes. It helps to maintain the form and
spread of the vine which facilitates to carry on operations like pruning, intercultivation and
spraying and harvesting. The method of training system to be adopted depends upon the
variety and its vigour, etc., many systems of training of grapes are adopted but the
commons systems followed in India are bower, kniffin, telephone, trellis and head systems.
       Under Hyderabad climatic condition, the performance of the commercial varieties,
Anab-e-Shahi and Thompson Seedless is excellent when trained on bower.
       Bower system is commonly followed system of training in tropical India fro most of
the commercial varieties of grapes, since vines are vigorous and due to continuous growth
habit, it facilitates the distribution of growing apex at many points and spread of branches
horizontally. It is most expensie system of training. Bower of 2.1 m height is erected using

granite stone pillars as supports and galvanished iron wire of 8 to 10 gauge thickness for
        One vigorous growing shoot is selected nipping off other shoots and this single shoot
is allowed to grow up straight with the support of bamboo or plastic wire stake. Cut off all
the auxillary shoots and the main growing shoot is pinched off at 15 cm below the pendal
level. Two shoots arising from below the cut ar allowed to grow in opposite direction on the
wires overhead. These two shoots develop into main „Arms‟. On the main arm, side shoots
are allowed to grow at regular intervals of 40 to 45 cm apart. These side shoots are called
secondaries and tertiaries or canes, from which fruiting spurs develop. The arms and
secondaries from which fruiting spurs develop. The arms and secondaries from the
permanent frame work of the vine. The main arms should be trained towards East and
Western direction, so as to reduce damage due to sunburn during summer months
especially aftger February-march purning. The entire space allocated for each vine is
covered in instalment by intermitant pinching of the primary arms and secondaries not
allowing them to grow more than 60 cm at a time. As they grow the shoots are tied with
jute twine and all tendrils are removed..
        Pruning is a vital operation in grape. Removal of any vegetative part is called
pruning. It is done to concentrate the activity of vine in the parts left after pruning and to
induce sprouting of the fruitful buds located in the middle portion of canes.
        In Andhra Pradesh grape vines are pruned twice in a year once in summer after the
harvest of crop i.e. February-April and again in winter i.e. September to October.
Summer pruning
        In summer pruning canes are pruned to 1 to 2 buds for vegetative growth. The fruit
bud differentiation takes place on these shoots 40-60 days after pruning. This pruning is
also called foundation pruning or back pruning or growth pruning. All the old leaves and
dried shoots are removed.
Winter pruning
        Vines which are about one year old can be subjected to this pruning. This is done in
the month of September and October in Andhra Pradesh for fruiting purpose. All the mature
current season canes are pruned and immature canes and leaves should be completely
removed. The level of pruning differs with the variety for
        Anab-e-shahi          -      5 to 7 buds
        Seedless varieties    -      5 to 12 buds

Depending upon the thickness of canes pruning is done. If the cane is thicker (0.7 to 0.8 cm
diameter) more number of buds and in thinner canes less number of buds are retained.
After pruning the weather should be clear. Otherwise, the new leaves and flower panicles
will be damaged by fungal diseases i.e. Downy mildew and Anthracnose which spread
rapidly under rainy or cloudy weather conditions.
Manures and Fertilizer
        Grape is a heavy feeder. The following manorial schedule is adopted in the different
years of growth. The dose of fertilisers in kg per plant having 13.5 sp. Meter trailing space is
given below.
        In both the seasons prior to pruning the top 15 to 20 cm soil in the basin is dug out
and heaped around the trunk. Organic manures are spread uniformly in the basins and then
fertilizers are applied and covered with soil. The efficacy of fertilizer is more if it is applied at
root feeding zone i.e. at about 15 cm depth and 60 cm away from the trunk. Immediately
after application, copious supply of water is to be given to the basins.
                   NPK requirement kg/acre of the bearing orchards.
                                             Nitrogen      Phosphorous         Potash
            Organic manures (40%)                80             80               160
            Inorganic fertilizers (60%)         120            120               240
            Total                               200            200               400

                  Manurial requirement at different stages of growth
                   Summer pruning                                 Winter pruning
            Before    1-30      60-120                    Before    1-30       60-120
            pruning   days      days                      pruning   days       days
                      after     after                               after      after
                      pruning   pruning                             pruning    pruning
Nitrogen        -         40         -                        -         30         30
Phosphorous    60          -         -                       40          -          -
Potash          -          -        40                        -         40         20

        Collect about 200 random Petiole samples (fifth leave from the base) 45 days after
summer pruning (flower bud initiation) and analyze for the nutrients. Spray the following
nutrients for the correction of the deficiency.
       Zinc             – spray Zinc sulphate @ 2g/lit.
       Magnesium        – spray Magnesium sulphate @ 2g/lit or Magnesium oxide @ 1g/lit
       Boron            – spray Borax @ 1 – 2 g/lit
        In shallow red soils around Hyderabad, for Anab-e-Shahi grape about 30-40
irrigations are given in a year. Fully grownup vine requires about 1000 litres of water in

winter and 2000 litres in summer season. Immediately after pruning and application of
fertilizer, vines are given 2 to 3 successive irrigations at 3-4 days interval. In winter,
irrigation is to be given when the top 5 cm soil (8 to 10 days) is dry while in summer 3.5 cm
top goes dry (4-5 days). During berry development stage irrigations are given at weekly
intervals and water is withheld 10 days before harvesting to improve quality.
       In the case of drip irrigation, water requirement per acre is as follows.
After summer pruning                         Water requirement (kilo litres/acre)
    0 - 40 days                                             38.4 - 48.0
  41 – 100 days                                             19.2 - 28.8
 101 days to till winter pruning                            12.0 - 16.0
After winter pruning
   0 - 45 days                                              16.0   - 19.2
  46 - 75 days                                               7.2   - 12.0
  76 - 110 days                                             20.0   - 36.0
 111 days to till harvesting                                28.8   - 35.2
       The vineyard should be kept clean, free from weed growth. Usually, a shallow
digging of 8 to 10 cm depth is done once in 15 to 20 days interval with spade by manual
labour and weeds hand picked. A single bullock drawn implement, a three tyned harrow can
be used for intercultivation for loosening the soil and to check weed growth.
Pinching of Shoots
       During summer, on back pruned spurs more than 3 to 4 new shoots may be seen
growing. Pinchoff weed shoots and allow to grow one or two vigorous shoots. When such
shoots grow to a metre length the tips are to be pinched off and tendrils are removed.
Pinching encourages the growth of sub-canes in Anab-e-Shahi which are more fruitful.
Checking the growth by tipping helps in many ways i.e. it provides more light, early cane
maturity and leaves become less susceptible to anthracnose disease after the onset of
       Spraying of 50 ppm Urocil 45 days after summer pruning increases the bud fetility.
Improving the size and quality of Bunches
       The fruit size and quality of Thompson seedless can be improved by use of growth
regulators like gibberlic acid. The bunches are dipped in G.A. 60 ppm solution at capfall or
decapping stage. The yield of this variety increased by about 30% with gibberlic acid. In
addition to G.A. treatment, cane girdling is also practiced for improving the size and quality
of bunches. Removal of a narrow strip of 0.5 to 1.0 cm around the cane is called cane
girdling. It is done in the individual fruiting canes in the second and third internode
immediately after fruit set.

Harvesting and packing
        Grapes are harvested when they are fully ripe on the vine itself as there will not be
any further ripening of berries after harvest. Time taken from fruit set to ripening depends
on the variety, crop load on the vine and atmospheric temperature.
        Usually maturity of bunches is judged on the basis of the following conditions. The
bunch is ready for harvest when the lower most berry of the bunch is soft and sweet. On
ripening white grapes turn to amber colour while the coloured ones attain characteristic
uniform colour with ashy bloom. Seed of the ripened berries becomes dark brown. Further
total soluble solids also give the indicative of ripening. Anab-e-Shahi is harvested when it
records a brix of 18.0O to 20.0O and Thompson seedless 21.0O to 22.0O.
        The bunches are harvested with secature or scissors. Then the immature and rotten
berries are removed with the help of scissors. The bunches are packed in wooden or card
board boxes or bamboo staked baskets. The paper strips are used to avoid damage to the
        In India, almost all our produce is consumed as table fruit while in European
countries 99% of their produce is used for preparation of wines and other products like
raisins, fresh juice and jams etc. It is fairly a good source of minerals like Calcium,
Phosphorus and Iron. The juice is a mild laxative and acts as a stimulant to kidneys.
Plant Protection
Cock Chaffer beetles (Penku Purugu) (Adoretus spp.)
       Beetles appear soon after first monsoon shower, feed on leaf lamina leaving only
midrib, severe cases defoliate the vine.
        Use light trap, spray Endosulfan or Quinalphos @ 2ml/lit.
Flea beetles (Chita Purugu) (Scelodonta strigi collio)
        Heavy damage to sprouting buds after winter pruning. Beetles feed on tender shoots
and leaves.
        Spraying Bordeaux mixture serves as a repellent. Remove the loose bark during rainy
season. In summer ploughing in the inter spaces should be taken up. Spray Carboryl 3g/lit
or Monocrotophos 1.6ml or Immidachlopride @ 0.3 ml/lit.
Thrips (Rhipiphoro thrips cruentaus)
        Suck the sap and make the leaf fade and dry. Infested berries develop scab and
quality of fruit affected.

       Spray Methyl demeton or Dimethoate or Endosulfan @ 2ml/lit or Thiomixicon @ 0.25
g or Fipronil @ 1ml or Spinosad 0.3ml/lit.
Mealy bugs (Pindi Purugu) (Pseudococcus spp)
       Both nymphs and adults suck cell sap from plant parts and berries, affected parts
coated with sticky honey over which sooty mould develops, affects shoot malformed and
quality of bunch much affected.
       Rub the trunk with gunny cloth, remove the bark and Swab it with Carboryl 6g + 10g
of COC + 1ml Neem oil + 1ml Sandovit/lit. Release predatory beetles such as Cryptolaemus
sp. or Pallus sp. @ 8 – 10/plant. Remove the affected branches and bunches in spray
Dichlorovos @ 2ml or Methomyl @ 1g/lit.
Tobacco caterpillar (Spodoptera litura)
       It feeds on tender leaves, in severe cases only the mid rib of the leaves remains and
completely defoliate the platns.
       Pick and destroy the egg masses on the leaves and prune the tips and collect the
caterpillars manually. Keep at least 4 pheromone traps per acre. 1 - 1 ½ feet above the
pandals. Spray NPV 250 LE/acre or Chlorophiriphos 2.5ml or Methomyl 1g/lit.
Grapevine Borer (Kandum toluchu purugu) (Sthenias gristor)
       The adult beetles lay eggs on the bark of trunk or arms by making a slit on bark,
brubs make tunnel in the stems and weaken the vines.
       Mechanical removal of grubs in June-August. During March-April insert ½ tablet of
Aluminium phosphide or petrol or Dichlorovos into holes and plug to kill the grubs.
Anthracnose (Pakshi Kannu Tegulu) (Gleosporium ampelophagum)
       On leaves small circular spots with grayish black centre and yellow margins are
formed. On tendrils and shoots circular light brown and slightly sunken spots are produced.
       Cut off all infested plant parts in early stages. Spray Bordeaux mixture 1% or
Carbandazim 1g or Thiophinate methyl 1g or Mancozeb 2.5 g or Copper Hydroxide 2g or
Copper oxychloride 2.5g or Cropineb 3g or Iprodin 0.6ml or Dyfenconazole 0.6ml/lit

Downy mildew (Majjiga Tegulu) (Plasmopara viticola)
        All the tender parts of vine are infested. First small light pale yellow spots appear on
upper surface and whitish downy growth on the lower side. In severe case the entire leaf is
affected, turn brown and later drop off, infested panicles turn brown and drop off, fruit
becomes grayish, hard and often mummified.
        Collect infested leaves, shoots, berries etc., and destroy. Spray Bordeaux mixture 1%
or Mitalaxyl MZ 2g or Cymaxanyl MZ + Mancozeb 3g or Propineb 3g or Phosetyl Aluminum
2g or Phenomedan + Mancozeb 1g or Iprohelicarb + Propinate 2.5g. Don‟t use Nitrogenous
fertilizers or gibbarellic acids during the severity of disease.
Powdery mildew (Budida Tegulu) (Uncinula necator)
        White powdery patches are found on the upper surface of tender leaves, in severe
cases entire leaf is covered with powder like substance and leaves become discoloured,
stems become grey and turn dark brown, on fruit whitish growth appears which results in
discolouration, cracking of fruit or shedding of fruits.
        Remove affected plant parts and destroy, dust Sulphur 10-15 kg/ha. Spray Wettable
sulphur 2g or Microcel 2g or Hexaconazole 1ml or Penconazole 0.5ml or Tridemophos 1g or
Pyrochlostrobin 0.5g or Ajaxiprobin 0.5ml or Tevuconazole 0.7ml/lit.
Export standards for grapes
       Thompson seedless is highly acceptable variety.
       Soil pH should be between 6 – 8
       Chlorides should not exceed 3 m.e. in the irrigation water
       Bunches should be free from pests and diseases.
       Uniform bunches with light green colour
       Bunch weight should be 300 - 500 grams
       Berry should have 18 mm diameter
       It should have atleast 18O brix
       Bunches should be free from Pesticide residues.

                                       (Psidium guajava L.)
        Guava is a popular fruit tree of tropical and sub tropical climate. Guava is considered
as one of the exquisite and nutritionally valuable and remunerative crop. In Andhra Pradesh
Guava is cultivated in an area of 9626 hectares with a production of 1.44 lakh metric tons.

Guava is grown in Rangareddy (2125 ha), Krishna (1078 ha), Anathapur (800 ha), Prakasam
(680 h), Medak (585 ha), West Godavari (557 ha), Mahboobnagar (550 a).
           For maximum production in the tropics, guava crop requires 500 to 1000mm of rain,
evenly distributed throughout the year. Guava is grown successfully in tropical & subtropical
regions up to 1,500m above mean sea-level. Best quality fruits are obtained where low night
temperatures (10o c) prevail during winter season. Temperatures between 23-28oc is ideal
for flowering and fruit set.
           Almost all soils are suitable for guava cultivation. However deep loams with good
drainage are ideal for guava.
Allahabad Safeda
           It is the most popular variety in india and occupies the largest area under cultivation.
Tree vigorous, medium tall, with dense foliage.          Fruits round and medium in size with
smooth skin. Flesh is white, soft, firm with few soft seeded.
Lucknow – 49 (Sardar)
           The tree Semi dwarf, vigorous, with heavy branching habit. Fruits are roundish ovate
and meaty pulp with soft seeds. The fruit tastes sweet (9-10               Brix) with good keeping
Safed Jam (Hybrid)
            It is a hybrid between Allahabad Safeda and Kohir evolved at Fruit Research
Station, Sangareedy. The tree is medium in size. The fruits are round with thin skin. Seeds
semi hard and located at the core. The keeping quality of the fruit is good.
Kohir safeda (Hybrid)
           It is a cross between Kohir selection and Allahabad Safeda evolved at Fruit Research
Station, Sangareedy. The tree is large in size. The fruits are large, round and bears
profusely. The fruit has hard seed.
Arka Amulya (Hybrid)
   It is a cross between Allahabad safeda and Triploid released from IIHR, Bangalore .Fruits
are medium in size with white flesh, high TSS (12.5 O Brix) and good keeping quality.
Arka Mridula
           This is a seedling selection of variety Allahabad Safeda. The fruit size is medium with
excellent quality. The pulp is white with few soft seeds. The plants are of medium vigour but
high yielding.

Allahabad Surkha
        Allahabad Surkaha is an outstanding variety of large, iniform pink fruits with deep
pink flesh. The plants produce up to 120 kg fruits in its sixth year of fruiting. The fruit is
sweet, strongly flavoured with few seeds and is slightly depressed at both ends. The plants
are vigorous, dome shaped and compact.
        The variety is released from CISH, Lucknow. It is high yielder when compared to
Allahabad Safeda. The fruits are red fleshed with good sugar acid blend. This is suitable for
both table and processing purposes. The pink colour in beverage remains stable for more
than a year in storage.
        The variety is released from CISH, Lucknow.       The fruits are deep red in colour
having attractive shape, few soft seeds. Fruit develops attractive peel colour during winter
when temperatures are less than 10 Oc.
        Guava is commercially propagated by ground layers (embedded pot layering) and
approach grafting. Disease free Guava grafts/layerings of desired variety should be selected
for planting.
        Planting is done in June- July or October- November months depending on rainfall
and its distribution and the type of soil. The land is thoroughly ploughed. Pits of 60 x 60 x
60cm are dug at a spacing of 5-6m distance in summer season. The pits should be filled
with 20-25 kg FYM, 500g SSP, 1 kg Neemcake, and 50g Lindane powder to control termites
with top soil. Layers/grafts obtained from good pedigree plants should be planted to obtain
good crops.
Manures and Fertilizers
 Age of the tree          Nitrogen           Phosphorus                     Potash
    (Years)                (Urea)      (Single superphosphate)         (Murate of Potash)
                                                 (grams /tree)
         1                 100 (217)            40 (250)                     100 (170)
         2                 200 (434)            80 (500)                     200 (340)
         3                 300 (651)            120 (750)                    300 (510)
         4                 400 (868)           160 (1000)                    400 (680)
 5 years and above        500 (1085)           200 (1250)                    500 (850)

        For one year old plants, 100g N, 40g P2O5, 100 K2O should be applied. 50%
recommended N, 100% P2O5 and 50% N, 50% K2O should be applied in September.

       Increase the dose by 100g N, K2O and 40g P2O5 every year until the plants are 5
years old and there after a dose of 500g N, (1085 g Urea), 200g P2O5 (1250g SSP) and 500g
K2O (850g MOP) should be applied. 50% N should be given in the farm of organics.
Spraying of 4g Zinc Sulphate + 2g Boric acid per liter of water and urea 2% during fruit
develop will improve fruit size and yield.
Inter cultivation
       The root suckers should be removed frequently. The tree should be trained and
pruned to good shape with strong branches. Intercropping with pulses and vegetables is
profitable in all soils in young orchards up to 4 the year which checks the weed growth and
increases soil nutrient status.
Crop regulation
       There are two major flowering seasons, one during March to may ,the fruits of which
are harvested in rainy season and the other in July /August with the fruits harvested during
winter. The rainy season crop is poor in quality with watery insipid taste. The incidence of
fruit fly is also high during rainy season.
       In guava the winter crop gives best quality fruit. The crop is regulated by holding
water after harvest from February onwards and pruning of branches to half the length on
entire tree in the month of May. The trees are irrigating in June with the application of
manures and fertilizers. One of the following crop regulation methods may be followed for
getting the winter crop.
With holding irrigation
       With holding irrigation from February to May. The plant shed all the leaves. In the
month of June the recommended dose of fertilizers are applied along with irrigation. After
20-25 days new leaves emerge which produces the winter crop.
       In the month of May 50 % of the terminal shoots should be pruned which induces
new leaves which produces the winter crop.
Bahar Treatment
       In black soils, crop regulation is done by bahar treatment. In the month of May the
roots are dug and exposed to the sun. This bahar treatment makes the plant to shed all the
leaves. After the leaf shedding, in the month of June, fertilizers are applied and the exposed
roots should be covered with soil and irrigated. The new leaves which emerge will produce
the winter crop.

          For proper leaf shedding in the month of May for crop regulation, the trees may be
sprayed with 10 % Urea. The leaves will senesces and plant sheds the leaves. The plants
are manured and irrigated in the month of June. The new leaves which emerge will produce
the winter crop.
          Young plants should be watered regularly during first year. To get better yield trees
should be irrigated at flowering and fruiting stage. Irrigation should be withheld prior to
ripening. Plants under drip irrigation perform well and 60-70% water saving will be there.
          The quality of guava depends on the season of the cropping. Winter crop gives
better quality fruits then rainy season crop. The fruit comes to maturity 4-5 months after
flowering. The maturity indices of the fruit are the change in dark green colour of the fruit
skin to light green colour. As all the guava fruit does not come to maturity at a time,
frequent harvesting should be done based of maturity. The frequency of harvest for rainy
season crop is 2-3 days and for winter season crop is 4-5 days. The fruit harvested with two
leaves will stay fresh for longer period and amenable for long distance transportation.
          The guava plant start commercial yield from 3rd year onward under good
management practices. Under irrigated conditions guava yields about 100-150 kg fruit for 8
year and above age trees.
Plant Protection
Fruit Flies (Bactrocera dorsalis, B. zonata, B. diversa )
          The fruit flies deposit eggs in the soft skin of ripening fruits. On hatching the
maggots bore into fruit and feed on the soft pulp. The infested fruits show depressions with
dark greenish punctures and when cut open, the maggots are visible. The infested fruits rot
and fall.
          Pheromone trapping with methyl eungenol for Bactocera dorsalissp replenishing the
traps with new wicks every fortnight during fruiting season. Bait sprays carbaryl (75% wp)
@ 2g/lit + Protein hydrolysate @ 1.0g/lt or molasses @ 1.0g/lt (or) Malathion (0.1%) @
Spiralling white fly (Aleurodicus disperses)
          Severe infestation initially gives silvery appearance on ventral side of guava leaves.
Affected leaves turn yellow, crackle and fall.

       Spraying of Neemoil @ 5ml/lt of water or Dichlorovos @ 1ml/lt or Triazophos @
2ml/lit of water.
Bark eating caterpillar (Inderbela spp)
       The caterpillars feed on the bark under webbed galleries of silk, chewed wood and
excrete during night. The infested plants show the presence of such galleries on main stem
and branches.
       Field sanitation and removing excreta of caterpillar. It can be killed by injecting 5ml
Dichlorovos or Kerosene or petrol into holes infested with caterpillar and closing the hole
with clay.
Stem Borer
       Attacks the trees between February and April months. The grubs bore into the bark
and stem and can be identified form the saw dust coming from the bores and by the follow
sound when the branch is tapped. In severe cases the plant dies.
       The grubs should be removed and petrol injected into the holes and plugged to kill
any young ones remaining inside.
Mealy bugs (Ferrisia virgata, Plannococcus citri, P. lilacinus )
       Severely infested fruits are covered by white mealy bugs and in severe cases sooty
mould develops on the fruit surface. They affect fruit quality as well as size.
       These mealy bugs can be controlled by releasing predators like chrysopa and
cryptolaemus sps. In case of non availability of predators the infested branches should be
cut and destroyed. Acephate @ 1g or Dichlorovos 1ml per liter of water can be sprayed.
Fruit borer (Virachola Isocrates)
      Larva bore into the fruits and feed the pulp.
       Collection and destruction of infested fruits. Spraying of Carbaryl @ 3g/lit of water
can be used.
Tea Mosquito Bug (Helopeltis antonii)
       The nymphs and adults puncture fruits of all sizes, tender shoots and leaves to suck
sap. Feeding punctures on fruit result in brownish spots which develop into raised pustules.
Severely infested fruits become hard and corky which crack and finally drop.

       Collect all infested and fallen fruits and destroy. Moderately resistant varieties like
Sardar (Lucknow -49) and Saharanpur Seedless can be grown in endemic area.
Aphids (Aphis gossypii Glover)
       Nymphs and adults colonize on tender shoots and leaves and suck cell sap. They
excrete honeydew resulting in the development of sooty mould.
       During primary stages of infestation branches should be cut and destroyed.
Dimethoate 2ml/lt should be sprayed.
Wilt (Fusarium oxysporium, f.psidi, Rhizoctonia spp. )
       Yellowing and browning of leaves at the tips of twigs is the characteristic symptom.
Leaves dry and splitting of bark, drying of leaves on terminal branches is followed by
complete wilting of plant in 10-15 days.
      The varieties like Lucknow-49 which are resistant to the wilt should be planted
      Application of 90 Kg. FYM + 10 kg. Neem Cake + 2 Kg. Trichoderma Viridi at the
       base of tree in the month of June.
      Drenching the trees with Carbendazim/Benomyl @ 1g or COC @ 3g/lt. of water
       thrice at 10 days interval.
      In alkali soils where the wilt is sever, apply 1 kg lime in the basin of the tree along
       with the green manure.
      The guava plants should be irrigated thoroughly especially in summer months where
       the wilt incidence is severe.
Antracnose (Colletotrichum Psidii)
       Guava antracnose is caused by Colletotirchum, Botrydiplodia and Pestolotiasis
fungus. The young shoots and leaves and fruits turn develop brown spots and later turn into
black spots and the shoots completely dry up. The antracnose affected fruit rot during
       Spray Bordeaux mixture (1%) or Carbendazim 1 g /l or COC 3 g/l.
Fruit Canker (Pestalotiopsis psidi)
       Cankerous growth on fruit leading to cracking of fruits.
       Apply Dithane Z-78 (2g) or Cuman L (4ml/lit) and Rovral (2g/lit) during rainy season.

Red Rust (Caphaleuros virescence)
     This is caused by Caphaleuros virescence algae. Red colour pustules 3-5 mm size
appears on leaves both on upper and lower surface. Later the red pustules change to grey
         Spray COC @ 3g/l twice at an interval of 10 days

                                        (Acharas zapota)

         The total area under sapota in Andhra Pradesh is about 18.73 thousand hectares
with estimated annual production of 1.87 lakh tonnes.
         Sapota is a tropical fruit crop and can be grown from sea level upto 1200m. At still
higher elevations fruit qualtiy and tree health suffer. It prefers a warm and moist weather
and grown in both dry and humid areas. Coastal climate is best suited.
         Can grow on all types of soils with sufficient drainage, but light soils are preferable.
It can tolerate high pH and EC and suitable for poor soils and sandy soils and should not
contain high lime content and hard pan in sub-soils.
Cricket Ball
       The leaves are light green. This bears the largest sized fruits which are round in
shape. Pulp is gritty and granular and not very sweet.
         It has dark green, broad and thick leaves, spreading branches. Fruits are oval
shapped, less seeded with a sweet, mellow flesh of excellent quality. Fragrance is mild. Each
fruit has 1-4 seeds. Fruits appear singly. The main harvest is in winter.
Calcutta Round
         Fruits large, fruit skin soft, pulp moderately smooth, with medium quality, susceptible
to leaf spot diseases.
         The fruits are small to medium sized and oval egg-shapped, with apex broadly
pointed and are very sweet. The bearing is heavy and fruits are borne in clusters. The fruit
has thin skin and of good flavour.

        On the find 4-6 ridges are seen. Fruit skin is rough, medium thick and buff coloured,
and pulp is sweet. Fruit apex is rounded. The fruits can be transported to distant markets.
        The fruits resemble those of Cricket Ball but smaller in size, fruits have a sweet pulp.
        It is a clonal selection from Guthi. A mean yield of 3547 fruits (236 kg) can be
obtained per tree per year. The tree is dwarf statured and adaptable to southern and central
districts. Fruits are of two shapes viz., roung and oval. The skin is very thin and the pulp has
a buttery consistency. High average yielder with medium size fruits. Average fruit weight is
        It is a hybrid between Guthi x Cricket Ball. The variety is adaptable to tropical plants
of Tamil Nadu and yields 14t/ha. The fruits bear in clusters with oval shaped large fruits.
The vertical growth habit of tree allows high density planting. The fruits mature earlier than
other varieties in the season thus fetching higher return. The variety is tolerant to leaf spot
and leaf webber.
        This is a cross between Kalipatti and Cricket Ball. Tree is vigourous, bearing oblong to
oval fruits with high yield. The fruits are very sweet, having a soft, mellow flesh with TSS of
26O brix. The colour of the pulp is light orange. Average fruit weight is 154 g.
        The tree is broadly pyramidal with dense horizontal branching. The fruit shape is
acron with average weight of 92 g. The flesh colour is brown, sweet in taste and granular.
The TSS of the fruits is 23.0O brix.
        By veneer grafting on Rayans or Khirnee (Manikara hexandra) rootstock.
        Light soils    ---     10mx10m
        Heavy soils    ---     13mx13m
        Prepare land by ploughing and harrowing. Dig pits of above 1m x 1m x 1m at a
distance of 10m x 10m or 13m x 13m apart. Fill the pits with top soil and mixed with 25 kg
FYM, 2 kg Single Super Phosphate and 100 g Folidol dust. Plant the grafts in the middle of

the pit keeping graft joint above the ground level. After planting staking should be done for
proper support. The planting should be done during rainy or winter season.
Manures and fertilizers
        Apply F.Y.M       50 kgs/plant   before planting and every year after planting. Manure
the plants in the beginning of rainy season. The fertilizers should be applied in 20-30 cm
deep and 30cms wide along the drip line of the tree.

                          Age of the Nitrogen         Phosphorus      Potash
                                                (grams /tree)
                   1-3 Years                 50            25             75
                   4-6 Years                 100           40            150
                   7-10 years                200           80            300
                   11     years    and       400          160            450

        Bromocil @ 3 kgs a.i /ha proved to be the best herbicide for controlling both broad
leaved weeds and grasses and was effective for a period 6 months.
        Vegetables and other field crops can be grown as intercrops in the first 6 to 7 years.
Application of SADU at 100ppm applied before flowering stage results in higher fruit set and
NAA at 300ppm after set results in better fruit retention.
        When plants are young, irrigation may be given throughout the year depending upon
soil condition. In later stage, during summer, irrigation should be given at 20-25 days
interval and in winter at 30 to 35 days interval. Excess irrigation results in flower and fruit
shedding and also large number of misshapen fruits and fasciations of shoots.
Harvesting Index
        The fruit nearing physiological maturity sheds off the brown scaly scurf from the
skin. At this stage fruits become corky brown in colour with intermixed yellowish tinge.
Such fruits a yellow steak when scratched with finger nail, and show practically no green
tissue or later.
        The main harvesting season is March – June. Fruits are obtained during September-
October and December if irrigated. Fully grown tree (>20 years age) can give >10,000

        Bearing starts from 4th year onwards and economical yields can be obtained from 7 th
year. Plants flower almost thoroughout the year. It takes about 4 to 6 months from
flowering to fruit maturity. Although sapota flowers and fruits throughout the year, there are
two distinct seasons of harvest viz., March to May and September to October. The fruits
harvested during March to may will be generally sweet. The fruits will have to be harvested
when they develop dull brown potato colour. Yields increase gradually with age as follows.
        4-5th year     -      250 frutis per plant
        6-7th year     -      800 fruits per plant
        8-20th year    -      1500 to 2000 fruits per platn
        By 30th year   -      2500 to 3000 fruits per plant.
Plant Protection
       Sapota does not suffer from serious pests and diseases.
Leaf webber (Nephopteryx eugraphella )
        It is a serious pest. Larvae generally feed on leaves, but also feed on buds and
flowers and sometimes bore into fruits. They web together bunch of leaves and feed on
chlorophyll leaving behind a fine network of leaf veins. A cluster of dried leaves hanging on
webbed shoots is an indication of attack of the pest. Active throughout the year with peak
acitivity during June-July.
        Remove leaf webs and spray Monocrotophos 1.6 ml or Endosulfan 2ml or
Chloropyriphos @ 2ml/lit at regular intervals is recommended.
Fruit borer (Anarsia achrasella Bradley)
        Damage is caused by boring into fruits and feeding inside the pulp
        Removal of fallen fruits and burning them. Spraying of Endosulfan @ 2 ml/l or
Carbaryl @ 3 g/l
Mealy bugs (Planococus citri, P. lilacinus)
        Damage is caused by sucking of sap from fruits near the stalk. Nymphs and adult
females suck sap from tender leaves, shoots and inflorescence. Young leaves become
curled, twisted and malformed, severe infestation affects its fruiting capacity. The insects
excrete large quantities of honey dew which attacts ants and sooty mold.
        Spraying of Acephate @ 2 g/l or Spirotetramat @ 0.3 ml/l

Leaf spot (Phleopheospora indica)
        Reddish brown circular spots.
        This may be effectively controlled by monthly spray of Zineb at 0.2% or Cuman L or
Rovral 2g/lit or Dithane M-45 @ 3g/lit of water during rainy season.

                                        (Carica papaya L)
        Papaya is one of the important quick growing fruit crops. It is a very rich source of
vitamin „A‟ and a good source of vitamin „C‟ and minerals and compares favourably with
oranges. On an average 100g of edible portion of ripe papaya contains 2500 I.U. of vit. A
and 70 mg of ascorbic acid. It improves digestion and is said to cure chronic constipation,
piles and enlarged liver and spleen. Papain is a valuable enzyme prepared from the latex of
papaya. The total area under papaya in Andhra Pradesh is about 14.9 thousand hectares
with estimated annual production of 11.96 lakh tonnes.
        Papaya requires well drained fertile soils of uniform texture. Under water stagnated
conditions and in soils with poor drainage, foot rot disease may cause heavy mortality,
hence heavy clay soils should be avoided. A loamy soil with a p H 6.5 to 7.2 is considered
        It‟s a tropical fruit crop grows well in regions where summer temperature does not
exceed 38oC.
       Plant dwarf. Fruit round or oval in shape with golden yellow skin and orange
colorued flesh.
        The plant is medium tall in height. Fruits obovate and large in size, skin yellowish-
green, flesh orange coloured, soft and moderately juicy. It is agood table fruit and also a
high yielding variety.
        Plant is medium tall. Fruit large, flesh deep yellow with purple tinge, taste sweet,
good keeping quality.

       It is a selection from Washington variety, cultivated mainly for papain production. It
yields 1,500-1,600 kg/ha of dried papain.
       A selection from Pusa Majesty, it is dioecious having dwarf stature. It produces large
sized fruits. It is recommended both for papain and desert purposes.
       Plants are very vigorous, stem has purple rings at the nodes, petiole dark purple,
flowers deep yellow, fruits large, ovate in shape and in large numbers, seeds few, pulp
sweet with agreeable flavour. The fruit is very popular.
Pusa Dwarf
       Plant is dwarf and precocious in bearing. The plants start bearing from 25 to 30 cm
above ground level. The fruit size is medium and oval in shape. This variety is most suitable
for high density orcharding, nutrition garden and kitchen garden.
Honey Dew
       Tree of medium height, bears fruit, low on the trunk and heavily, fruits are
elongated, the pulp is sweet and has very agreeable flavour, and seeds are very few in
number. This variety is popular all over India. It is also called Madhu Bindhu.
Pusa Nanha
       An extremely dwarf variety, it is suitable for kitchen gardens, pot and roof-top
cultivation. This is ideal for high density orcharding.
Pusa Giant
       This is a vigorous variety and is dioecious in nature. The plants are sturdy and
tolerant to strong winds. The fruits are suitable for tooty-fruity and candies like petha.
       Plant is tall and vigorous. Fruit is medium sized, sweet with good keeping quality.
Red lady (Taiwan 786)
       This is also gynodioecious variety with bolld-red coloured flesh and good taste.
       This is one of the best known varieties from Hawal. Fruits are small. Deeply ribbed,
pyriform, flesh yellow orange, keeping quality good.

Coorg Honey Dew
           This is a selection from Honey Dew variety. This variety produces hermaphrodite and
female plants. Fruits borne on female plants are almost seedless. The fruits are of excellent
Sunrise Sole
           This is a gynodioecious variety having pink flesh and good taste.
Pusa Delicious
           It is a gynodioecious variety with 100% productive plants with good fruit yield and
quality having excellent taste and good flavour.
Pusa Majesty
           This is a gynodioecious variety with high productivity and better keeping quality of
fruits. This is also one of the highest papain yielders.
           500 g seeds will be required for planting one ha of dioecious papaya, for
gynodiecious varieties 50-60 g of seed is required. Seedlings are raised in poly bags of size
not less than 10 x 20 cm filled with a potting mixture made of 2 parts of sand, 1 part each
of red soil and well decomposed FYM.
           Prepare raised seed beds of 2m in length, 1m in breadth and 10 cm heights. Apply
10-15 kg of FYM and ½ kg of 15:15:15 mixes it well the soil.
           Drench the beds with ceresin wet (2g in 1 lit of water) solution. Sow freshly
extracted seeds at a depth of 2-3 cm in rows, with a spacing of 5 cm in the rows and about
15 cm between rows. Sowing of seeds during March to April is desirable to facilitate plant in
June-July. About 250 g. of seed is enough to raise sufficient seedlings for a hectare. Provide
watering regularly during summer.
           In about three weeks time the seeds germinate. In another two months, when the
seedlings attain a height of 15-20 cm they are ready for transplanting. Remove the
seedlings with a ball of earth and transplant them in the main field. Papaya seedlings raised
in seed beds. Perforated polythene bags of 20 x 15 cm size with 150 gauge thickness can be
used for raising seedlings. Fill the bags with a mixture of manure, soil and sand in equal
proportions. Sow two seeds in each bag and retain only one seedling after germination.
           Prepare the land by ploughing and harrowing. Dig pits of 40 x 40 x 40 cm cube and
fill them with top soil and compost. Plant the seedlings in the centre of the pit and provide
support. Planting can be done both in rainy season and winter season. In areas where

rainfall is heavy, winter planting is preferable. In areas with moderate rainfall, planting can
be done in both the seasons.
       Seedlings will be ready for transplanting when they are 45-60 days or when the
seedlings attain 30-45 cm height. Papaya can be planted throughout the year, however the
best time for planting is after end of the monsoon.
       Papaya is normally planted at a distance of 1.8 X 1.8m. in the pits of 45 cm 3 size
which are filled with decomposed FYM and top soil in 1:1 ration. The seedlings should be
watered preferably twice a day till they are established.
Manures and fertilizers
       Before planting, for each pit 10Kg. of well decomposed FYM should be applied. The
following fertilizers may be applied per plant at bi-monthly interval starting from 3rd month
of palnting.
                                 Fertilizer    Quantity (g)
                                   Urea            90
                                    SSP           200
                                   MOP            140

       To correct micro-nutrient deficiencies, spray 5g. Zinc Sulphate + 2g. Mangnesium
Sulphate + 2g. Mangenese Sulphate + 2g. Ferrous Sulphate + 2g. Borax + 6g. Calcium
Carbonate + 10g. Urea in one liter of water at 3-4 months age.
       When papaya is grown as a pure crop, vegetables can be profitably grown as
intercrops for about six months from planting of papaya seedlings.
Irrigation and water management
       Depending upon the climate, young papaya seedlings should be irrigated once or
twice a week in irrigated orchards whereas, in older trees bearing with fruits, irrigation is
given every 10-14 days.
       Papaya plants are irrigated 10-12 days interval in winter and weekly once in summer
if there are no rains. Plants also perform well under drip irrigation when supplied with 20-25
1/day for bearing plants.
       Papaya plants come to harvest 5-6 months after planting. The fruits can be
harvested when they are still hard and green but turn slightly yellow.

           Papaya fruits will be ready for harvest about 9-10 months after planting. Fruits borne
throughout the year. Yield varies from 75 to 100 tonnes per hectare. The economic life of
papaya plant is only 2 ½ to 3 years.
Vale addition
           Whole fruit pulp is used for preparation of mixed fruit jam and immature fruit pulp
bits are used for making „tooty-fruity‟.
Papain extraction
           Papaya fruits, which are about 90-100 days old (fully grown but not mature) are
selected for tapping. In the morning hours before 10.00 am four longitudinal incisions are
given on the four sides of the selected fruit from the stalk end to the tip. The depth of the
incision should be about 3mm. On incising, the latex starts flowing and this is collected in
suitable containers (arecanut spathes, aluminium trays or glass vessels). Care should be
taken not to use any other container for papain collection, since it will react with papain
rendering it unfit for any use. The latex that solidifies in the cuts should also be scraped
carefully and added to the liquid latex. This process to making four incisions in the untapped
fruit surface at 3-4 days interval is repeated thrice of four times over a period of 12 to 16
days. The latex thus collected every time should be dried in the sun or in driers at
temperatures ranging between 50OC to 55OC. Potassium metabisulphite (0.05%) is added to
the liquid latex in small quantities before it is dried, since this helps to extend the storage of
papain. The drying of papain is continued until it comes off in flakes having a porous-
structure. The dried papain is powdered, sieved in a 10 mesh sieve and stored in polythene
bags or in any other suitable container. After papain extraction fruits can also be used for
Plant protection
Fruit fly (Bactrocera cucurbitae, Tozotrypana curvicauda )
        The fruit flies damage ripe fruits of papaya. Maggots feed in the fruit pulp, causing
           Using of Methyl eugenol traps is effective in controlling fruit flies. If the problem is
serious, spray Deltamethrin 0.003% or Dimethoate 0.045% when fruits are fully mature. Do
not retain birds‟ damamged fruits on trees because they attract fruit flies for oviposition.
Collect all fallen infested fruits and destroyed.

Aphids (Aphis gossypii, Myzus persicia )
           Nymphs and adult aphids suck sap from leaves and while doing so, they transmit
mosaic virus disease. The affected trees die gradually.
           Destroy virus affected plants. Give prophylactic sprays of Dimethoate 0.3% or Methyl
Demeton 0.05%.
Nematodes (Meloidogyne spp., Rotylenchulus reniformis)
           Leaf yellowing and shedding, reduction in leaf numbers. Premature dropping of
fruits, root galling. Causes decline and reduction in yield.
           Nematodes can be controlled by application of Carbofuran @ 15-20 g/plant, Neem
cake @ 250g per plant.
Collar rot/Foot rot and wilt (Madima Kullu Tegulu) (Pythium aphanidermatum )
       The disease occurs both in nursery and in main field. The fungus attacks the collar
region and causes soft rot. Externally the leaves turn yellow, and drop off. The plant may
collapse with a break down at the bottom. The disease will be severe in ill drained
           Bordeaux mixture (1:1) or Metalaxyl + Mancozeb @ 2g/l or 3g. of Cooper
oxychloride dissolved in 1 lit. of water may be used to drench the nursery bags to protect
against wilting of young seedlings and also the main field. Water stagnation should be
Anthracnose (Colletotrichum gloeosporioides)
           Dark brown depressed spots of chocolate colour.
           Good control of Anthracnose can be achieved by spraying Mancozeb @ 2.5 g/lit. or
Carbendazim @ 1g/lit.
Powdery mildew (Budida Tegulu) (Oidium caricae)
           Whitish patches appear on lower surface of leaves. Corresponding upper surface
appears yellow. The patches coalesce and spread to the leaf blade. The affected leaves turn
yellow and dry up. If young fruits are attacked they do not develop further and shrivel and
drop off prematurely.
           It can be controlled effectively by spraying Wettable sulphur @ 3g/lit or Kerathane @

Viral diseases
       Three major viral diseases namely mosaic, leaf curl and ringspot are commonly
found in most of the regions of papaya cultivation. The plants must be watched carefully for
the viral symptoms and removed and destroyed as soon as the symptoms appear. The virus
is usually transmitted by aphids and white flies and these vectors should be controlled by
spraying systemic insecticides viz Imidachloprid @ 0.3 ml/lit. or Dimethoate @ 2 ml/lit or
Acephate @ 1.5g/lit.
Leaf Curl (Aku Melika Tegulu) (Virus nicotiane virus 10) (Transmitted by
      The disease characterized by severe curling, crinkling and deformation of the leaves.
Mostly the young leaves are affected, other symptoms like vein clearing, reduced size
inward rolling of the leaves and thickening of leaves are also common. Some times the
petioles are twisted. The diseased leaves become thick and brittle. The plants are very much
stunted. Fruit yield is much reduced and defoliation often results.
       Removal of infected plants, plants can be sprayed with 0.1% Malathion or
Metasystox at an interval of 10-15 days for controlling the vectors.
Papaya Mosaic (Boppai Verri Tegulu)
       The disease occurs on papaya plants of all age groups but mos serious on young
plants. The top young leaves of the diseased plant are much reduced in size and show
blister patches of dark green tissue alternating with yellowish green and puckering. The leaf
petiole is reduced in length and top leaves assume an up right position. The fruits on
diseased plants develop circular water soaked lesions with a central soild spot. The fruits are
elongated and reduced in size.
       Removal of infected plants and destroying them. Controlling aphids, vectos by
periodical spraying of systemic insecticides.
Ring Spot (Transmitted by aphids)
       Infected plants initially show chlorosis on the youngest leaves followed by vein
clearing, rugosity and prominent mottling of the laminae. Decided malformation and
reduction of the lamenae which may become extremely filliform. Characterstically elongated
dark green streaks develop on petioles and upper half of the stem, infected fruits show
circular or concentric rings, causing up to 50-60% losses in yield.
       Rogue infected plants and control aphid vectors.

                                             (Ananas sativus)
        It is tropical fruit crop. It thrives well in a mild tropical climate. It grows well near the
coast as well in the interior so long as the temperatures are not extreme. The optimum
temperature ranges from 21O – 23O C. It can be grown upto an elevation of 1100m above
the sea level, provided they are free from frost. It requires an optimum of 150 cm which
should be well distributed. Where the rainfall is less, supplementary irrigation must be
        Pineapple can be grown on any type of soil (expect heavy clay). However, sandy
loam with a pH range of 5.5 to 6.0 is the best. The soil should have a depth of atleast 60 cm
without hard pan beneath or water logging. Low lying areas with high water table are not
        It is a leading commercial variety of India. It is the most suitable variety for canning.
It is a prolific yielder. Fruits are large and each fruit weighs 1.5 to 2.5 kg. The eyes on the
fruits are broad and shallow. The external colour of the ripe fruit is yellow. The flesh is firm,
juicy and pale yellow in colour. It has almost spineless leaves. The variety is of shy
suckering habit. This variety is grown in Tamil Nadu. It is a late maturing variety, ripening in
August and September.
        This is an early variety, earliest of all the varieties in Indai, ripens in June-July with a
a very uniform ripening habit. The fruit cylindrical and of medium in size and weighs 0.5 to
1.0 kg. Eyes are prominent and deep, hence not suitable for canning. Queen is the best
desert pineapple. The external colour of the ripe fruit is deep yellow. The flesh is firm, crisp,
sweet and golden yellow in colour. As compared to Kew, Queen plants are smaller with a
dwarf and compact habit of growth. They have spiny serrated leaf margins. It produces
suckers freely.
        This is a mid season variety ripening in July-August. Fruits are of medium size,
weighing about 2-3 kg on an average. The fruit may be oblong or round in shape. External
colour of the ripe fruit is reddish yellow. The flesh is light yellow in colour and slightly
fibrous. The plants of this variety resemble Queen plants in most of the vegetative and fruit
characters. The leaves are serrated and spiny.

        This is a local variety, largely grown in Visakhapatnam area. Fruits are small and
flesh is light yellow with fibre.
        Pineapple is propagated vegetatively through suckers, slips and crowns. Suckers are
shoots arising from the axils of the leaves of from the base of plant near the ground. Slips
are produced on the fruiting stem while crowns are borne on the top of the fruit. Suckers
and slips are generally used, because suckers give the first crop in 14 to 18 months. Slips
take 20-22 months for the first crop, while crowns take more than 24 months for the first
crop. Because of shy suckering habit or Kew variety, crowns are used as propagating
material in Kew variety.
        Suckers of uniform size (400-450g) should be selected for planting, as they give best
yields compared to higher or lower size categories of suckers. Planting materials should be
collected from high yielding well maintained gardens, which are free from pests and
        At the time of planting, few basal scale leaves of the suckers should be stripped off
to encourage the formation and entry of roots into the soil. Before planting, the sucker
should be dried for one of two days, by spreading them upside down. Fresh suckers should
not be planted in moist soil, otherwise they decay. The suckers should be dipped in
Bordeaux mixture (1%) or Dithane Z-78 (0.3%) and Difolatan (0.2%) to avoid mealy bugs
and heart rot.
        Planting may be done normally during the rainy season, avoiding periods of heavy
rainfall. July and August are the best months, however, where irrigation facilities are
available, planting can be taken up alround the year to ensure supply of fruits throughout
the year.
        The popular method of planting pineapple is the double row system. The two rows
are spaced 60cm apart and in each row the plants are planted 45cm apart in such a way
that no two plants are exactly opposite each other. The double rows are spaced at 1.5 to
2.0m. In this method 15,000-20,000 suckers can be accommodated per ha. When it is
desired to have more than two ratoon crops, the above method can be adopted. Otherwise,
close spacing may be chosen. In this method, early and higher yields are obtained from an
unit area. In this method a spacing of 25 x 60 x 105 cm or 25 x 60 x 90 cm is adopted. This
accommodates 49,000 to 53,000 suckers per hectare.

Preparation of Land
       The selected site of land should be prepared very thoroughly by ploughing and cross
ploughing or by forking or hand hoeing. If the land is undulating terracing should be
practiced. The land should be dug upto a depth of 40-50cm till a fine tilth is obtained. At the
last round of ploughing or digging FYM or compost is applied. After leveling, the land is laid
out into trenches alternating with mounds for planting the suckers. For double row system
of planting, two shallow furrows about 10-15 cm depth are to be opened.
Manures and Fertilizers
       After plants have been established apply 16 g Nitrogen, 2g Phosphorus and 3g
Potash per plant, two to three times. Application of 20-25 tonnes of FYM, 350kg Nitrogen,
130kg Phosphorusand 40kg Potash per hectare is recommended. FYM and P2O5 may be
applied as basal dressing at the time of last ploughing or digging. Nitrogen and Potash are
to be applied in three split doses i.e. 60th, 150th and 240th days after planting. Nitrogen may
be supplied in the form of ammonium sulphate. Immediately after manuring, the crop
should be irrigated and then earthedup to provide better anchorage to the plant.
       After planting, whenever weeds appear interculture should be done without digging
of the soil deep. Mulching with dry grasses, straw, sawdust, coirdust, rice husk etc. will also
help to suppress weed growth, conserve moisture, maintain the humus status of soil.
       Though pineapple is a drought resistant crop, for getting high yields, it should be
irrigated, atleast during the dry periods. Irrigations improve fruit size. Therefore, 4-6
irrigations in hot months at an interval of 15-20 days will ensure a good crop.
Flowering and Harvesting
       To achieve uniform flowering in pineapple NAA in the form of Panofix at 10-20 ppm
(1ml planofix in 9 lit of water) or a mixture of 10 ppm of Ethephon (ethrel) + 2% urea +
0.04% Sodium carbonate may be poured (50 ml) in the heart of the plants 15 to 16 month
after planting on a clear sunny day. The Ethephon solution should be used immediately after
       The plant generally flowers 12 months after planting from February of April. The
fruits take about 135 to 165 days to mature and ripen. The fruits ripen from June to
September depending on the variety. In our state fruits come to harvest from June to
       To achieve good fruit size and uniform cylindrical shape the crowns of fruits may be
removed with a sharp knife, when they are 5 to 10cm long. In hot weather the fruits may be

covered by wrapping the fruits with the outer leaves or dry grass or straw or banana leaves
or paper covers for protection from sun scorch.
       When atleast 2 or 3 rows or eyes at the base have turned yellow, the fruit is ready
for harvest. However, for distant markets less matured fruits are to be harvested. Harvesting
may be done with a long, sharp knife, cutting the fruit stalk few centimeters below the base
of the fruit. The fruit with the crown can be kept without damage of 3-4 days after harvest.
       The yield per hectare varies from 40-60 tonnes depending on the variety.
Ratoon Crop
       Ratoon cropping is common in pineapple. After the harvest of the first crop, all the
suckers borne on the plant should be removed leaving only one sucker on the monter plant.
Similarly all slips should be removed. Then the plants are fertilized, irrigated, and earthed up
so that the plants have good anchorage for ratoon crop. The crop is retained like this for
four or five years and then removed.
       It is one of the most delicious of the tropical fruits. The furit is a good source of
vitamins A and B. it is very rich in Vitamin „C‟. In addition, it constitutes an important raw
material for the fruit processing and preservation industry. Pineapple is utilized in the fruit
preservation and processing industries for preparation of canned pineapple in the form of
slices, rings etc. The fruit juice is also canned, fruit is also used in the preparation of jam.
       The dried waste after extraction of juice, known as pineapple bran, is used as a stock
feed. Pineapple juice is utilized in the manufacture of alcohol, calcium citrate, citric acid, and
Plant Protection
Mealy Bug (Dysimicoccus brevipes)
       The bug causes wilt and eventual death of plants.
       The pest can be controlled dipping the suckers in 10 ml Methyl parathion or 17ml of
Dimethoaiate in 10 litres of water before planting by applying 1.7 kg ai/ha of Phorate
granules and by treating the soil either with 2.75 kg/ha of Chlordane or 2.25 kg/ha of
Heptachlor to kill the attendants.
Heart Rot (Phytophthora parasitica )
       The disease is recognized by complete rotting of the central portion of the stem. The
top leaves turn brown and basal portion of leaves shows sign of rotting with foul odour. It is
more prevalent in high rainfall areas.

        Proper drainage is necessary to avoid this disease. Dip the planting material in 0.4%
Difoltan at the time of planting. If the disease appears on plants, spray Difoltan @ 20g in 10
litres of water.
Soft Rot and Black Rot (Ceratocystis paradoxa))
        Most typical symptom is black rot of the butt in the field which is followed by wilting
of foliage and breaking off of plants at ground level. Leaf spots are grey with dark margins
later tuming olive-brown or white. Leaf tissues dry and leaves distorted. Water blisters are
noticed as soft watery rot involving the flesh of fruit. Fruit sking becomes brittle and
diseased portions disintegrate accompanied with a sweet smell. Infections occur through
wounds and cut ends.
      Field sanitation, collection of suckers from disease free fields, exposing the planting
material to sun for 2 hours, better drainage and periodical spraying with Bordeaux mixture
from the time of flowering will control the diseases in the filed. Dipping the cut end of the
fruit stalk in a 10% solution of Benzoic acid in alcohol and spraying the packing shed and
packing cases or baskets lith a 3% solution of Formalin will also help to check the diseases.

                            WATERMELON AND MUSKMELON
                       (Citrullus lanatus/ vulgaris) and (Cucumis melo)
        The melons are vine crops and are grown for their fruits, which have typical thrust
quenching characters with low caloric value and contain considerable quality of vitamin A
and C. They thrive only in hot weather and will not with stand low temperatures.
        Dry weather with high temperature (32°C) is preferable. High humidity increases the
incidence of diseases, particularly those affecting foliage. Plant growth is optimum under 28-
        The musk melon thrives best and develops the good flavour in hot, dry climate. In
Andhra Pradesh the crop is mostly grown on river beds and garden lands under irrigation. In
humid regions foliage diseases are serious and if the weather is cloudy and rainy during the
fruit maturity and ripening period, the fruits do not develop the best quality fruits. High
temperature and susshine produce quality fruits.
        Melons may be grown on a wide variety of soils. Sandy loams are best for early crop,
while loams have high yielding potential. The soils should be well drained and should have

ample organic matter. Generally they are cultivated in river beds by making trenches and
sowing in hills or pits, pH of 6.5 - 7.0 is ideal.
         Melons do not thrive well in a strongly acid soil and if grown make very poor growth
and the leaves develop yellowish green colour and is known as “acid-yellowing”. Needs good
surface drainage. If the crop is grown under irrigated conditions the seeds are sown on the
upper side of the ridge.
Watermelon varieties (Citrullus vulgaris)
Sugar Baby
      An introduction from America, early season variety, the fruits weigh 3-5kg/t, round,
having bluish black rind and deep pink flesh. TSS 11-13%. The fruits ripe in 80-85 days.
Arka Jyothi
         A mid-season hybrid (IHR 20 x Crimson sweet) with round fruits weighing 6 to 8 kg
the rind colour is light green with stripes and the flesh colour is crimson. TSS 11 to 13%.
Arka Manik
         A cultivar resistant to powdery mildew and tolerant to anthracnose. The fruits are
round to oval with green rind and dull green stripes, the flesh is deep red, very sweet (12-
13% TSS) the average fruit weight is 6kg, it stands well in transport and storage.
Ahahi Yamato
         It is a mid season, Japanese introduction producing medium size fruits of 5-7 kg. The
rind colour is light green with deep pink flesh, TSS 11 to 13%. The fruits ripen in 95 days.
Durgapur Kesar
         Also cultivar maturing in 125 days, fruits round with light green. Rind is thick with
good keeping quality, flesh sweet, TSS around 11 per cent with dark red colour, average
fruit weight 6 to 8 kg, seed with black tip and margin. Released by Agricultural Research
Station, Durgapura and Rajasthan.
Improved Shipper
         An introduction from the USA, a big-sized melon weighing 8 to 9 kg. The fruit is dark
green with moderate sweetness (8 to 9% TSS). Released by Punjab Agricultural University,
      Private hybrids became popular because of high yield and quality.
Muskmelon varities (Cucumis melo)
White flesh
         Arka Rajhans, Arkajeet and Lucknow safeda. The fruits of these varieties weighing
300-500g with big seed cavity and with average TSS of 12-14% bears 4-5 fruits per vine.
Solman Orange flesh

        Pusa Sharbati, Pusa Madhuras, Punjab sunheri. These varieties have netted fruit
surface, the average fruit weight is 600-800g with 10-12% TSS and can stand long distance
Green flesh
Hara Madhu
        Fruits are round to flat with green and juicy flesh, very sweet (12-15% TSS) poor
keeping quality, it is a late variety.
        The fruits are oblong, weigh about 500g. Palegreen rind, light green flesh with dry
texture, big seed cavity, very sweet (13-14% TSS) and is an early variety.
        Besides these varieties, hybrids of private companies are available in the market.
Local varieties viz., Kanpur and sidhout are also popular.
Season of planting
       Melons can be planted starting from 2nd fortnight of December to 1st fort night of
Seeds and Sowing
        Melons are propagated by seed. For muskmelon, a seed rate of 1.5 - 2 Kg /ha for
sowing in the field by dibbling method; watermelon - a seed sate of 3-3.5Kg/ha is required.
High yielding varieties particularly hybrids need one-third seed rate. Beds of 3-3.5m wide
irrigation channels and seeds are sown 30-50 cm. apart on either side of the irrigation
channels. They should be sown 1.5 cm deep. To get an early crop, seeds can be sown in
polythene bags (6 X 4") under protected area. The seedlings become ready for transplanting
at 2-4 leaf stage. They should be transplanted along with the ball of earth.
Manures and Fetilizers
        4-5 tonnes of FYM should be applied per acre. 32-40 Kg of phosphorus, 16-24 Kg of
potash should be applied basally. 24 Kg of Nitrogen should be applied in two splits while
planting and once after 25 days.
        Irrigation should be given especially during vine elongation and fruit development
stage. Excess irrigation during fruit maturity leads to fruit cracking. Irrigation through drip
gives better crop with low incidence of diseases.
        Weed control can be done by using Metolachlor @ 1 lit. for light soils and 1.5 lit. for
heavy soils in 200 lit. of water and spraying within one or two days after planting. At 2-4
leaf stage, 3-4 g/lit. of borax should be sprayed to promote more number of female flowers.

In muskmelon the apical shoot of the vines should be pinched and 2-4 side shoots should be
allowed to grow to get higher fruit yield.
        The watermelons are ready for harvest in 90-120 days depending upon cultivar and
season. A heavy dull sound when the fruit is tapped indicates ripeness. The drying of tendril
at the base of the fruit is also a sign of maturity. The stage of maturity is generally judged
by the change in the external colour of the fruit. As ripening advances a crack develops
around the peduncle at the point of fruit attachment and when frully ripe, the fruit slips from
the stem, leaving a large scar. This is known as „‟fullslip‟‟ stage. Generally fruits harvested at
half slip stage withstand market handling with balanced sugar and acid blend. The other
way of judging fruit ripening is change of ground spot colur from white to yellow.
        In case of muskmelon, the fruits for distant markets are harvested as they reach the
half slip maturity and for local markets, harvesting should be done at full slip stage. The fruit
skin colour changes to yellow with typical aroma of fruit ripening.
        The average yield of watermelon ranges from 8-10 t/acre and muskmelon 4-5 t/acre.
Plant protection
Red pumpkin beetle (Gummadi Penku Purugu) (Aulacophora spp.)
        Grubs damage the plants by boring into the roots. Beetle injure the colyledons,
flowers and foliage by biting holes
        Spraying of Carbaryl 50% @ 3 g/lit. or Malathion 2ml/lit. controls the pest effectively.
Fruit fly (Dacus cucurbitae and Dacus dorsalis)
        Maggots of this fly cause severe damage to young developing fruits. The adult fly
lays eggs below the skin of the young ovaries. The eggs hatch into maggots which feed
inside the fruits and cause rotting. The fly attack is severe especially after summer rains
when the humidity is high.
        Foliar spray of Endosulfan @ 2ml/lit. thrice in 10 days interval can be taken up. A
mixture of 100 ml Malathion, 100 g Sugar or Jaggery in 10 litres of water can be used as
bait and kept in plastic trays in the field.
Powdery mildew (Budida Tegulu) (Erysiphe cichoracearum)
        A white powdery growth appears on the leaf surface mostly confined to the upper
surface but also found on the lower surface and the stem. In severe infections the leaves
and stem dryoff and further growth of the plant is arrested.

       Spray Dinocap @ 1 ml/lit. or Tridemorph @ 1 ml/lit. or Sulfex 0.2% or Calixin 0.1%
or Karathane 0.2% or Bavistin @ 1g/lit of water 2-3 times at 10 days interval.
Downy mildew (Pseudoperonospora cubensis)
       Purple spots appear on lower surface and yellow spots on upper surface of leaves.
Fruits do not mature.
       Spray Mancozeb @ 2.5 g/lit. or Metalaxyl M.Z @ 2g/lit. or Dithane Z-78 0.2% i.e.
2g/lit of water at 8-10 days interval.
Anthracnose (Colletotrichum lagenarium)
       Reddish brown dry leaf spots are formed with often coalesce and cause shriveling
and death of leaf. Lesions on petioles and stems are water soaked and yellowish. The leaf
spots on watermelon are black and foliage presents a scorched appearance. Under moist
conditions, the lesions are dotted with pink conidia.
       Spray Copper oxychloride @ 3g/lit. or Carbendazim @ 1 g/lit. at 10 days interval.

                              CUSTARD APPLE (Seethephal)
                                   (Annona squamosa)
       Among the annonaceous fruits, only Seethaphal and Atemoya, hybrid between
Seethaphal and Cherimoya (Annona Cherimola) are of commercial improtance.
Soils and Climate
       The sandy, marginal and wastelands may be utilized for growing these fruits. Since
waterlogging causes tree decline, heavy soils with poor drainage, sub-soil with hardpan or
high water table should to be avoided. Sitaphal is capable of growing in soils having 50%
lime 300ppm of chlorine in irrigation water.
       Areas with high humidity, occasional rains and warm temperature are ideal for
Sitaphal in terms of fruit set and development.
       It is a local seedling variety collected from Balanagar area of Mahaboobnagar district
of Andhra Pradesh. The fruit quality is good. Fruit size big with large tuberless and plenty of
very sweet pulp.

Red Seethaphal
       The fruits are purple coloured and the leaves of the plant are purplish at the midrib.
Sweet in taste but seeds is many. This variety has got the disadvantage of developing stone
fruits. Its seedlings come true to type and are very prolific.
       This is an introduced variety. The fruit is large, pulpy, few seeded and greenish white
in colour. Bearing is sparse.
British Guinea
       Fruit large, greenish white in colour, pulpy, few seeded quality good, bearing sparse.
Fruits keep for about a week after ripening without spoilage.
Island Gem
       This is an Australian variety. The fruit is very large in size, smooth surface, very large
segments, very pulpy very delicious, few seeded, greenish white in colour, pulp very sweet,
excellent flavour, bearing is sparse fruits irregular in shape, keeps for about a week.
Pink’s Mammoth
       This is a variety of Atemoya, introduced from Australia. The fruit is very large, ovoid,
pulpy, delicious, veryfew seeded and greenish pink in colour, smooth surface, has very
broad and round segments, excellent in quality, bearing is poor. Fruits are irregular in
shape. Fruits keep for about a weak after ripening without damage.
       This is a hybrid between Seethaphal and Cherimoya. Atemoya grows to a height of
about 5-6m and has luxuriant growth. Hence, planting distance must be 7m x 7m. Ripe
fruits are whitish green in colour, juicy, delicious and pulpy with an excellent acidic flavour.
Very few seeded. Keeping quality good, can be kept even upto 10 days. Bearing is erratic.
For every 8-10 plants of Atemoya, one custard apple plant should be planted in the middle
to act as polleniser plant, otherwise the bearing of Atemoya will be poor and erratic.
Atemoya fruits will come to harvest from October to December.
       By veneer grafting on its rootstock.
       Pits (50 x 50 cms) are dug and filled with a mixture of 20 kgs of farmyard manure
and 300 gms of fertilizers mixture of Urea, Single super phosphate and Muriate of potash in
equal proportion at least a fortnight before planting. Planting is done in rainy season at a
distance of 4m x 4m.

Manures and Fertilizers
        The bearing trees of Sitaphal should be given 250 gms N, 125 gmsP205, and 125
gms K20 per plant before the commencement of rainy season. The Atemoya should be
fertilized with 450gms N, 450 gms P205, and 450gms K20 per plant of about 5 years age.
        In the initial years of planting, intercrops like groundnut, minor millets and linseed
can be grown rainy season oilseeds and gram during winter season.
        Sitaphal bears flowers on current season growth and very rarely on older wood. The
early completion of season is essential for the initiation of new growth. Therefore manual
defoliation during the mid summer is recommended.
        Sitaphal does not require and prefers semi-arid conditions.        For Atemoya after
manuring irrigation may be given. However, when the fruits are developing one or two
irrigations will improve the fruit size and yield.
        Harvesting should be done at proper stage of maturity. Fruits are harvested when
the colour is light green, segments become flat, the interspaces between segments become
yellowish white and initiated cracking of the skin between the carpel. Fully mature fruits
ripen in 2-3 days after harvest. The temperature between 15-300C and low relative humidity
accelerates the process of ripening.
Post Harvest Technology
        The Sitaphal fruits can be stored at 15-200C temperature, 85- 90% relative humidity,
low oxygen and Ethylene tension and 10% Co2, was emulsion at 8% also extends the
storage life.
Stone Fruits
        Some fruits instead of attaining full size remain very small and become brown and
dry up. These are known as stone fruits which are retained on tree for a long period.
Competition among the developing fruits and high temperature are supposed to cause stone
fruit formation.
Fruit Cracking
        This usually happens from a heavy rainfall or irrigation after a prolonged day spell.
Evenly distributed irrigation schedule and constant and uniform moisture level in the soil will
reduce this problem.

Plant Protection
Mealy bugs (Ferrisia virgata, Planococcus lilacinus, P. pacificus,Perissopnueumon
       Colonies of small reddish white mealy bugs infest leaves, shoots, buds and fruits.
Due to sucking of sap by nymphs and adult female mealy bugs, fruits remain small in size
and become shriveled. Presence of a large number of mealy bugs in grooves of fruits
epicarp along with sooty mould affects its market value.
       Remvoe all infested fruits and destroy them along with mealy bugs. Spray
Chlorpyriphos 0.05% or Dimethoate 0.045% at the initial stage of infestation. Exclude the
ants by putting sticky bands or destroy their colonies in the orchard.
Leaf spot and fruit rot (Glomerella cingulata)
       It occurs as light brown to blackish spots on leaves and such leaves defoliate causing
die back of plants. The fruit infection takes place both from blossom end as well as stem
end side as dry brown spots.
       Apply Carbendazim/Thiophanate 1g/lit and Chlorothalonil/Mancozeb 2g/lit during
rainy season.
                                       (Punica granatum)

       Pomegranate is indigenous to the Middle East and was first introduced in India from
Persia or Afghanistan in the first century. Pomegranate fruit is very nutritious and refreshing.
The total area under Pomegranate in Andhra Pradesh is about 4.9 thousand hectares with
estimated annual production of 44 thousand tonnes.
Soil and Climate
       Deep fertile soils with good drainage are suitable. Can be successfully grown even in
slightly calcareous and alkaline soils. Tolerant to severe hot, hence most suitable for dry arid
       It is a selection from Arakta cultivar. Rind and arils are dark red, softer arils. Fruits
weight about 250–300 g.
       Fruits are medium sized (230–270 g) with thick smooth dark red rind colour with
blood red colour soft arils. Arils are juicy having TSS of 18 °Brix.

         Rind colour is yellow with pink spots. Aril colour pinkish, with soft seed. Average fruit
weight 174g, TSS 13.1%, acidity 0.37%, yields about 12 kg per plant.
         Rind colour is yellow with pink spots. Average fruit weight 360g. TSS 15.5%, acidity
0.28%, yield 15 kg per plant.
       Aril colour pinkish white with red patches, soft seed. Average fruit weight 22g, TSS
15%, acidity 0.50%.
Jalore Seedless
         Rind colour yellow with red patches. Aril colour pinkish with soft seed. Average fruit
weight 155g, TSS 15%, acidity 0.30%, yield 16kg per plant.
Jodhpur Red
         Aril colour dark pink, Rind colour light green with red patches. Most prone to fruit
cracking. Average fruit weight 140g, TSS 15%, acidity 0.30%, yield 15kg per plant.
         Pomegranate plants are mainly propagated by air layering (gootee) and cuttings,
ground suckers can be used for cuttings. 15-20 cm long hard wood cuttings taken from 1-2
years old plant, should be treated with Seradex „B‟ rooting hormone or given a quick dip in
500 ppm Indole butyric acid. Nursery should be maintained with proper care from initial
stages, spraying mancozeb (0.25%) or Chlorothalonil (0.25%) at 15 days interval. Before
planting in main filed, spray the plants with Copper Oxy-chloride (0.25%) and Streptocyclin
(250 ppm). Ideal age of air layered plant should be minimum 4 months after cutting from
mother plant.
         Young plants can be planted at 3×3 m or 4×4 m or 4.5×3 m spacing. Pits (1×1×1 m)
should be in the month of May–June and kept open for atleast a month for sun exposure,
drench pits with 0.1% Carbendazim in 5 l/pit and filled with 20 kg FYM, 0.5 kg SSP and 100
g of 2% Lindane powder along with loose top soil. Ideal time for planting is July to October.
Watering must be done immediately after planting.
Training and Pruning
         Training pomegranate plants to one or too many stems is not advantageous and
uneconomical. The plant should be allowed to retain 4 main stems from the ground level.
Prune ground suckers, water shoots, criss-cross, dead, dry and infected branches and twigs
regularly. The main stem should be topped at a height of about 70 cm to induce branching.
The tree is given a balanced shape during the initial 2–3 years by proper selection of

secondary and tertiary branches. Downward growing branches and crossing branches should
be removed. While pruning, care should be taken to disinfect the secateurs with dettol (1%)
or sodium hypochlorite (1%), so that infection may not spread from on plant to other.
        After the tree is trained, much pruning is not required as the fruits are borne on one
year old branches (short branches). However, water sprouts and the dry branches should be
        After about 10 years, old main stems should be renewed by cutting back to make it
more productive.
Manures & Fertilizers
        Pomegranate can be grown in low fertile soils, however, it responds well to manures
and fertilizers, greatly increasing its productivity. Best way is to apply fertilizers based on soil
test and leaf analysis.
                              Recommended Fertilizers Doses
   Age (Years)        FYM (kg)       Nitrogen (g)       Phosphorous (g)         Potassium (g)
        1               10               250                 125                    125
        2               20               250                 125                    125
        3               30               500                 125                    125
        4               40               500                 125                    250
   5 and above          50               625                 250                    250

        During first year of planting, apply recommended dose in split application at monthly
intervals, preferably dissolved in water or just before irrigation. Second year onwards till
fourth year, manures and fertilizers should be applied to in split doses coinciding with
growth flushes during January, June and September. Fruiting can be taken from 3 rd year. In
bearing trees, apply N in 2 split does, starting at the time of first irrigation after bahar
treatment and next at 3–4 weeks interval. Full dose of P and K should be applied as single
dose with first irrigation. Foliar sprays of 0.25% each of ZnSO 4, FeSO4 and MnSO4 combined
with 0.2% boric acid at flower initiation, increase yield, improves quality and reduces
cracking of fruits.
        During first 3–4 years, intercrops such as low growing vegetables, green manure
crops, onion, etc can be taken. Rainy season is the best time for intercropping. During the
crop period orchard should be kept weed free. For soil moisture conservation plastic or
organic mulches can be used.

Bahar Treatment or Crop Regulation
        Although pomegranate can be grown throughout the year, a rest period of 3–4
months is necessary for prolific harvest and therefore, only one crop should be taken in a
year. Three main bahars can be taken, each has its own advantages and disadvantages.
                          Bahar Treatment or Flower Initiation
Bahar     Flower initiation months             Harvesting                  Advantages
Ambe          January–February                 June–August         High flowering, high yield
                                                                   but fruits are more prone to
                                                                   sunscald and aril color
                                                                   development      is     poor.
                                                                   Summer showers may favor
                                                                   the spread of bacterial
                                                                   Assured rainfall, but more
 Mrig              June–July                November-January       prone to bacterial blight and
                                                                   should be avoided
                                                                   Less incidence and spread
Hasta         September–October               February–April       of bacterial blight and it
                                                                   may be preferred
        Pomegranate can tolerate drought to a greater extent but, responds very well to
irrigation. Irrigation frequency and water requirement varies with the season, crop age and
stage. Drip irrigation is economical and saves 30-40% of water. Water quality also plays a
major role on fruit production. High salinity in soils and saline irrigation water affects normal
fruit production. In general the irrigation requirement as given under may be followed.
                                    Water Requirement
                 Cropping Season      Month              Water Requirement
                                      January                     17
                                      February                    18
                        Ambe          March                       31
                                      April                       40
                                      May                         44
                                      June                        30
                        Mrig          July                        22
                                      August                      20
                                      September                   20
                                      October                     19
                                      November                    17
                                      December                    16

Plant Protection
Fruit borer or Pomegranate Butterfly (Deudorix isocrates)
         Adults lay eggs at the time of fruit setting in flowers. Larvae develop inside the fruit
and these larvae bore out of the fruits. Black excreta of caterpillars are commonly seen on
         Remove infested fruits and destroy. Spray Phosphamidon (0.03%) or Carbaryl
(0.4%) or Endosulphan repeat the sprays with Fenvalerate (0.01%). First spray should be
given at the time of fruit setting
Thrips (Rhipiphorothrips cruentatus/Scirtothrips dorsalis)
    Feed by sucking sap from leaves, flower stalks, petals and result in leaf curl, drying of
young shoots and shedding of flowers. On fruits discoloured areas are seen which later
show rusty scars
   Affected plant parts should be removed and destroyed on observing the insect
   Spray chloropyriphos (0.02%) or imidacloprid (0.04%) or deltamethrin (0.15) or
    dichlorovos (0.05%) as prophylactic or on observing the symptoms.
Aphid (Aphis punicae)
    Usually affects new flush and suck cell sap. The affected parts get discoloured and
disfigured. These insects secrete copious amounts of honey dew, on which sooty mold
   Affected plant parts should be removed and destroyed on observing the insect
   Spray chloropyriphos (0.02%) or imidacloprid (0.04%) or deltamethrin (0.15) or
    dichlorovos (0.05%) as prophylactic or on observing the symptoms.
Mites (Aceria granati/Oligonychus punicae/Tenuipalus punicae)
    Adults and nymphs feed on the lower leaf surface resulting in shiny white/brown patches
and leaves may curl and dry.
   Affected plant parts should be removed and destroyed on observing the insect
   Spray chloropyriphos (0.02%) or imidacloprid (0.04%) or deltamethrin (0.15) or
    dichlorovos (0.05%) as prophylactic or on observing the symptoms.

White fly (Siphoninus phillyreae)
    They severely infest on dorsal sides of leaves resulting in to curling, yellowing and
   Affected plant parts should be removed and destroyed on observing the insect
   Spray chloropyriphos (0.02%) or imidacloprid (0.04%) or deltamethrin (0.15) or
    dichlorovos (0.05%) as prophylactic or on observing the symptoms.
Mealy Bugs (Planococcus sp., Ferissia sp.)
          Adults bugs and nymphs are seen on all parts. Cottony appearance of mealy bug and
sooty molds are the visible symptoms of mealy bug infestation.
   Affected plant parts should be removed and destroyed on observing the insect
   Spray chloropyriphos (0.02%) or imidacloprid (0.04%) or deltamethrin (0.15) or
    dichlorovos (0.05%) as prophylactic or on observing the symptoms.
Bark eating caterpillar (Indarabeal tetraonis, I. quadrinotata )
          Its larvae feed on bark under webbed galleries of silk and excreta. The attacked
plants show the presence of such galleries on the bark surface.
   Orchard should be kept clean and overcrowding of trees should be avoided
   Whenever larvae holes are observed, inject larvae holes with quinaliphos (0.01%) or
    fenvalerate (0.05%)
   Give a prophylactic spray or on observing the symptoms spray with carbaryl (0.04%) or
    dischlorovos (0.08%)
Stem Borer (Coelosterna spinator)
          Grubs make holes and bore through the bark of main stems and branches, feed
internally. Excreta and dry powdered material are usually seen near the base of plants.
   Treat the holes produced by borer with dicholrovos (0.25%) and seal holes with clay
   Spray quinolphos (0.05%) or chlorphyriphos (0.05%)
Shot hole borer (Xyleborus fornicates/X. perforans)
          Beetles bore holes in roots and trunks resulting in drying of trees. Their incidence
increases in rainy season.

   When insect symptoms are observed (yellowing and drying of plants) soil drenching with
    chlorpyriphos (0.2%) in and around the affected trees is effective.
   As prophylactic, spray chlorpyriphos (0.2%) and carbaryl (0.2%)
Leaf eating caterpillar (Achaea janata)
         Catterpillars feed voraciously on leaves and adults suck juice from fruits.
   Spray crop with chlorpyriphos (0.1%) as prophylactic spray or on initiation of insect
Fruit sucking moths (Othreis ancilla, O.cajecta, O.fullonica, O.materna, Achaea
       It punchers mature fruits at dusk by inserting proboscis and suck juice. Through
feeding punctures secondary pathogens enter and cause fruit rotting. They lay eggs on
   Destroy weeds and keep the orchard clean.
   Collect and destroy infested fallen fruits.
   Harvest mature fruits little early.
   Put poison bait containing malathion 1 ml + 100 g jaggery + 5ml vinegar in small tins
    during night.
   Generate smoke in orchards during dusk time.
Termites (White ants) (Odonyotermis obesus)
         White ants feed on many crops and more serious in light or light loamy soils and dry
areas. It is more serious in Rabi season.
   Use well decomposed organic manure
   Remove dead decaying matter or dry stubbles from the field to avoid termite infestation.
   Treat soil with quinolphos 1.5% or methyl parathion 2% dust @ 25 kg/ha before
   In standing crop apply chlorpyriphos 20EC @ 4L/ha with irrigation water for effective
    protection of crop against termite infestation.
Nematodes (Eudocima fullonia, E. maternal, E. homaena, E. cajeta)
         The roots of infested plants form knots, resulting in weakening of plants.
   Apply phorate @ 40gm/plant or carbofuron 2kg a.i/ha

Bacterial Blight (Xanthomonas axonopodis pv. Punicae)
        Water soaked lesions are formed on leaves, twigs, branches, flowers, calyx and
fruits. The lesions coalesce to form big spots as a result the infected leaves and flowers
drop, twigs and branches break at the point of infection. „Y‟ or „L‟ shaped cracks are formed
on lesions and in severe cases entire fruit split opens.
   Plant orchard with disease free planting material
   Keep proper row to row and plant to plant spacing and follow proper pruning and
    training to avoid plant to plant contact. This will also help in proper aeration and
    distribution of solar light, which helps to reduce diseases.
   Do not leave infected plant material (leaves, flowers, fruits & twigs) in orchards nor
    dump near orchard or thro in irrigation channels. The orchard should be swept clean to
    collect all fallen plant parts and burnt.
   Drenching of bleaching powder @ 150g/5-7L of water per plant or dusting of copper
    dust (4%) @ 20 kg/ha on soil below canopy at the time of bahar treatment reduces the
    bacterial inoculum due to left over plant debris in orchards.
   Prune twigs and branches 2 inches below the canker followed by 1% Bordeaux mixture
    spray. Cut ends should be applied with Bordeaux paste (10%) immediately after
   During pruning secateurs should be sterilized with dettol (1%) or Sodium hypochlorite
   People handling diseased plants/orchards should avoid entering/touching disease free
    orchards/plants without changing clothes and washing.
   Educate neighboring growers about the significance of sanitation and clean cultivation
    and to follow recommended spray schedules as well as doses strictly and in all the
    orchards effectively checking the spread of the pathogen.
Adopt the following spray schedule
   First spray be given with 1% Bordeaux mixture immediately after pruning
   Second spray at foliage initiation with Streptocycline (250ppm) + Copper oxychloride
   Third spray at 15 days interval with Bordeaux mixture (0.5%)
   Fourth spray with Streptocycline (250ppm) + Carbendazim (0.1%)

   Under favourable weather conditions of overcast sky and rains and high disease pressure
    higher concentrations of Streptocycline (500ppm) should be used. Also spray interval can
    be reduced to 8 – 10 days.
   Rest period of 3 – 4 months should be practiced and during this period Bordeaux mixture
    (1%) should be sprayed at 1 month interval. Streptocycline (250ppm) should be sprayed
    once during the rest period.
Leaf and fruit spots
Colletotrichum and Sphaceloma spots
       On leaves the spots are brown-black spots with light center and purplish-brown
borders. On fruits initially spots are small with dark purplish brown borders with light centers
which later enlarge to form larger spots with light center and dark edge.
       At flower initiation or disease appearance spray the crop with carbendazim (0.1%) or
mancozeb (0.25%), or copper oxychloride (0.25%) or Thiophanate methyl (0.15%)
Cercospora Spots
       Small irregular reddish brown spots are formed on leaves, which may be few or
numerous. On fruits these spots resemble much to oily spots but donot have cracks. The
disease is more severe in warm climates and in summer.
       At flower initiation or disease appearance spray the crop with carbendazim (0.1%) or
mancozeb (0.25%), or copper oxychloride (0.25%) or Thiophanate methyl (0.15%)
Alternaria Spots
       Isolated irregular round blackish-brown spots on leaves which may enlarge to cover
large area. Sometimes the affected leaves appear blighted, turn yellow, dries and fall off. On
fruits the spots are dark and cover large area, mostly mature fruits are attacked. Stressed
plants are more prone to this disease.
       At flower initiation or disease appearance spray the crop with carbendazim (0.1%) or
mancozeb (0.25%), or copper oxychloride (0.25%) or Thiophanate methyl (0.15%)
Drechslera Spots
       The fruits develop small irregular spots surrounded by yellow border. In severe cases
these blotches result in discoloration of inner tissue or even extend up to the seeds, where
arils turn brown.

       At flower initiation or disease appearance spray the crop with carbendazim (0.1%) or
mancozeb (0.25%), or copper oxychloride (0.25%) or Thiophanate methyl (0.15%)
Wilt complex (Ceratocystis fimbriata, Fusarium oxysporum, Rhizoctonia solani
and nematodes)
      Affected plants show yellowing of leaves in some twigs or branches, followed by
drooping and drying of leaves. The entire tree dies in few months or a year. When affected
tree is cut open lengthwise or cross-section dark grayish-brown discolouration of wood is
seen. Disease is more in heavy soil and increases with soil moisture.
   Plant at spacing 4.5 m × 3.0 m in the orchard
   Plant pomegranate in sandy loam soil with proper drainage
   Soil drenching with carbendazim (0.2%), or propiconazole (0.15%) or Tridemorph
    (0.15%) + Chlorpyriphos (0.25%) before planting in diseases prone areas.
   Spray with carbendazim (0.1%) or propiconazole (0.15%) or tridemorph (0.15%) as
    soon as first sign of disease are seen.
   The completely wilted plants should be uprooted and burnt and drench the plant basin
    as above.
Phytophthora Blight (Phytophthora nicotianae)
       Affects seedlings, foliage as well as fruits particularly during rainy season, when
humidity is high. Affected leaves and twigs show typical blighted appearance. Fungus also
attacks flowers and fruits at all stages and cause fruit rot.
       At disease appearance, spray the crop with metalaxyl 8% + mancozeb 64% (0.25%)
or mancozeb (0.25%).
Fruit rot (Cercospora punicae/Colletotrichum gloeosporioides )
       Fruit spot pathogen also result in fruit rots. Pathogens enter through calyx or stem
end and results dark brown depressed spots on fruits.
       At flower initiation spray the crop with carbendazim (0.15%) or mancozeb (0.25%)
thiophanate methyl (0.15%)
Fruit cracking
       Apart from cracking due to bacterial blight, fruit cracks are also due to improper
irrigation, boron, calcium and potash deficiency. When after a long dry spell there is rain or
irrigation water is given fruits tend to crack. Hence regular watering during fruiting period

should be practiced. Since abiotic cracks are directly related to moisture imbalance,
maximum cracking is in Ambe bahar followed by Hasta and lowest in Mrig.
      Irrigate the plants with adequate quantity of water at regular intervals. Spray Boron
@ 0.2% (2 g/l). Apply calcium and potash as per soil test values.
Sun scald
   Develop good canopy by proper pruning and plant nutrition. To reduce sun scald spray
Koalin thrice at 15 days interval during hot summer months. First spray is of 5% and next
two of 2.5%. If heavy rain or wind occurs spray interval can be accordingly reduced.
Internal break down of arils
       Disintegration of arils in matured pomegranates known as an internal breakdown or
blackening of arils, is a serious malady. This disorder cannot be identified externally,
whereas the arils become soft, light creamy brown to dark blackish brown and unfit for
consumption. It is increasing rapidly in the pomegranate growing pockets in western
       The incidence of internal breakdown occurs 90 days after anthesis. Its intensity
increases if the fruits are left on the tree for 140 days onwards. It is evident in evergreen
and deciduous cultivars. The incidence is more in ambe bahar, it increases with increase in
weight of fruits from 150-200g (26.60%) to more than 350g (60%). No insect or organism
is associated with this malady. The TSS, acidity, ascorbic acid, reducing sugars, starch,
tannins, nitrogen, potassium, magnesium, boron and enzyme polyphenol oxidase and
peroxidase increase in the affected arils compared with the healthy ones.
       The exact causes are not known and remedial measures are difficult to advocate.
Therefore pomegranates should be harvested at 120-135 days after fruits set.
       Harvest as soon as the crop matures.

                                    (Zizyphus mauritiana L.)

       Though ber is said to be a sub-tropical fruit, it thrives well under varying climatic
conditions. Low temperature conditions below freezing point are injurious to the fruits as
well as to the young shoots. It can, however, withstand severe hot conditions, by shedding
its leaves and becoming dormant during May–June. The ber prefers dry atmosphere for its
ideal performance, high atmospheric humidity is disadvantageous particularly during fruiting.

        It adapts to a wide variety of soils, varying from shallow to deep and from gravelly
and sandy to clayey. Ber can also withstand alkalinity and lightly water logged conditions. It
can also be grown on marginal lands which are unfit for growing other fruit crops. However,
deep sandy loam soils which are neutral or slightly alkaline provide best media for its
excellent growth and fruiting. The ber tree is drought hardy and grow under the most
hazardous conditions of soil, water and climate.
        The fruit is greenish yellow, round, medium to large and weighs 20g on an average.
It has good keeping quality. It yields about 100 kg/tree.
        Fruits are large, oval with a roundish apex, and have an attractive golden yellow
colour which turns to chocolate brown at full maturity. The fruit weighs on an average 30–
35g. It is tough and firm, surface smooth and glossy. It can withstand transporting and has
good keeping quality. It is a prolific bearer and yields about 200 kg/tree, ripens during
Banarasi Karaka
        Fruits are fairly large, oval with thin skin. On maturity fruits turn yellow. The fruit on
an average weighs about 25g, it is regular and a prolific bearer, yields about 150 kg/tree.
        The fruit is medium with an average weight of 25g. Fruit is oblong, with pointed
apex, smooth surface and greenish yellow skin. It is a medium to heavy yielder, yields about
120–150 kg/tree. It has poor keeping quality and does not stand transportation. Suitable for
local markets.
        Fruits are oblong in shape medium sized, weighs about 14–18g. It is a medium
yielder, 30–35kg/tree.
        Fruits are apple shaped, each fruit weighs about 30g. Tree grows upright, yields
about 40–45kg/tree.
        This variety belongs to Andhra Pradesh, fruits are oblong with pointed tip small to
medium sized with less pulp to stone ratio.

       The popular method of propagation of ber is by budding. Though different types of
budding are adopted the common methods is by shield and patch budding on suitable
Preparation of land
       The land is ploughed on both ways to uproot the stumps and stubbles and these are
removed. Finally the land is leveled.
       Budlings are planted either during spring (February–March) or during the rainy
season (August–September) the latter being more preferable. Pits of 60×60×60 cm are dug
one month before planting at a spacing of 6×6m. After a fortnight the pits are filled using a
mixture of good soil plus 25kg FYM plus 1kg superphosphate per pit. To avoid termite
infestation 30g of folidol 2% dust is mixed with the soil. After filling the pit it is watered to
allow the soil to settle. Then the budlings are planted in the pit, by scooping out soil in the
middle of the pit and pressing the soil round the ball of earth of the budling. Then it is
After care
       The young budlings are watered regularly at weekly intervals by basin method for a
couple of summers. The budlings are protected from scorching sun by erecting thatches or
covering the plant all-round, leaving a gap on the south-western side with palmyra leaves.
Any sprouts arising on the rootstock portions are removed promptly. The young budlings
should be staked to avoid breakage at the bud union.
Training and pruning
       The ber is a spreading type of tree. If left uncared it spreads and becomes
unmanageable. So training and pruning of ber trees are highly desirable to build a strong
frame work and to obtain regularly profitable yields.
       For developing a strong frame work it is essential to train them right from the
nursery stage, when the scion bud sprouts, only one upright growing shoot should be
removed. Training of ber is carried out during the initial three years after planting. During
the first year an upright and vigorous main trunk is developed upto a height of one meter
from the ground level, by removing all the sprouts. From this trunk, 3–4 well spaced and
favourably located main branches should be allowed, while the rest are removed. These
laterals form the framework of the tree. During the second year, the above process should
be repeated to develop the tree upto tertiary branching level. During third year, final

balancing and correction of the tree framework is done, along with first pruning. All the criss
crossing and week shoots should be removed.
       The ber fruits are borne in the axils of leaves on the young shoots of the current
season. Hence, a regular annual pruning is necessary to induce maximum number of new
healthy shoots to provide maximum fruit bearing area and to produce quality fruits. Heading
back of 25% growth together with removal of diseased, broken or criss-crossing branches is
also necessary to avoid crowding. The best time for pruning is April–May, when the trees
are in dormant condition.
Manures and Fertilizers
       The productivity of the ber trees can be improved by proper manuring annually. The
manurial schedules vary from place to place. Application of 10kg of FYM and 15 kg of
Ammonium sulphate per tree of 4-5 years old is recommended. A fully grown tree should be
given 20-30 kg of FYM and half kg of Nitrogen to obtain good yields. The fertilizers are
applied in two equal split doses once in rainy season (July-August) and next at the time of
fruit set (September-October).
    Age (Years)        FYM (kg)         Nitrogen          Phosphorous          Potassium
                                           (g)                (g)                 (g)
          1                 10             100                 50                  50
          2                 20             200                100                 100
          3                 30             300                150                 150
          4                 40             400                200                 200
          5                 50             500                250                 250
      Above 5               60             750                300                 300
       Though ber is drought resistant, it responds well to irrigation and to improve the
productivity irrigation is a must. However, ber trees need not be irrigated during the most
period of the year but irrigation during the period of fruit development (September–
December) is very essential and is beneficial. Irrigation is given at 7-10 days interval
depending upon the prevailing agro-climatic conditions.
       Mostly grown as rainfed fruit crop, initial first 2 to 3 years irrigation should be
provided using pitcher method where 20 liter capacity pitchers (mud pots) with drain hole
plugged with cotton are arranged near tree drip circle.
        Drip irrigation and fertigation also a common practice saving 50–60% water and 20–
30% fertilizers. Irrigation should be regulated at the time of flowering and fruiting.
       One ploughing in September-October is desirable to keep the weeds under control.
Ploughing in summer helps to check the insects and weeds.

       The ber trees take about 5 years to occupy the interspace in the orchard. Till then,
the interspaces can be profitably used by growing intercrops. Leguminous intercrops are
preferable as they enrich the soil.
       Ber trees are regular and heavy bearers. Budlings start bearing with in three years of
planting. There after it gives regular yields.
       Under the prevailing conditions of Andhra Pradesh, ber flowers in the months of
June-August and the harvesting of fruits begins by November onwards and lasts upto the
end of January.
       All the fruits on the tree do not ripen at one time and therefore, 4 to 5 or more
pickings have to be done in the season. Fruits are harvested with hand or a pole with a
hook. The fruit should be harvested at the right stage. The best index is the characteristic
maturity colour and softness of a particular variety after the fruit has attained full size.
       After harvesting, the fruits should be graded according to the size and colour, for
getting good profits. The average yield per tree varies with the variety. However, the
average yield per tree ranged from 100 to 200 kg.
       Although ber is often referred as “Poor man‟s fruit”, yet it is not a “Poor fruit”. It
excels many important fruits in vitamins and minerals. The ber fruit are rich in nutritive
value. They contain considerable amounts of protein, minerals, vitamin „C‟ and carotene.
Viramin „C‟ content of the ber fruit is more than that or citrus fruits.
       The ber fruit is mostly eaten as fresh fruit but it can also be dried and kept for use in
the off season. Ber fruits can also be preserved in the form of murabba, candy and chutney.
       Besides the fruits, the ber tree also yields other economic products. Leaves are used
as fodder in the dry regions of Punjab and Rajasthan. Its wood is used for making
agricultural implements. As fuel, the ber wood has a high calorific value and makes excellent
       The most important use of ber tree, other than providing fruits is, it gives lac, when
infested by the lac insect.
Plant Protection
Fruit Fly (Carpomyia vesuviana)
       This pest is recorded throughout the country and is the most serious pest of ber,
making the ber cultivation uneconomical. Almost all the cultivated varieties are susceptible
to this pest. Infestation of the pest starts with the onset of fruit setting. The adult female

lays eggs singly in the developing fruit. On hatching the maggot starts feeding on the pulp
inside the fruit. Infested fruits become deformed and their growth is arrested and they drop
off. The maggot, when fully grown comes out of the fruit, drops to the ground and pupates
inside the soil. Several generations of pest are seen in the season.
       To minimize the pest infestation, orchard soil should be ploughed during March-April,
May-June and August, to expose the hibernating pupae to the bright sun and birds. The
dropped fruits infested with fruit fly should be collected and buried deep in the soil, to
destroy the pest. During the fruiting season, spraying should be done with 0.06%
dimethoate 30 EC (2ml/L) or 0.125% malathion (2.5ml/L) or dichlorovas 0.1% (1ml/L).
Fruit borer (Meridarchis scyodes)
       Very serious pest. Eggs are laid on fruits at pea stage. On hatching caterpillars bore
into fruits and feed on the pulp near seed. The extent of damage may vary from 20 – 80%.
       Destroy the infected fruits. Foliar spray with polytrine @ 1ml or Endosulphan @
2ml/L for 2-3 times at 10 days interval initiating first spray at pea size.
Leaf Eating Caterpillars (Euprocitis fraternal, Thaicidas postica )
       Young caterpillars initially remain gregarious and scrape leaves and tender fruits.
Later instar caterpillars disperse and devour leaves, fruits and tender shoots.
       Foliar spray with Quinolphos or Endosulphan @ 2ml or carbaryl @ 3g/L
Powdery Mildew (Oidium sp.)
       The fungus attacks young developing leaves. The affected leaves drop off. It also
attacks the fruits, and causes heavy fruit drop. The affected fruits become corky, cracked,
misshapen and under developed. When the attack is severe, entire crop is lost through fruit
drop or rendered unmarketable.
       Spraying 0.25% wettable sulphur four times or 0.05% Karathane four time times or
three foliar sprays with 0.1% Dinocap or 0.1% Triademorph at 20 days interval, initiating
spray after the first appearance of the disease i.e.during July, September, November and
December will control the disease effectively.

                                      (Emblica officinalis)
       Aonla or Indian gooseberry (Emblica officinalis) is an indigenous fruit to Indian
subcontinent. Owing to hardy nature, suitable to various waste lands, high productivity/unit
area (15-20 t/ha), nutritive and therapeutic value, aonla have become an important fruit.
       Its fruits are a rich source of vitamin „C‟. Aonla, fruit is highly valued among
indigenous medicines. It is acrid, cooling effect, diuretic and laxative. Dried fruits have been
reported to be useful in haemorrhages, diarrhea, dysentery, anaemia, jaundice, dyspepsia
and cough. Trifia and chavanprash are well known indigenous medicines in Ayurvedic
system using aonla. Besides fruits, leaves, bark and even seeds are being used for various
purposes. The total area under Aonla in Andhra Pradesh is about 4,991 hectares with
estimated annual production of 9,982 tons.
Soil and Climate
       Any type of soils with good drainage. It can be successfully grown in saline, acidic
and alkaline soils. Tolerates sodium levels up to 30% and pH up to 9.5. Tolerant equally to
severe cold and hot climates up to 46 °C. Leaf fall start in summer and trees enter in to
dormancy from March to May. Most suitable for dry arid climates
Balawant (NA-10)
       Fruits are medium to large size, round with little warty skins weighing about 40g.
Fruits are attractive with light green having pinkish tinge. Five to 6 six year old tree yields
about 42 kg/tree. Vitamic „C‟ content is about 528 mg/100g pulp.
Neelam (NA-7)
       A seedling selection of Franchis, it is precocious, prolific and regular bearer (9.7
female flowers/branchlet). This is an ideal variety for preparation of products and has a
great promise.
Amrit (NA-6)
       A seedling selection from Chakaiya, it is prolific and heavy bearer (10.8 female,
flowers/branchlet). It is ideal for preserve and candy, owing to low fibre content.
Kanchan (NA-4)
       Fruits are light yellowish green, medium sized fruits (30–32g). Vitamin „C‟ content is
about 711mg/100g pulp. Five to 6 year old tree yields about 35–38kg/tree. Suitable variety
for pickle purpose.
       Fruits are greenish white color, medium size (33–35g). Fibre content is high, Vitamin
„C‟ is about 789mg/100g pulp. Five year old tree bears yields about 30kg/tree.

        Variety is released from Tamil Nadu Agricultural University. Fruits are pinkish
coloured and small sized (12–14g). Vitamin „C‟ content is about 650mg/100g pulp. A five
year old tree yields about 40–45kg/tree. Suitable variety for pharmaceutical use.
Propagation and Planting
        Propagated mostly by budding, wedge and approach grafting also practiced. Young
plants should be planted at 8×8 m or 6×6 m spacing. Pits of 1×1×1 m should be dug in the
month of May-June and filled with 15 kg FYM, 1 kg SSP and 100 g Furadon granules along
with loose soil. Ideal time for planting is July to October, while planting bud or graft union
should be at least 10–20cm above the ground level. Plants should be staked and shoots
arising from rootstock should be removed promptly. Since fruit set is mostly by cross
pollination, more than one variety should be planted for better yields.
        Aonla tolerates well to drought conditions, mostly grown as rainfed fruit crop,
however initial first 2 to 3 years assured irrigation is essential for good growth. During
summer irrigation interval should be every 4–5 days. In case of bearing trees irrigation
should be stopped in the months of Nov–Dec for better flowering in the following season.
Drip irrigation and fertigation also a common practice saving 30–40% water and 20–30%
fertilizers. Rainfed Aonla orchards should use organic mulching in basins to 8 cm thick with
either wood shavings or groundnut shells to conserve moisture.
Manures and Fertilizers
        During first year after planting, 100 g N, 50 g P, and 100 g K plus 10 kg FYM should
be applied. Later on every year fertilizers should be applied in increments of 100 g N, 50 g
P, and 100 g K and 5 kg FYM up to the age of 10 years. For trees of more than 10 year old,
1kg N, 0.5kg P and 1kg K plus 60 kg of FYM should be applied. Trees start bearing fruits
from 3rd year onwards. Fertilizers should be applied in 2 split doses in bearing trees, first
dose at new flush and second dose during monsoon (June-July). Micronutrients foliar spray
should be applied at fruit set stage.
        During first three years, intercrops such as groundnut, horsegram, pulses and other
leguminous crops or medicinal and aromatic crops can be grown.
Flowering, Fruit set and Yield
        Flowering occurs on new shoots in the month of January–February. Indeterminate
shoots are produced on main shoots, later on flowers are borne on new definite branches.
Male flowers are produced first at the bottom and later female flowers at the tips of these

branches. Fruit set occur by cross pollination and later fruits enter in to a prolonged
dormancy for up to four months (March–June), during this periods tree basins should not be
disturbed. By commencement of monsoon, dormancy is released and fruits start developing
rapidly and will be ready for harvest in October. A fully grown tree of about 10 year old
yields up to 100 to 150 kg/tree.
Plant Protection
Bark eating caterpillars (Indarbela quadrinotata, I.tetraonis)
       Feed on the bark under silken ribbon shaped webs.
       Inject with dichlorovos (1ml in 10ml of water) or Kerosin or Endosulfon (2ml/L) of
water and seal holes with clay.
Sucking pests
       Attack mainly fruits at pea stage resulting in poor fruit development.
   Foliar spray with dimethoate @ 2ml/L or Phosalone 0.05%
Aphids (Schoutedenia emblica )
       Infestation is severe on young flush and flowering stage. Nymphs and adults suck
sap from tender shoots, secrets honey dew all over the branches and leaves. Sooty mold
develops on these secretions that hinder photosynthesis.
   Foliar spray with dimethoate @ 2ml/L or Phosalone 0.05%
Mealy bugs (Nipaecocus vastator (maskell))
       Nymphs develop in soil near tree basins and crawls on trees. Both nymphs and
adults infest near stalk end portion of fruits and suck sap resulting in poor fruit development
and premature fruit drop.
       Intercultivate during summer. Foliar spray with neem oil @ 5ml/L. Apply 2% Follidol
dust in the tree basins. Foliar spray with Chloropyriphos @ 2.5ml/L
Rust (Ravenelia emblica)
       Conspicuous black coloured rust pustules on leaflets and fruits. Affected fruits drop
off prematurely.
       Foliar spray with Chlorothalonil @ 2g or Mancozeb @ 2.5 g/L or Sulphur 2g/lit or
Bitertanol 1g/lit during December.

Black Spot
       Initially small black spots are formed on fruits and later enlarges.
   Foliar spray with Copper oxycholoride 3g/L or 1% Boredeaux mixture immediately after
receival of rain during fruit development and repeat it after 15days interval.
Fruit necrosis
       Necrosis a physiological disorder, has been observed in aonla fruits. Francis variety is
highly susceptible followed by Banarasi. Incidence initates with browning of mesocarp which
extends towards the epicarp resulting into brownish black appearance of flesh.
       Foliar spray with Borax @ 6g/L at 15 days interval for three times during fruit
development stage.

                                    (Tamarindus indica L.)
       Tamarind, Tamarindus indica L., is a multipurpose tropical fruit tree used primarily
for its fruits, which are eaten fresh or processed, used as a seasoning or spice, or the fruits
and seeds are processed for non-food uses. The species has a wide geographical distribution
in the subtropics and semiarid tropics and is cultivated in numerous regions. The total area
under Tamarind in Andhra Pradesh is about 6,099 hectares with estimated annual
production of 46,962 tons.
Soil and Climate
       The tamarind tree can grow in a wide range of soils and have no specific soil
requirement. With little or no cultivation it can flourish in poor soils and on rocky terrain. It
tolerates sodic and saline soils where it grows in ravines and on degraded land. Tamarind is
adapted to a wide range of ecological conditions, reflecting its wide geographical distribution
in the sub and semi-arid tropics. The maximum annual rainfall which tamarind can tolerate
is up to 4000 mm, provided that the soil is well drained. Tamarind grows under these
conditions in the wet tropics but does not flower. In fact, dry weather is important for flower
initiation and if heavy rains occur during flowering tamarind does not bear fruit.
       There are only few varieties of tamarind. Important varieties in India are
        A clonal selection from the gene bank, it is early variety yielding 263 kg pods/tree
with a pulp content of 39 %. It can give 26 tonnes of pods/ha if transplanted at a spacing of
10 m x 10 m.

       This is another local type providing very long pods, having sweet pulp
       Variety released from Marathwada Agricultural University. Pulp has acid sweet taste,
60% pulp. 8% tartaric acid in pulp.
       Variety released from Marathwada Agricultural University. High yielding type with red
pulp, regular bearer, 11.00% acidity.
Propagation and Planting
       Tamarind can be successfully propagated by root and stem cuttings or air and stem-
layering or by budding and grafting. However, commonly practiced method is by wedge and
approach grafting. Young plants should be planted at 10×10m or 9×9m spacing. Pits of
1×1×1 m should be dug in the month of May-June and filled with 15 kg FYM, 1 kg SSP and
100 g Furadon granules along with loose soil. Ideal time for planting is July to October,
while planting graft union should be at least 10–20cm above the ground level. Plants should
be staked and shoots arising from rootstock should be removed promptly.
       Tamarind tolerates well to drought conditions, mostly grown as rainfed fruit crop,
however initial first 2 to 3 years assured irrigation is essential for establishment. During
summer irrigation should be at every 7–10 days interval.
Pruning and Training
       Initial training and pruning of young plants during the first years is essential for the
development of well-formed trees. Tamarind is a compact tree and produces symmetrical
branches. Young trees should be pruned to allow 3-5 well-spaced branches to develop into
the main scaffold structure of the tree. Bearing trees require very little pruning other than
maintenance pruning to remove dead, weak and diseased branches and water sprouts.
       Tamarind allows intercropping with a variety of annual crops. Vegetables and
legumes can be grown during the rainy season in the interspaces in the first three to six
years to augment farm income and improve soil fertility.
Manures and Fertilizers
       The nutritional requirement of tamarind has not yet been studied and standardized
recommendations are therefore not available. Trees are known to fruit well even without
fertiliser application, due to their deep and extensive root system. Inorganic fertilizers are
not normally applied to tamarind trees, but 5 kg of farmyard manure is applied to the

planting hole at the time of planting. Every year thereafter 5 kg of farmyard manure and 5
kg of neem cake are applied per tree in the months of March and April.
       Irrigation is not normally practiced in tamarind cultivation, but promotes better
growth during establishment and the early stages of growth, especially during the dry
seasons. Where irrigation facilities are available watering should be done and repeated as
the need arises in the early stages of growth. In later years as the deep tap root system
develops, the need for watering becomes less. Flowering and fruiting is promoted by
irrigation. In dry areas the use of water harvesting techniques during the rainy season
should be considered as it encourages subsequent growth and fruiting. Mulching during the
dry season will also help to reduce water losses from evaporation. Mulches around the trees
also help in weed control and water conservation.
Flowering and Fruit set
       In tamarind, terminal vegetative shoots which bear flowers only in the following
flowering season are produced annually. Two types of terminal shoots have been observed,
short ones with an erect habit and long ones with a drooping habit. It is reported that
production of flowers varies considerably between selections in India. Those with longer
vegetative terminal shoots produce more flowers. In general, flowering and fruiting of
tamarind takes place in the dry season. An extended spell of dry weather may be essential
for fruit development. The period from flowering to pod ripening is 8-10 months. Ripe fruits,
however, may remain on the tree until the next flowering period. In most of the tamarind
producing countries the fruits are harvested from February to March/April, but sometimes
the harvesting period may extend to June. In India, fruits are harvested from April to May.
Plant Protection
Fruit Borer (Lasioderma serricorne, Virachola isocrates)
       The larvae infest ripening pods on the tree and persists in the stored fruits, larvae
feed internally on the pulp and seeds and makes unmarketable.
       Destroy the infected fruits.
       Foliar spray with polytrine @ 1ml or Endosulphan @ 2ml/L or Carbaryl @ 3g/L for 2-
3 times at 10 days interval.
Mealy bug (Planococcus lilacinus)
       The mealybug, is a leading pest of tamarind in India, causing leaf-fall and sometimes
shedding of young fruits.

       Foliar spray with chloropyriphos (0.02%) or imidacloprid (0.04%) or deltamethrin
(0.15) or dichlorovos (0.05%) as prophylactic or on observing the infestation.
Powdery mildew
       A mildew caused by Oidium sp. is a common occurrence in nursery seedlings. The
disease causes defoliation and early growth is severely retarded.
      In order to have effective control foliar sprays of wettable sulphur @ 3g/L at 15 day
intervals is the most economical method.



                                  (Lycopersicon esculentum)

        It is the world‟s largest vegetable crop after sweet potato. It is the one of the most
important protective foods. It is cultivated in 81,069 hectares with an estimated annual
production of 14,08,000 tonnes in Andhrapradesh.
        It is mostly grown as winter vegetable. It cannot tolerate high temperature and
heavy rainfall conditions. In summer it is also grown around Madanapalli, Palamaneru areas
of Chittoor district and in Arakuvally areas of Visakhapatnam district.
        It is successfully grown as winter in almost all types of soils ranging from sandy
loams to heavy clay soils and also during the onset of monsoon in kharif in light soils of
Telengana as rainfed crop.
Pusa Ruby
        Suitable for cultivation in our State. This variety is determinate and erect in nature.
It comes to fruiting in about 60-65 days after transplanting. Fruits are medium sized,
uniform red, oblate with deeper furrows than Pusa Early Dwarf. Crop duration about 130-
135 with 30 tons/ha yield.
Pusa Early Dwarf
        Suitable for cultivation in our State. Earlier than Ruby, comes to harvest in 60 days
after planting. It is dwarf but branches freely, fruits are medium in size with slight furrows,
uniform red smooth and slightly larger fruits than Pusa Ruby and withstands better to rains.
Crop duration is 125-130 days. Yield about 30tons/ha.
Pusa Selection-4
        Released from Indian Agricultural Research Institute. New Delhi Tall and moderately
sturdy plants. Fruits medium in size and round, attractive red color. Crop duration is about
140-150 days, yield 35-40 tons/ha.
        Released from Tamil Nadu. Plant small in size, more number of plants can be
transplanted per acre. Suitable for cultivation in all seasons. Duration 135 days, yields 32
Arka Saurabh
        The plants are semi-determinate in growth habit, bearing firm fleshy fruits of deep
red color, each weighing on an average 70g. It is a dual purpose variety suited both for

fresh market and processing into juice and ketchup. It is resistant to fruit cracking and
produce 35 tons/ha in 105/110 days after transplanting.
Arka Vikas
         This variety was developed from an American variety Tiptop. The plants are semi-
determinate bearing oblate fruits weighing 80-85g. Fruits are attractive, red, ripening
uniformly. Suitable for fresh market. It produced 35-40 tons/ha of fruits in 105-110 days
after transplanting.
Arka Meghali
         This variety is suitable to dry lands. It produced the yield of 20t/ha.
         This variety released from Tamilnadu Agricultural University, Coimbatore. Plant small
in size, sturdy, heavy branching with dency leaves. Suitable for all seasons. Specially
recommended for summer. Fruits round medium in size. Duration 135-140 days. Yield 32-35
         Released by Tamil Nadu Agricultural University, Coimbatore. Determinate, freely
branching habit. Fruits are medium to large, oblate to round, with slight furrows. Comes to
harvest in about 65 days with a total duration of 32-35 tons/ha.
         An   early,   determinate   hybrid,   fruits   medium sized, smooth,      intense   red
coloured;plants resistant to Fusarium and Veticillium wilts; fruit setting is excellent even
during hot summer months, hybrid widely adopted.
         A determinate and widely apated processing hybrid, it produces excellent round, firm
fruits with good colour and high TSS; ideally adopted for hot and dry climate.
         Plants determinate, compact growing, early with good foliage cover. Fruits medium
sized, deep red with high TSS, suitable for processing; very productive, and can be grown in
hot and dry weather.
         It is produced by Indo American hybrid seeds, Bangalore. It gives high yields.
         A heavy yielder, determinate, compact growing hybrid. Fruits semi oblong, medium
sized, good coloured, uniform ripening, suitable for processing, tolerant to TLCV.

Preparatory Cultivation
         Plough the land 4-5 times to attain a good tilth, incorporate the Farmyard manure in
the last ploughing. If the crops are to be raised in Kharif, prepare ridges and furrows at 60
cm spacing for convenient irrigation channel. For winter and summer crop, prepare the field
into convenient beds of 4x5 m size.
         Varietes        60 x 45 cm
         Hybrids         90 x 45 cm
Seeds and Sowing
         Seed rate 500g/ha for high yielding varieties and 150g/ha for hybrids or a nursery of
25-30 beds of the size of 1x4 m would be adequate to transplant one hectare. Summer crop
requires 1kg of seed/ha.
         Before preparing nursery beds, well decomposed Farm Yard Manure may be applied
to soil. These beds may be sprinkled with Bordeaux mixture 0.5% or Dithane Z-18 or
Dithane M-45 2-3g/lit as a prophylactic measure against damping off. Seed beds should be
raised 6” above the ground level.
         The Seedlings with 3-7 leaves which are approximately 25-30 days old should be
transplanted at variety soil fertility.
         Treat the seed, before sowing with Thiram 2-3g per one kg of seed.
Manures and Fertilizers
         Application of farm yard manure to an extent of 20-25 tons/ha is desirable in the
final ploughing.
For high yielding varieties
         A basal dose of 50kg/ha each. of P2O5 and K2O have to be applied and 100/ha. Of
Nitrogen is to be applied in three split doses, 30th, 45th and 60th day after transplantation.
For hybrids
         250 kg N: 150 kg P2O5: 150 kg K2O/ha. (A basal dose of 150kg/ha each. of P2O5 and
K2O have to be applied and 100/ha. Of Nitrogen is to be applied in three split doses, 30 th,
45th and 60th day after transplantation).
         Weeding hoeing and earthing up is to be done along with fertilization. Nipping of
terminal shoots will improve the branching and fruit set. Stalking is prepared for the
development of good size quality fruits. Apply 15 or 20mg. Parachlorophenoxy acetic acid or
2mg. 2,4-D per lit of water at flowering and fruit setting to avoid flower & Fruit to get better

       Irrigate the field at 7 to 10 days interval depending upon the soil moisture. In
summer irrigate every 5-6 days.
       Harvesting of fruits commences in about 85 to 90 days after transplantation and
continues for about 45 to 60 days. Yields 30 to 40 tons/ha in the high yielding varieties 50-
60 t/ha in hybrids.
Plant Protection
Fruit Borer (Kaya Toluchu Purugu) (Spodoptera litura, Heliothis armigera,
Utetheisa pulchella)
       This is a serious pest on tomato. The caterpillar crawis over the leaves and feed on
the vegetable parts. It cuts the branches of the plant and also forms holes and burrows in
the fruits and destroy them.
       Spray Carbaryl 50% w.p. 0.1% @ 2g per lit of water or Quinalphos (0.05%) 25% EC
@ 2 ml/lit of water
Epilachna beetle (Akshintala Purugu) (Epilachna vigintioctopunctata )
       Both grubs and adults feed on the leaves. The feeding is irregular and gives a
characteristic lace like appearance to the leaves.
       Spray Carbrayl 50% w.p. 0.1% @ 2g per lit or water or Endosulfan (0.05%) 35% EC
1.5ml per lit of water.
Jassids (Pach Doma) (Sundapteryx biguttula )
       The nymphs and adults stay underneath the leaves and suck the sap, resulting in the
wilting up of the leaves.
       Spray Dimethoate (0.06%) 30% EC @ 2ml per lit of water mixed with Metasystox
25% EC or Monocrotophos @ 1.5ml per lit of water
Disease Control
Damping off (Narukullu Tegulu) (Pythium spp.)
       The seedlings re mostly attacked in the nursery bed at the ground level and as a
result they topple.
       Treat the seed before sowing with Thiram 2-3 g/kg seed.

Wilt (Vadalipovu Tegulu) (Fusarium Oxysporum fsp lycopersici)
       The lower leaves become yellow and the petioles droop. The affected plants wilt and
       Use of seeds from healthy plants. Crop rotation and using resistant varieties
Early blight (Akumadu Tegulu) (Alternaria solani)
       Brown spots with concentric rings appear on leaves, stems as well as on fruits. In
severe cases the fruits drop off and the whole plant dries up.
       Spray Captan or Dithane Z-78 or Dithane M-45 @ 3g/lit of water. Seed from infected
plant should not be used.
Mosaic virus (Verrikullu Tegulu)
       Interveinal mottling and yellowing of the leaves with scattered patches ongreen
areas. The leaf surface appears to be crinkled and britte
       Diseased plants should be removed as and when noticed. Spray insecticides to
control the insect vectors.
Tomato spotted wilt virus (Tomato Machalu Madu Virus)
       Bronze colour markings on the upper side or young leaflets accompanied by
downward curling of leaves.
       Diseased plants should be removed as and when noticed. Spray insecticides to
control the insect vectors

                                   (Solanum melongena L.)
       It is one of the most common vegetables grown throughout the Country. This can be
grown successfully under the climatic conditions prevailing in South India and the Deccan
Plateau. It comes up well even in hilly regions where the temperature does not come down
below 5 C. In Andrha Pradesh it is cultivated in an area of 28.548 hectares with annual
production of 5,31,000 tons. It is rich in Vitamin A and E.
       It can be grown in plains throughout the year but rabi season is the best
       Rainy Season           -       June – July
       Winter Season          -       October – November
       Summer Season          -       February – March

         A well drained soil with medium to high fertility is best suited.
         It was released by APAU. It is freely branching, erect type compact in habit. The
emerging leaves are Purple in color, with slightly purple stem. Fairly resistant to fruit borer
and little leaf virus. Fruits are borne in clusters of 3-6, deep purple with oblong shape and
without spines. It comes to harvest in about 45-50 days after planting. Duration of the crop
is 140-160 days. This variety withstands better for drought. Also performs better in upland
rainfed cultivation. Yields range from 30-35 tons/ha.
Pusa Purple Cluster
         Crop comes to harvest in 66-75 days, tall, erect, compact habit. Leaves and stem are
purple. Fruits borne in clusters of 3-6 fruits deep purple oval shape, 10-12 cm long. Heavy
yielder 30-40 tons/ha. Resistant to bacterial wilt. Duration is 135-140 days.
Pusa Purple Long
         It is an early variety. Comes to harvest in about 45 days after planting. Semi erect
habit, medium height, leaves and stem are green in colour, spines are absent. The leaves
are with cut edges. Fruits long, purple, glossy, 25-30 cm long.
Pusa Purple Round
         Tall, erect, and sturdy in habit. Leaves and stems are dark green colour and without
spines. Leaves are with entire margin. Fruits round weighing 130-150gm purple glossy,
smooth and large. Resistant to little leaf disease, 135-150 days duration, yields moderate
i.e. 20-25 tons/ha.
Pusa Kranti
         Tall, vigorous and study in habit, leaves and stem are mild green. Spines are absent.
Fruits oblong purple with shining gloomy appearance with attractive green calyx. Fruits are
borne in singles, medium to large in size heavy yielder 35-40 tons/ha. Duration is 135-150
         Fruits medium in size, light pink colour with cluster bearing habit. One cluster has 3–
4 fruits. This variety suitable for Telangana and Coastal region.
         It is best suitable for Telangana region. Generally used for masala curries.

Arka Sheel
          The fruits are medium long tender and possess an attractive deep purple skin colour.
The fruit contains more edible flesh and less number of seeds. It is a very high yielding and
produces on an average 394 q/ha in 110 to 120 days after transplanting.
Arka Kusumakar
          The fruits are small finger shapped and light green in color. The fruits are borne in
clusters of 5-7. It is a very high yielding and dwarf plant bears about 70-75 fruits per plant
with an average yield of 397 q/ha in about 110 to 120 days after transplanting.
Pusa H-5
          Early muturing, long, dark purple in colour, yields 50 t/ha.
Pusa H-6
          Early maturing, round, dark purple in colour, yielding 45 t/ha.
          An early maturing vigorous hybrid which produces long, oval, glossy, deep purple
          Purple coloured, cluster bearing variety.
          The fruit is round, dark purple in colour.
          Varieties      50 x 50 cm
          Hybrids        75 x 50 cm
Seeds and Sowing
          650 g/ha or nursery of 25-30 beds of the size 1x4 m would be adequate to
transplant one hectare. The seedlings with 3-4 leaves with are approximately 30-35 days old
should be transplanted with a spacing of 50x50cm. or 75x50 cm.
For hybrids
          300 g of seed is required for one hectare
Manures and Fertilizers
          A basal dressing of 50kg of P2O5 and 50kg K2O are to be applied/ha in the last
ploughing. Application of Farm Yard Manure upto 25 tons/ha is desirable. 100kg of Nitrogen
per hectare is to be applied in three split doses at 30th, 60th and 75th day after planting.
For hybrids
          20-25 tons of FYM, 200kg N, 100kg P2O5 and 150kg of K2O/ha.

        Weeding, Hoeing and earthing up is to be done along with fertilization.
        The crop requires adequate moisture during the first 70 days. It can withstand
drought later to some extent and still revive upon the soil moisture. In summer interval of 4-
5 days and in winter 7-10 days.
        The harvesting starts from 50th day onwards and continues for 50 days in the first
phase and a second phase con be obtained after 20-25 days if adequate nutrition and
irrigation are provided. The crop can be removed after 110 days if the 2 nd flush is not
desired, otherwise it can be retained for 150-160 days.
        The size of the fruit reduces during the summer. The calyx is purple blue and is soft
and edible too. During summer the calyx tends to become green.
        High yielding varieties 20-25 t/ha
        Hybrids 35-50 t/ha.
Plant Protection
Epilachana beetles (Akshintala Purugu) (Epilachna viginti octopunctata,
       Both adults and grubs skeletonize the leaves which present a lace like appearance.
These leaves dry up and plant presents an unhealthy appearance.
        Spray of Malthion 0.16% @ 3 ml per water of Methyl parathion 0.03% @ 1ml per lit.
of water @ 1ml per lit. of water
Shoot and fruit borer (Muvva, Kaya Toluchu Purugu) (Leucinodes orbonalis)
        In nursery no damage is done by this pest. Pest affects young shoots of tansplanted
seedlings. They wither and droop. At fruiting stage fruits are bored. They form galleries.
        3 sprayings of Carbaryl 50% w.p. 2.5 g or Monocrotaphos @ 1.25 ml per lit of Water.
A safe period of 10 days should be maintained between spraying and harvest. Ready
mixture Betacyfluthrin + Imidaclopride 21% @ 200 ml/ha is effective. The trade name is
Solomon 300 OD which is available in the market.
Mealy bug (Pindi Purugu) (Centrococcus insolitus)
        Stunted growth of plant. Plants appear as though covered with white wash.

       Malathion 0.15% @ 3ml/lit of water or Monocrotophaos @ 0.4% 1.25 ml/lit of water.
Mite (Doma) (Tetranychus telarius)
       Leaves present a blotching appearance, become whitish and brown patches develop.
       Spray Wettable Sulphur @ 3 to 5 g/lit or Dicofol @ 2.7 ml/lit of water or dust.
Sulphur @ 20 to 25 kg/ha.
Early blight (Akumadu Tegulu) (Alternaria solani)
       Scattered dark brown spots on leaflets showing concentric rings, may cover large
areas of the leaf blade. Severely affected leave may drop off. The infected fruits turn yellow
and drop off prematurely.
       Spray with Bordeaux mixture 5:5:50 or Zineb 0.25%
Little leaf (Verri Tegulu) (Mycoplasma like organisms)
       Affected plants produce tiny leaves, which are pale green in colour. Plants become
bushy due to stimulation of axillary buds in to numerous shoots of small leaves. Flowers are
virescent and sterile.
       Rouge out diseased plants. Spray any insecticide to control the vector.
Mosaic Virus (Virus Tegulu)
       Infected plants show malformation and yellowing of leaves, stunted growth and
some times show concentyric rings on the leaf lamina. Infected plants bear less number of
flowers and fruits.
       Rouge out diseased plants. Spray insecticides to control the vector.

                                 (Abelomoschus esculentus L)
       Bhendi is cultivated in an area of 29,315 hectares producing about 4.4 lakh tons of
fruits throughout the state for its immature fruits which are used as vegetable. The stems of
the crop is used in paper industry and also for the extraction of fibre.
       The Bhendi is a warn season crop and is cultivated through out the state. Chilled and
frost weather is not suitable. The seeds do not germinate when the temperature is below
20OC. It will not thrive when there is a continuous cold spell.

        It can be grown in all types of soils, but grows best in frible, well drained soils.
        The rainy season crop is sown in June-July and the summer crop is sown in
February-March. The growth being restiricted in summer season the seeds are to be sown at
a closer spacing.
Parbhani Kranthi
        It is a widely adopted variety highly resistant to yellow vein mosaic. Released from
Marathwada Agricultural University leaves are dark green, lobed and hairy. Fruits are dark
green. Smooth, thin, long five ridged.
Arka Anamika
        The plants are 100cm, upright, open and slightly pigmented on stems, petioles and
lower leaves. Fruits are dark green with 5 prominent ridges and comparatively less smooth
surface. It takes 50 days (6th node) to first flowering and 55 days to first picking of tender
marketable fruits. It is excellent yielder in south but with a lower performance in northern
Indai. It is resistant to yellow vein mosaic, the yield being 125q/ha.
Arka Abhaya
        Resistant to yellow vein mosaic virus, its plants and fruits resemble to those of Arka
Anamika in appearance. It is tolerant to fruit borer and may suit pruning to tame the plant
for a ratoon crop. It is a sister line of Arka Anamika.
Lam Hybrid Sel-1 (Harita)
        Developed by ANGRAU and released for cultivation in the state during 1983. Plant
height 120-150 cm with occational branching tendency. Fruits are slender, long, green and
five reidged. Tolerant to yellow vein mosaic virus (YVMV)
Mhyco hybrid     no.6
Mhyco hybrid     no.7
Mhyco hybrid     no.8
Mhyco hybrid     no.10

Export varieties
Panjab Padmini
Nath shobha
Seeds and Sowing
         The seed rate for summer crop is 18-20 kg/ha and for rainly season crop 12-15
         Treat the seeds with Immidachloprid @ 5g/kg followed by 4g of Tricoderma viridii
         The soil is ploughed thoroughly 4-5 times to gety a fine tilth. The seeds may be
dibbled on ridges in Kharif at 60 cm spacing between ridges and 20 cm within the rows,
whereas in summer the seeds can be sown at 45 cm between rows and 15-20 cm within the
row. Irrigate the field immediately after sowing and again 4-5 days after sowing.
Manures and Fertilizers
         About 30 tons of farm yard manure per hectare should be applied two weeks before
sowing and 50 kg each of P2O5 AND K2O per hectare incorporated in the soil at the time of
final ploughing, 100 kg of nitrogen/ha is applied 1/3 as basal and the remaining 2/3 in two
split doses at 30th and 45th day.
         The crop should be weeded regularly and earthing up in rows should be done at 25-
30 days especially during rainy season.
         Apply Pendimethylene 30% @ 1.5lit/acre immediately or one day after sowing.
Spraying 1% Urea during flowering increases the yield. Spraying 5mg of Micronutrients/lit.
will also increases the yields.
         The crop should be irrigated every fifth or sixth day during summer and whenever
required in rainy season.
         Harvesting of fruits commences from 40-45 days and the fruits are continuously
harvested every second or third day. The best time of picking is 6-7 days after the opening
of flowers. If the harvesting is delayed, the fruits become fibrous and loose the market
         The yield vary from 5-6 tons/ha in summer to 8-10 tons/ha in rainy season. The
average seed yield is 12q/ha.

IPM in Bhendi
      Seed treatment with Immidachloprid @ 5g/kg followed by 4g of Tricoderma viridii.
      Apply 100 kg/ha of Neem cake during last flowering.
      Keep yellow traps in the field @ 4/acre.
      Release Tricograma @ 20,000/acre 4 times at weekly intervals at the time of
      Don‟t spray insecticides during this time.
      Spray HNPV, SNPV @ 250 larval equalence/acre.
      Spray Phasolone or Fipronil or Dimethoate @ 2ml/lit to control sucking pests.
      Spray 1.5g/lit Acephate for the control of White flies.
      Spray Endosulphon 2ml or Carboryl 3g or Profenophos 2ml/lit.
Plant Protection
Shoot and fruit borer (Movva, Kaya toluchu Purugu) (Earias vittella, E.insulana)
       The infected shoot and fruit is plugged with excreta.
      The affected shoots and fruits should be clipped along with the insect. Spray
Quinalphos 2ml/lit or Carbaryl at 3 g/lit or Endosulphan or Profenophas 2ml/litat 10 days
interval. Before flowering spray Thaidocarb @ 1g/lit.


Jassids (Deepapu Purugulu) (Sundapteryx biguttula )
       Bothe nymphs and adults suck the sap. Hopper burn symptom is noticed
       Spray Malathion 3ml/lit or Methyl Demeton or Dimethoate or Fipronil @ 2ml/lit.
Red mites (Erra Nalli)
       It is a problem in summer crop. It affects the crop by sucking the sap.
       Spray Dicofol 2ml/lit or Wettable sulphur 3g/lit.
White Fly (Bemisia tabaci)
       Suck sap from leaves and transmit yellow vein mosaic virus, particularly during
summer. Losses may be even 80-90%.

       Spray twice Dimethoate @ 2ml/lit. at 10 days interval. In severe cases spray
Acephate 1.5g/lit. and keep yellow traps in the field.
Powdery mildew (Budida Tegulu) (Erysihe cichoracearum)
      Greyish powdery growth on either side of leaves.
       Spray Wettable sulphur 3g/lit. or Dinocrab or Hexagonazole at 2ml/lit.
Yellow Vein Mosaic or Vein clearning disease (Pallaku Tegulu)
       The disease is characterized by yellowing of veins and veinlets of the leaves. In
severe infestations, the younger leaves turn yellow, become reduced in size and the plants
are stunted. If the crop is affected at harvesting stage, the fruits become small and whitish
in colour.
       Grow resistant varieties like Arka Anamika, Arka Abhay. Spray Dimethoate 2ml or
Acephate @ 1.5g/lit. Sown the seeds before July 15 th for rainy season crop.
Wilt (Fusarium vasinfectum )
      The conspicuous symptom is a typical wilt, beginning with a yellowing and stunting
       of the plant, followed by wilting and rolling of the leaves as if the roots were unable
       to supply sufficient water.
      Finally, the plant dies.
      If a diseased stem is split lengthwise, the vascular bundles appear as dark streaks.
      When severely infected, nearly the whole stem is blackend.
      The fungus has mostly three-septate spores.
      It is soil organism that enters the host through the roots and is disseminated in any
       way in which soil is transported from one field to another.
      Once the inoculum enters a field, it slowly increases until Okra crops become
       Seed treatment with Immidachloprid @ 5g/kg followed by 4g of Tricoderma viridii.
Drench with Croper Oxychloride @ 3g/lit. near the base of the plant. Apply 100 kg/ha of
Neem cake during last flowering. Follow crop protection.

                                     (Cucurbitaceous Sp.)
       The important cucurbit vegetables grown in Andhra Pradesh are Bottles gourds
(Anapakaya) Pumpkin (Gummadikaya) Snake gourd (Potlakaya) Ridge gourd (Beerakaya)
Bitter gourd (Kakarakaya) Cucumber (Dosakaya) Ash gourd (Boodida gummadi), covering in
an area of 28,902 hectares producing about 4.67 lakh tons.
       These crops are generally growing in hot and warm weather and have almost similar
cultural requirements. It can be grown on varied types of soils, garden lands or light loams
soil with good water holding capacity is more suitable for obtaining higher yields.
       Bottle gourd, Bitter gourd      -      June-July and December-January
       Cucumber, Pumpkin               -      May-July and December-January
       Snake gourd, Ridge gourd        -      June-August and December-February
       Ash gourd                       -      June-July, December-January
Pusa Summer Prolific Long
       Its fruits are long, uniform, light green, neck generally bent, suitable for spring-
summer as well as rainy season crop but on trellis. The edible fruit yield is about 30 t/ha.
Pusa Summer Prolific Round
       A selection from local cultivates, it grows vigorously with prolific bearing habit. Fruits
are round, 15-18 cm in girth.
Pusa Manjari (Hybrid)
       A high yielding hybrid, its fruits are round, green, tender and attractive. It has been
recommended for cultivation preferably for spring sowing.
Pusa Meghadoot (Hybrid)
       A high yielding hybrid, it gives comparatively more early yield and is suitable for both
spring and summer sowing. Fruits are long, light green, tender and attractive.
Arka Bahar
       The fruits are straight, not crook necked, medium sized, weighing about 1kg each at
edible stage, skin light green. Yields high in mild climate.
APAU-LS-21 (Rajendra)
Pusa Do Mausami
       Furits dark green in colour with 7-8 continuous ribs, each fruit weighing 100-120g.
Crop duration is 120 days, the yield being 120-150 q/ha

Coimbatore Long
       Fruits are extra long and green, 40-45cm in length. A local cultivar of Coimbatore.
The yield is 80-100 q/ha.
Arka Harit
       Fruits are short, spindle shaped, glossy green with smooth, regular continuous ribs
and thick flesh. Crop duration 120 days, the yield being 130q/ha.
Pusa Vivek
VK-1 Priya
       A selection from Kerasa Agricultural University. Vellanikkara. The fruits are extra
long, around 40 cm, first picking in 61 days and heavy bearing, 50 fruits per plant.
Jagital Long
Pusa Nasdar
       An early variety with light green, medium sized club shaped fruits. It flowers in 60
days. About 15-20 fruits are borne on each vine.
Coimbatore Long
       Fruits are 45-50cm long with broader stylar and than stalk end and green in colour,
each fruit weighing 700g at harvestable maturity. Yield 140 q/ha in 125 days.
Japanese Long Green
       A temperate cultivar, it is suited for cultivation in hills and lower hills. Its extra early
fruits mature in 45 days. Fruits are 30-40cm long, with light green and crisp flesh.
Straight Eight
       Early cultivar suited to hills, white spined, fruit medium long, thick, straight with
round end, colour medium green, released by IARI Regional Station, Katrain (Kulu Valley).
Pusa sanyog (F1 Hybrid)
       It is an early and high yielding hybrid. Fruits are 28-30cm long, cylindrical and dark
green with yellow stripes and crisp flesh. Fruits mature in 50 days. It performs well in
temperate regions only.

Pusa Chikini
         It is a high yielding, early maturing variety. It bears flowers 45 days after sowing. Its
fruits are dark green, smooth surfaced and cylindrical. It is suited for both spring summer
and rainy season cultivation
APAU Sweta
         Fruits long with whitish background and green stripes. Yields 280-300q/ha in 125-
130 days.
         Fruits long (160-180cm), dark green with white stripes. Yields 180 q/ha in 135 days.
Arka Sheetal
Seeds and Sowing
         Irrigation channel of 60cm wide is prepared, sowing is done on either side of the
channel and seed pits are prepared on the upper side of each ridge. Each pit prepared is
about 15-20 cm wide and is filled with FYM and about 50-100 g of superphosphate. Then
space between rows is as follows:
         For all these gourds, about 3-5 seeds are dibbled in a 45 X 45 X 45cm pit at 1 to 2cm
deep. Give a light irrigation. Seeds germinate in 3-7 days. Keep 1 to 2 vigorous plants per
                                               Between rows        Between plants
                                               in Meters           in Meters
              Bitter Gourd and Cucumber        1.0 - 2.0           0.60 - 0.90
              Ridge Gourd                      1.0 – 2.0           0.60 – 0.90
              Bottle Gourd                     3.0                 0.75 – 0.90
              Pumpking                         3.0                 0.75 – 0.90
              Snake Gourd                      On pendal only      1.50 – 1.80
                                               (1.5 – 1.8)         1.50 – 1.80
Manures and Fertilizers
         Add 15 to 20 tons of FYM/ha and mix well in the soil before planting. P 2O5 40–50
kg/ha may be applied as a basal dose. Apply 80–100 kg of Nitrogen/ha in tow equal doses,
first 25–30 days after sowing and the second 50 days after sowing. The fertilizer should not
be applied close to the plant irrigation immediately after fertilizer application.
         Weeds should be removed frequently, one or two light hoeings around the plants are
to be given after 2 to 3 irrigations.

        Irrigation when the top 3 to 5 cm of the soil goes dry in the basins and see that the
water should not stagnate near the plants for long time.
        Cucumber, pumpkin, ash gourd and ridge gourd do not need any staking. The vines
may be allowed to trial on the ground. Bottle gourds, bitter gourds are trailed either on
pandal or on brush wood. Snake gourd should be trailed on pandal as otherwise the fruits
do not grow longer.
Plant Protection
Pumpkin beetles (Gummadi Penku Purugu) (Aulacophora spp.)
       Grubs damage the palnts by boring into the roots. Beetle injure the cotyledons,
flowers and foliage by biting holes.
        Dust carbaryl 5% or spray Methyl parathion 50 EC (0.05% 1ml/lit) or Dimethoate
0.06% (2ml/lit) or Malathion 0.1% (2 ml/lit water). Dusting the plants with ash temporarily
repels the beetles.
Snake gourd semilooper (Potlaku Purugu) (Phusia peponis)
        Defoliates the plants
        Spray endosulphan 0.07% at the rate of 2ml/lit or Monocrotophos at 0.04% (1.25
ml/lit) or Quninalphos 0.05% (2ml/lit).
Downy mildew (Pseudoperonospora cubensis)
      Purple spots appear on lower surface an yellow spots on upper surface of leaves.
Fruits do not mature.
        Spray Dithane Z-78 0.2% at the rate of 2g/lit or Dithane M-45 0.3% at the rate of 3
g/lit of water.
Powdery mildew (Budida Tegulu) (Erysiphe cichoracearum)
        A white powdery growth appears on the leaf surface mostly confined to the upper
surface but also found on the lower surface and the stem. In severe infections the leaves
and stem dryoff and further growth of the plant is arrested.
        Spray Sulfe 0.2% or Calixin 0.1% or Karathane 0.2% Bavistin at the rate of 1 g/lit.

Mosaic virus (Verri Tegulu)
         The disease is characterized by the formation of streaks in the interveinal regions of
the leaves. The entire plant may look stunted and sickly even from a distance. Under severe
conditions the plants show irregular, light and dark green areas on leaves giving a mosaic
         Rouge out diseased plants.
         Spray any insecticide to control the vector.


         The total area under Beans in Andhra Pradesh is about 26,146 hectares with
estimated annual production of 313.75 thousand tonnes.
                                          FRENCH BEAN
                                      (Phaseolus vulgaris L)

         French Beans can be grown throughout the year in cold temperature regions. It is
sensitive to both frost and very high temperatures. It is mostly grown in winter in our State.
         October to January
         In hilly regions: March to May
         Beans are grown on all types of soils from light sandy to heavy clay. Fertile loamy
soils are preferred.
Bush type
       Crops early in 50-55 days, bushy habit, flower colour pale purple turning white, bears
profusely, pods round and thick dark green, stringless, long curved at the tip. Some pods
may become purple or bear purple streaks as they mature. Seeds light brown comparatively
resistant tyo mosaic and powdery mildew.
         Heavy yielder, fleshy-walled pods with less fibre. Crops early, pods are green in

Arka Komal
         Released by IIHR. It is an early variety bushy habit, bears profusely. Pods are
straight, tender fleshy, dark green, stringless excellent for transplantation, yields 18-20
Pusa Parvati
         It is a mutant variety released by IARI. Pods are fleshy dark green. Early variety with
light cream coloured seeds.
         Early variety. Crops in about 45-50 days. Bushy in habit. Fruits are flat, fleshy, light
green in colour. Seeds are dark brown in colour.
Pole type (Vine type)
Seeds and Sowing
         About 60 kg of seed is required per hectare. Plough the land thoroughly to a fine
Bush varieties
         The seeds are dibbled on the ridges at a distance of 30-45 cm between the row and
25-30 cm with in the rows i.e. from plant to plant, see that the soil should have optimum
moisture content at the time of sowing of seeds.
Vine varieties
         2 x 1m spacing is adopted.
Manures and Fertilizers
         Apply 20-25 tons of farmyard manure per hectare and incorporate it in the soil and
then apply 25 kg Nitrogen, 60 kg P2O5 and 50 kg K2O per hectare in the last ploughing, one
week earlier, before dibbling of the seeds.
         If beans are being sown in a field for the first time, it is advisable to inoculate the
seed with nitrogen fixing bacteria before sowing. This helps in quick nodulation on the roots
and fixes the atmospheric nitrogen.
         There should not be any weeds in the field. 1 or 2 hand hoeings are necessary to
control the weeds. Di-nitro materials are sprayed on the soil at 5-8 kg per hectare before

          Irrigate the crop when the top soil goes dry upto a depth of 5 to 8 cm. the plants are
shallow-rooted and sensitive to excess watering. Good crops can be produced with little
moisture applied during the season. Application of water just prior to blooming, however,
help in setting pods and another irrigation should be given soon after pod set. An additional
irrigation is given when needed. It is essential to maintain required moisture above 50 per
cent during flowering and pod development stage.
Spray Schedule
    1. Spray the crop with 5 ml phosphomidon or 17 ml dimethoate or 17 ml Oxydemeton
          methyl or 15 ml monocrotophos with 30 g copper oxychloride or 27 g difoltan in 10
          litres of water two weeks after sowing. Use 360 litres of spray mixture per hectare.
    2. Repeat the same spray 5 weeks after sowing. Use about 450 litres of spray mixture
          per hectare.
    3. Spray the crop with 30 g copper oxychloride or 27g difoltan in 10 of litres of water. 7
          weeks, after sowing. Use 540 litres of spray mixture per hectare.
    4. Spray the crop with 40g carbaryl or 20 ml malathion or 10 ml methyl parathion in 10
          litres of water if pod borer damage is noticed. Use 540 litres of spray mixture per
          Green pods are usually harvested before they are fully grown and while the seeds
are tender. Pods are usually ready for harves 2-3 weeks after the first blossom. Yield of
green pods varies from 6-8 tons/ha in vine types and 10-12 tons/ha in bush types.
Plant Protection
Agronomyzid fly (Ophiomyia phaseoli)
          One or two leaves on the plant turn yellow while the other leaves remain green. The
petiole often shows dark streaks where the maggots have moved through and damage
Aphid (Aphis fabae)
Mites (Tetranychus cinnabarinus (Boisd.), T. luden)
          Spray Monocrotophos 0.05% @ 1.5 ml/lit or Phoshamidon 0.5% @ 0.5 ml/lit or
Dimethoate 0.06% @ 2 ml/lit or Malathion 0.1% @ 2 ml/lit
Pod borer (Maruca testualis, Helicoverpa armigera )
          Spray Endosulfan 0.07% @ 2 ml/lit or Monocrotophos 0.5% @ 1.5ml/lit.

Yellow mosaic (Transmitted by aphids and whitefly)
       The infected leaves exhibit chlorotic bands along the major veins and line pattern.
Severe mosaic mottling, puckering and distortion of leaf are symptoms of advanced stage. It
caused 30-40% losses in yield.
       Bright yellow patches interspersed with deep green areas on lamina of leaflets. It
causes 30-40% losses in yield.
      Select seeds from apparently healthy plants. Apply Carbofuran @ 1.5kg/ha at the
time of sowing. Two to three foliar sprays of Dimethoate (0.05%) or Phosphamidon (0.02%)
at 10 days interval.
Anthracnose (Colletotrichum lindemuthianum )
       Most characteristic symptoms appear on immature pods although leaves, cotyledons
and stems are also infected. Black sunken cankers with light coloured or grey central area
appear on pods. The central portion of the spot shows pinkish masses of the fungus in wet
weather. It causes more damamge in cool temperate regions. The pathogen infects all types
of vegetable beans and lowers yield considerably.
       Use disease free seed and treat with Carbendazim 2g/kg seed before sowing. In
disease prone areas spray right from beginning at 8-10 days intervals with Mancozeb 0.25%
or Carbendazim 0.05%.
       Characteristic rust pustules are formed mainly on the underside of leaves, though
often they may be found on leaf petiole and stem. In severe infections, the leaf withers.
1. Spray Benlate (0.1%) or Dithane M-45 (0.2%) or Plantvax (0.2%) + Vitavax (0.2%) at 15
days inferval.
2.Use resistant varieties
Angular leaf spot
       Small angular, dark brown leaf spots giving the leaf a chuck board appearance.
Favourable conditions leads to complete defoliation.
1. Seed treatment with Benlate (0.1%)
2. Spray Benlate (0.1%) or Dithane Z-78 or Dithane M-45 (0.2%).

                                      COMMON BEAN
                                     (Dolichos lablab L.)
        The common bean is one of the most ancient among the cultivated plants. This bean
is used both as green pods and dry beans as a pulse crop.
        There are two types of common beans, the bushy field type and the twining garden
type. There is a great range of varieties with different plants and pod characters grown all
over the country.
Garden type
Pusa Early Prolific
        A vine variety, bears early, long and thin pods in bunches suitable for both early-
spring and autumn crops.
Bushy type
        It is a short duration (115-120 days) variety, comes to flowering in 45 days. It bears
tender pods which are fleshy and tasty with no odour. The pods are long, short beaked,
tubular, non-septate, slightly curved. Average yield is 45 q/ha.
        It is a compact, bushy variety. Pods are light green, fleshy, flat and 8-9 cm long.
Seeds are bold and chocolate coloured. Average yield is 75q/ha.
        Ir is a bushy, erect and photo insensitive variety. It comes to flowering in 40 days.
Pods are greenish, white tubular, and curved. Average yield is 72 q/ha.
        Besides the above, several local varieties like Bhadrachalam variety, Rajolu Chikkudu,
Balaji Bean etc., are commonly grown in our State.

                                        FIELD BEAN
                                 (Dolichus lablab var.typicus)
Sowing Time
        Sowing is usually done with the onset of south west monsoon in June-July.
Seed Rate
        45-60 g/ha of seed is used for drilling depending on the type of crop grown.
        Pure crop 60 x 15 cm
        Mixed crop 90 x 15 cm

        When it is sown as a mixed crop in sorghum or bajra, it is drilled at regular intervals
of two rows and when the ear heads of cereals are cut, late as the bean is, it twines on the
sorghum/bajra stalks, flowers profusely in November-December and gives a crop both green
and dry.
        The pods are harvested in January-February at 7-10 days intervals for green pods
seed or dry seed the pods are left till maturity and threshed to gather seed. Its vines when
cut with sorphum/bajra straw give a mixed feed of good fodder value.
        The yield of dry seed varies between 200-500 kg/ha depending on mixed or pure
                                         GARDEN BEAN
                                       (Dolichus lablab var. )
Sowing Time
        June-July is the best period
Seed Rate
        5-7 kg/ha
        2m x 2m
        Seeds are sown in circular pits of 0.5m cube, two to three seeds are dibbled in each
pit. Since the cultivated strins are vine types, they need to be trained on trallies.
Manures and Fertilizers
        The soils in the pits are mixed with 10-15 kg of FYM and 0.2 kg of Super phosphate,
at eht time of sowing. Top dress with 100g of Ammonium Phosphate in each pit at the time
of flowering and irrigate.
        The vines comes to flowering in November-December three to four weeks after
flowering the tender pods are picked for vegetable purpose, at regular intervals of 7-10
days. The pickings may continue up to end of March.
Plant Protection
        Same as in French bean
        50-75 q/ha.

                                      (Pisum sativum L.)
        Peas are highly nutritive and contain a high percentage of protein, carbohydrates
and vitamins and high proportion of mineral matter. The total area under Peas in Andhra
Pradesh is about 20 thousand hectares with estimated annual production of 3 lakh tonnes.
Season and Climate
        The peas are cool season crop and as such it should be grown in the plains only in
winter season. This is possible only in our State in Deccan plateau of Telangana region
where the minimum temperature during winter ranges between 10 O-17OC for over 30-35
days. Hot weather upsets pod setting and lowers the quality of pods. Peas grow best in
those areas where there is slow transformation of cool weather to warm weather in spring.
        Well drained loamy soils are desirable. All soils except those having very high pH and
alkalinity are suitable.
Early varieties
Early Badger
       It is an early variety, crops in 55-60 days. Peduncles bear usually white flowers. Pod
6-7 cm long, light green, well filled and sweet.
        A wrinkle seeded high yielding dwarf variety, takes 60 days to be ready for green
pod harvest.
        Smooth seeded variety, suitable for early sowing, takens 60-65 days to be ready for
green pod harvest.
Medium duration varieties
Perfection new line
      Mid-season variety, crops in 70-80 days. Medium tall in habit, peduncles bear two
white flowers. Pods are 8 cm long, well filled, dark green and sweet. Foliage and pods are
dark green.
Bonne Velle
        It is a mid season variety. Medium tall in habit, peduncles usually bear white flowers.
Pods well fille, 8 cm long and sweet in taste. Pods and foliage are light green in colour. Seed
wrinkled takes 85 days to be ready for green pod harvest.

Late maturing varieties
        Tall plants, wrinkle seeded, takes 100 days to harvest.
Seeds and Sowing
        The long duration varieties may be spaced at 45cm x 20cm in the line with a seed
rate of 80-90 kg/ha. Short duration types can be grown at 30cm x 15cm with a seed rate of
100-120 kg/ha.
        Sowing can be started from 15th October to 15th November, towards the end of
December when the temperatures begin to rise at pod setting and the pods become less
sweet and develop slight bitterness resulting in poor quality.
        Through ploughing bring the soil into aggregate structure is necessary. In the last
ploughing well decomposed faryard manure to an extent of 20 tons per hectare may be
applied. The crop can be grown in beds and channels. A thorough preparation of soil is
necessary for perfect germination. Uneven germination of seed results in variation in
maturity at harvest.
Seed Treatment
        To control root diseases and mildews treat the seed with 1gm Bavistin/kg of seed.
Manures and Fertilizers
        Peas do not require heavy Nitrogenous fertilizers as they are legumes. However, a
starter dose of 25 kg of Nitrogen, 70 kg P2O5 and 150 kg K2O/ha at the time of sowing is
beneficial. This is to be applied after the soil is prepared and seeds sown. Phosphorus and
potash increase the nitrogen fixation capacity of peas crop.
        1 or 2 hoeings can be given to put down weed growth. They begin to flower from
30-35 days. Pods are ready for picking from 45th day to 75th day.
        Irrigate the field before sowing of seeds. Irrigate every 10-15 days. Especially
flowering, fruit setting stages one or two irrigations improves the crop yield.
        A yield of 3-4 tons/ha can be expected in a good season, in case of early varieties. 6-
7 tons/ha in case of mid season and late varieties can be obtained.
Plant Protection
Gram pod borer (Heliothis armegera)
       Eats the tender foliage, later they bore into the pods.

       Spray Endosulfan 0.07% @ 2 ml/lit or Monocrotophos 0.5% @ 1.5ml/lit.
Pod borer (Kayatoluchu Purugu) (Etiella zinckenella)
       They initially feed inside the developing seeds, but later feed freely inside the pods.
The partly grown caterpillar may leave the original pod and penetrate one or more fresh
pods before reaching maturity.
       Spray Endosulfan 0.07% @ 2 ml/lit or Monocrotophos 0.5% @ 1.5ml/lit.
Aphids (Penu banka) (Acythosiphon pisum, Aphis craccivora )
       Nympths and adults suck the sap from tender leaves and shoots resulting into attack
of saprophytic the fungus, ultimately leading to devitalization of plants.
       Spray Monocrotophos 0.05% @ 1.5 ml/lit or Phoshamidon 0.5% @ 0.5 ml/lit or
Dimethoate 0.06% @ 2 ml/lit or Malathion 0.1% @ 2 ml/lit
Jassids (Deepapu Purugu) (Amrasca bigutella)
       Suck the sap the devitalize the plant. Plant turns yellowish.
       Spray Monocrotophos 0.05% @ 1.5 ml/lit or Phoshamidon 0.05% @ 0.5 ml/lit or
Dimethoate 0.06% @ 2 ml/lit or Malathion 0.1% @ 2 ml/lit.
Damping off or seedling (Kullu Tegulu) (Pythium spp.)
       Pre-emergence and post emergence damping off seedlings is very common and in
severe cases fibrous roots are also infected.
       Treat the seeds with Thiram 2-3 g/kg seed
Downy mildew (Majjiga Tegulu) (Peronospora pisi)
       White, cottony growth is seen on the lower surface of leaflets. In advanced stages
upper surface turns yellow to brown and dries up.
       Spray Dithane M-45 0.2% @ 2 g/lit of water or Maneb 0.2% @ 2 g/lit.
Powdery mildew (Budida Tegulu) (Erysiphe polygoni)
       Faint or slightly discoloured steeks are seen initially and under favourable conditions
white powdery growth is seen on leaves, stems and pods.

        Spray Wettable sulphur (3 kg/ha) at 7 days interval or Bavistin 1 g/lit of water.
Mosaic virus (Verri Tegulu)
        Clearing of veins followed by chlorosis or severe yellowing of the leaves
withnumerous dark green areas dispersed over the leaflets.
        Grow resistant varieties
Wilt (Endu Tegulu) (Fusarium oxysporum f.pisi)
        Yellowing of leaves which wilt and die. The infected roots become brown and rot.
        Late sowing and using resistant varieties is found to be effective.

                                      (Capsicum fruitesens)
        The bell pepper belongs to the family Solanaceae and genus capsicum. The bell
peppers are mild types and mostly used as green vegetable commonly known as „Simla
Mirchi‟. They are rich in Vitamin „A‟ and „C‟.
        The bell peppers are successfully grown in rabi season in the Telangana region of
our State particularly in Medak, Ranga Reddy Districts and around Hyderbad city, where the
minimum temperatures range between 10-17OC for over 30-40 days. The seeds are
generally sown in 2nd fortnight of September and 5-6 week old seedlings are transplanted.
        Well drained fertile soils are most suitable for this crop. Salty or saline soils are not
        The varieties differ in colour and shape ranging from dark green to yellow in colour
and 5 cm to 30 cm in length. The important varieties recommended by IARI are California
Wonder, Yolo-Wonder and King of North. I.I.H.R.,Bangalore has released the following three
promising varieties.
Arka Gaurav (Sel-16)
        It is an improvement over the capsicum variety California Wonder from U.S.A. The
plants are indeterminate in the growth habit, bearing dark green, 3-4 lobed, erect fruits
each weighing on an average 180g. It produces 15-18 tons/ha of fruits in 140 days.

Arka Mohini (Sel-13)
       The variety was evolved from the variety „Titan‟ from Florida. The plants are
determinate in habit bearing dark green 3-4 loded blocking fruits each weighing 280g. It
produces 15-20 tonnes of fruits per hectare in 125 days.
Arka Basant
       It is an improvement over the Hungarian variety „Sorokan‟ capsicum. The plants are
indeterminate in growth habit bearing cream coloured conical and erect fruits. This variety
has very good cooking quality and yields 15 tonnes of fruits per hectare in 130-160 days.
Seeds and Sowing
       About 500-650g of seed should be sown uniformly in 30 sq meter beds. Three such
beds are required for planting in hectare.
       Treat the seed with thiram or dithane M-45 at the rate of 3 g/kg of seed before
sowing and apply 100g of Furadon-3 granules per 30 sq meters of nursery beds and
sufficient quality of organic manures.
       Drenching of nursery beds with copper fungicides at 12 th and 19th day of sowing will
prevent wilting of seedlings due to damping off. Transplant 35 to 40 days old seedlings, 2
seedlings per hill may be planted at 60 cm x 45 cm spacing.
Manures and Fertilizers
       A basal dose of 25 tonnes of farmyard manure per ha is to be applied in final
ploughing. Sheep penning can be done if available. Apply neem cake at 4-5 quintals/ha.,
preferably mixing with fertilizers at the time of final ploughing. A balanced dose of NPK
fertilizers is necessary to get a good crop. A basal dose of 60 kg P 2O5 and 30 kg K2O is to be
applied at the time of final ploughing. After 45 days of planting three split doses of 20 kg N
plus 10 kg K2O each at 15 days interval followed by irrigation. Foliar application of 1% urea
along with insecticidal or fungicidal spray can be given and each time only 8-10 kg of urea
may be required.
       In the soils where zinc deficiency is noticed, application of 50 kg/ha of zinc sulphate
or zinc sulphate spray at 2 g/lit of water using 1250g of zinc sulphate per hectatre will
rectify the deficiency.
       3 to 4 time‟s intercultivation is to be done either by a junior hoe or light plough after
each irrigation. Intercultivation is to be followed by hand weeding to check weed growth.

       Bell pepper can not with stand heavy moisture. Hence irrigation should be given as
and when it is necessary. The number or irrigations and intervals between irrigation depend
on soil and climatic conditions. If the plants show symptoms of dropping of leaves at 4.00
P.M. it is an indication that irrigation is needed.
       15-20 tonnes of bell peppers can be harvested in about 135 to 150 days.
Plant Protection
Thrips (Scrtothrips dorsalis H.)
       Both nymphs and adults damage the crop. They lacerate the leaf tissue and suck the
sap. The infested leaves develop crinkles and curl upwards. The severely infested plants
develop bronze colour. If the plants are affected at early stage they remain stunted in
growth and flower production and pod set are arrested causing severe loss in yield.
       Spray carbaryl 0.15% @ 3 g or Phosalone 0.1% 3 ml or Methyl demeton 0.05% @
2ml or Acephate 0.75 1-1.5 g/l or Fipronil 2 ml or Spinosad 0.25ml or Chlorfenpyl 2ml,
Difenthurion 1.5 g or monocrotophos 1.5 ml of water.
Mites (Polyphago-tasonlmus latus b.)
       The affected leaves curl down ward along the margins of the leaf and attains on
inverted boat shape. The pedicles of the leaves get elongated and the young leaves at the
tip of the branch cluster. The affected plants develop dark green colour. In the affected
plants the vegetative growth is inhibited and flower production is ceased and yields ar
considerably reduced.
       Spray Phosalone 0.1% @ 3ml or Dicofol (kelthane) 0.09% 5ml or Wettable sulphur
3g or Micronised sulphur 2.5g/litre of water. The bottom sides of leaves are also to be
Aphids (Aphis gossypi g. Myzus persicae)
       Aphids appear on the tender shoots, leaves and on the lower surface of the old
leaves. They suck the sap and reduce the vigour of the plant. They secrete sweet substance
which attract ants and develop sooty moulds. The pods that develop black colour due to
sooty moulds loose quality and fetch low price. The yields are also reduced by aphids
directly and more through the spread of virus diseases acting as vectors.

        The winged forms of aphids migrate from one field to another rapidly. Hence,
spraying is to be done as far as possible within a day or two by all the cultivators of a
particular locality.
        Spray 0.1% Dimethoate 3ml/l of Methyl demeton 0.05% 2ml/l of Acephate 0.075%
1g in 1 lit of water. Spray alternating the chemicals at 10 days interval till the aphids
population is checked. Avoid spraying when predatory beetles are seen in sufficient
numbers. Monocrotophos 0.07% 2ml plus Nuvan ½ ml/lit of water can also be sprayed to
control aphids.
Pod borers (Spodoptera litura, Heliothis armigera, Uthesia pulchella )
        Pod borers are polyphagaous and appear on chilli crop both in vegetative phase and
at the time of pod formation. The caterpillars are pale greenish brown and smooth with dark
markings. They enter chilli pods by second and third in star by making a hole near calyx and
feed on chilli seed. The affected pods drop off or develop white colour on drying. The fully
grown caterpillars enter the soil for pupation.
        Spray Endosulfan 0.07% 2 ml/l or Carbaryl 0.15% 3 g/l or Chloropyriphos 0.05%,
2.5 ml/l or Thiodicarb 1 g or Spinosad 0.23ml or Acephate 1.5g of water. When the borer
attack is severe. Monocrotophos 0.07% 2 ml/l or Quinalphos 2.5 ml/l can be sprayed. The
dosage of these chemicals should not be increased as they cause flower drop.
Damping off (Pythium aphanidermatum, Phytophthora spp. )
        The shrinking of the cortrical tissue of the hypocotyl and toppling over of the infected
seedlings takes place. Affects germination and stand of seedlings in nursery beds
preemergence damping-off.
        Treat seed with Captan (2g/kg seed) before sowing. Drench the nursery beds with
Captan (0.2%) or Mancozeb (0.25%) and Carbendazim (0.05%) or 1% Bordeaux mixture or
Copper oxychloride 0.3%, 2-3 times at weekly intervals starting from 13th day of sowing on
appearance of symptoms. Rise seedlings on raised nursery beds and practice the rotation of
Choanephora blight (Choanephora cucurbitarum )
        The disease causes damage to the crop during rainy season. It occurs in nursery as
well as in main field. Brown water soaked lesions occur on the middle of the stem gradually
the lesions become black, coalesce and leads to rotting of tissue. The damage spread to

upward and downward direction and leading to drying of effected plant or branches. In the
field, the disease can be identified based on the appearance of a stiff silvery mass of whisker
like or hairy strands of the fungus growing out of the affected tissue topped with a ball
made of great number of spores.
        Spraying 1 g streptocyclin mixed with 30g of Copper oxychloride per 10 lit of water
twice at one week interval
Bacterial leaf spot (Xanthomonos vesicatoria)
        It occurs in October to December months. In the beginning small brown spots are
seen on leaves which turn into grayish or black spots. In severe cases the affected leaves
turn yellow and drop-off. Stem infection results in wilting of tender branches and twigs.
        Spray Poshamycin or Plantomycin or Agrimycin or Streptocyclin 1g plus 30g Blitox in
10 lit of water at fortnightly intervals.
Cercospora leaf spot (Cercospora capsici)
        It is a fungal disease appears on the crop from October to February. The disease first
manifests as small brownish spots on the leaves and gradually develop in to the big circular
grayish spots with whitish center. Later they form in to large lesions due to coalescing of the
spots. Infection on fruit stalk and calyx is also very common in severe cases. Affected leaves
become yellow and defoliated.
    Spray Carbendazim @ 1g/l or Mancozeb @ 3g/l of water 2-3 times at one week interval
Dieback or Fruit rot (Colletotrichum capsici)
        It is a seed as well as air borne disease. It makes its appearance in October-
November at the time of flowering. Individual flowers get infected and dry up. The infection
gradually spreads to the stem also. In the affected stem, the bark first turn brownish and
then turn to shiny whtite in long and narrow strips containing several black dot like
fructification. Affected twigs get with red and dry up from tip downwards, after on, the
disease spreads to the fruits also. Circular to oval, black spots occur on the ripe pods.
Severally affected pods turn straw coloured instead of normal red, shrivel and dry up.
        The seed from disease free crop only should be used for sowing.
        Seed treatment with Thiram Captan or Dithane M-45 at 3g per kg of seed should be
taken up.
        Early removal of isolated cases of die-back will be helpful in checking further spread.

        Spray Captan 1.5g/lit or Dithane M-45 at 2.5 g/l or copper oxychloride 3.0g/l or
Propiconzole @ 1 ml, Difenconazole 0.5ml/l, Copper hydroxide 2.5g/l of water at the time of
flowering i.e, in October-November and repeat the spray after 15 days if the disease in
Powdery mildew (Oidiopsis taurica)
        This disease occurs in December-February. Whitish powdery patches are seen on the
lower surface of the leaves. Inabvanced stages, the leaves turn yellow and drop-off. Further
flower production is ceased.
        Spray Karathane 1ml or Sulfex 2g/lit of water of dust sulphur at 20-25 kg/ha.
Mosaic (Transmitted by contact)
        Leaves show greenish mottle and may slightly curl and become irregular in shape. At
times, leaves show cream coloured patches and become yellow. Furits are yellow, wrinkled
and withered, causing 10-15% losses in yiled.
Mosaic (Transmitted by aphids)
        Mosaic motting of leaves. At times yellow rings are produced on leaves and fruits.
The disease causes 50-60% yield loss in case of early infection.
Leaf curl (Transmitted by whitefly)
        Symptoms consist of abaxial and adaxial curling of leaves accompanied by puckering
and blistering of interveinal areas and thickening and swelling of veins. It causes 60-70%
losses in yield.
Spotted wilt (Transmitted by thrips)
        Infected leaves show mosaic and necrotic spots, older leaves show small concentric
rings. Initial infection may cause yield loss up to 70-80%
Control of Virus complex
        Treat the seed with Imidacloprid @ 8g/kg seed against thrips to prevent PBNV
        Control vector by applying Furadon granules 3 G @ 30 kg/ha or Fipronil Granules @
20kg/ha twice at 15 & 45 days after transplantation. Select virus resistant varieties like LCA
334, G 4, LCA 235 and LCA 305
        Sowing of barrier crops like jowar, maize or sunflower
        Destroy alternate weed hosts n field bunds.
Package of Practices for Paprikas under Protected Cultivation
        Under protected cultivation package practices are similar as in the case of open
conditions of cultivation except in some operations like

Raised beds
          Seedlings are planted in raised beds of 1 m width and 0.3 m height along the
polyhouse. Spacing between the rows is 60 cm and with in the row is 45 cm. between
   Staking should be done before first picking or 30 days from the day of transplanting.

   Pinching is done to induce branching and to get higher yields.

          Fertigation is carried through drip.   Fertigation (Nitrogen and potash) is done at the
rate of twice a week through out the season from flowering stage. Fertilizer doses are as
recommended in open conditions of cultivation.
          Micro nutrients deficiencies are corrected by spraying Multiplex or Agromin @ 3g/liter
of water.
Physiological disorders
Sun scorch
          Due to high temperatures during the summer scorching occurs on the direct
exposed part of the fruit. It is controlled by regulating the poly house temperatures by
operating the foggers and also cover the side walls of the poly house with shade net.

                                  (Brassica oleracea L. Var-botrytis)
          Cauliflower is an important winter vegetable and a good source of Vitamin-C.
          It requires cool temperature and is mainly grown in winter season and to some
extent in later part of the rainy season. High temperatures results in the production of poor
quality of curds.
          Early and mild season varieties can be grown during later half of rainy season i.e.
from August-September and main season varieties during October-November.
          Well drained loamy soils are best suited. The soils should be fertile, rich in nutrients,
hold adequate soil moisture with good drainage and plenty of organic matter. Acidic and ill
drained soils are not suitable.

Pusa Katki and Pupa Deepali
        Early varieties suitable for planting early in the season. Crops in about 90-100 days.
Medium sized stem. Leaves are bluish colour, not incurred and at curding stage seen well
above the ground. Curds small to medium, compact and white.
Pant Shubra and Himani
        Early variety crops in 90-100 days. Medium sizeb stem, leaves are grayish green,
curds are medium, compact white, 15 tons of curds per hectare.
Improved Japanese
        Mid season variety, crops in 90-95 days. Plants are tall with a longish stem. Leaves
are not curved, curds are medium to large, compact and white when first formed, soon
becoming loose and yellowish when harvesting is delayed.
Snow-Ball + 16
        Variety suitable for October-November plantings in the season. Crops in 100-120
days. Leaves are greyish green and incurved. Curds are medium, compact, white.
Pusa Synthetic
        Creamy white coloured, compact curd, yielding 22-24 t/ha.
Pusa Hybrids
Indian Early
Namdhari Hybrids
Seeds and Sowing
        Seeds of 700-800g sown in 100saq meters area will be sufficient to transplant in one
hectare area. 600-800g for early varieties and 400-500g for late varieties and for hybrids
300-500 g/ha of seed is required. To prevent seed borne disease treat the seed with
Agroson at the rate of 3 g per kg of seed.
        Plough the soil 4 to 5 times to get a fine tilth. Apply 5-6 tons of farmyard manure in
100 sp. mt area incorporate in the soil. Prepare raised seed beds of 10-15 cm height from
the ground level with 4 meters length and 1 metre width. Mix the seed with thin sand of
FYM and sow the seeds on the nursery bed uniformly and thinly. Cover the seeds with dried
leaves. Due to this covering, seeds will not be gathered at one place while sprinkling water.
Irrigate daily till the seeds germinate. Remove the dried leaves/material after the plants
attain 1 cm height with 2-3 leaves. Drench the soil twich with 0.2% Fungi copper to prevent
diseases. Spray Malathion at the rate of 2 ½ ml/lit of water to control the leaf eating

       Prior to transplanting, plough the soil 4-5 times till a fine tilth is obtained.
Incorporate 40-50 tons of farmyard manure in the last ploughing and form ridges at 60 cm
       The seedlings of 25-30 days old are used for transplanting. Early varieties are
transplanted at 45 x 45 cm while late varieties are planted at 60 x 40 cm spacing.
Manures and Fertilizers
       Apply super phosphate 150-200 kg/ha and muriate of potash 100 kg/ha in the last
ploughing as a basal dose.
       Then apply 60-80 kg of Nitrogen/hectare in three uniform split doses, first dose at
30-40 days after transplanting, second dose 50-60 days after transplanting and third dose
75-80 days after transplanting.
       Generally Boron deficiency is noticed which can be rectified by spraying 0.3 to 0.4%
boric acid in two sprays 1) About two weeks after transplanting 2) two weeks before head
       Plants will be established well within 15 days, weeding and hoeing and earthing up
operations should be taken up twice on 25th and 50th day after tansplanting. Deep hoeing
should be avoided. To obtain perfect white heads, it is necessary to exclude the sun light to
the growing heads. It is done by bringing the outer leaves up over head and typing them
with a twine or a coloured rubber band. By using a different colour twine or rubber band
each day, it will be easy at the time of harvest to select those tied earliest.
       Irrigate the crop whenever the top soil upto 5-6 cm depth finds dried up. Irrigating
once in a week in light soils and at 10 day intervals in heavy soils is good.
       It is harvested when the curds attain a proper size and before they begin to
Plant protection
Diamond Back Moth (Plutella xylostella)
       Caterpillars feed on under surface of leaves and bite holes on leaves and cause
serious damage. Affected leaves present a withered appearance. In severe cases the leaves
are skeletonised.

          Spray Malathion 0.1% (2 ml/lit of water) or 50 WP carbaryl 0.15% (3 g/lit of water)
or 40 EC Monocrotophos 0.04% (1.0 ml/lit of water) or 35 EC Endosulfan 0.05% (1.5 ml/lit
of water) or 50 EC fenetrothion 0.05% (1.0 ml/lit of water).
Borer (Hellula undailis)
          The larva webs the leaves or bore into stem, stalk or leaf veins and cause damage by
making the produce unfit for consumption. They also bore into the cabbage head.
          Spray Malathion 0.1% (2 ml/lit of water) or Carbaryl 0.15% (3 g/lit of water) or
Endosulfan 0.05% (1.5 ml/lit of water).
Mustard Sawfly (Athalia lugens proxima )
          Grubs alone are destructive. The bite holes into leaves and prefer young growth,
leaves are skeletonised completely heavy defoliation takes places in severe cases.
          Spray Dimethoate 0.06% (2 ml/lit of water) or Endosulfan 0.07% 2 ml/lit of water.
Painted Bug (Bagrada cruciferarum)
          Both nymphs and adults suck the sap from leaves, shoots, resulting into wilting and
affect the vigour of the plant.
          SprayMalathion 0.1% (2 ml/lit of water) or 30 EC Dimethoate 0.06% (2 ml/lit of
water) or 35 EC Phosalone 0.05% (1.5 ml/lit of water).
Leaf Webber (Crocidolomia binotalis)
          Leaves are skeletonized by the larvae which remain on the under surface of leaves in
webs and feed on them. They also attach flower buds and pods.
          Spray Monocrotophos 0.04% (1.0 ml/lit of water) or Malathion 0.1% (2 ml/lit of
Green Semilooper (Trichoplusia ni)
          Larva bites holes and cause severe damage by skeletonising the leaves.
          Spray application of Endosulfan 0.07% (2 ml/lit) or Quinalphos 0.05% (2 ml/lit)
Aphids (Brevicolvne brasssicae, Lipaphis erysimi)
          They suck the sap from the under surface of leaves and cause damage.

        Spray Melathion 0.1% @ 2 ml/lit of water, or Dimethoate 0.06% 2 ml/lit of water.
Tobacoo Caterpillar (Spodoptera litura)
        Caterpillars are active during night time and feed on leaves fresh growth. Young
caterpillars skeletonise the tender leaves. Later broad leaves are completely eaten.
        Before head formation spray 100 EC Phosphamidon 0.05% (0.5 ml/lit of water) or
endosulfan 0.05% (1.5 ml/lit of water) or Carbaryl 0.15% (3 g/lit of water) after head
formation spray Malathion 0.05% Carbaryl 0.15% (2 ml/lit of water).
Bacterial Blackrot (Xanthomonas campestris)
        Blighting of leaves from margin to midrib in „V‟ shape and blackening of vascular
bundles are the main symptoms of this disease.
        Seed treatment with hot water 50-52OC for 20 minutes or soaking in streptocycline
(100 ppm) for 2 hours effectively control the disease under field conditions, rouge out
infected plants and drenching the soil with Formalin (1 part in 250 parts of water) is also
White Rust (Albugo candida)
        Located white rust like pustules are seen on leaves and stems. When fully developed
these pustules have a powdery consistency and hypertrophy or stems and flowering parts
takes place.
        Spray Dithane M-45 0.2% at 10-14 days intervals or 2 to 3 sprays of 0.4% Blitox or
any other Copper Oxychloride preparation at 10 days interval after disease appearance.
Club Rot (Plasmodiphora brassical)
        Roots enlarge to form “Clubs” (Spindle shaped). This is followed by secondary
invasion of soft rot bacteria forming materials toxic to plant and finally wilting takes place.
        Avoid infected fields. Treat the seedlings with Mercuric Chloride solution (1:1500) at
the rate of 125 ml per 100 seedlings at the time of transplanting.
Damping Off (Pythium spp., Rhizoctonia spp.)
        Stem of seedlings softened at the ground level, due to infection, the infected plants
collapse and finally die.

        Treat seedfs with thiram 2-3 g/kg sees. Drench seedlings in nursery beds with
Captan (1:1500) in water.
                                (Brassica oleracea L. Var-Capitata)
        In Andhra Pradesh cultivating in an area of 8,953 hactares producing 1.34 lakh tons
(including Knol-khol)
        The cabbage thrives in a relatively cool moist climate. It is grown mainly as a winter
crop. Yields good between the day minimum temperature 5OC to 30OC.
        Early crop August-September. Late crop September-October.
        It is grown under varied soil conditions. Sandy loam soils considered best for early
crop. But where a higher yield is the main criterion, caly or silt loam soil is preferred. It does
not grow well in highly acidic soils. The optimum pH range for cabbage is between 5.5 and
Goldedn Acre
        Head compact and round (Ball head) early variety. Crops in 60-65 days. Small and
compact in habit, stem is short with few outer leaves, leaves cup shaped.
Early Drum Head
        Heads are flat, big in size, early sowing variety. Crops in 60-70 days.
Pride of India
        Heads big sized round shaped. Weighing 1.5 to 2.0 kg. Comes to harvest with 60-80
days. Early cropping variety.
Pari Rani Gole
        S1 hybrid. Head compact and hard. Shelf life more crops in 85-90 days.
Pusa Drum Head
        Curds are compact, flat in its middle. Mid season variety
Late Drum Head
        Head big in size, round, comes to harvest with in 100-200 days.
Pusa Mukta
        It has short stalk, flattish round medium sized heads and light green outer leaves. It
is resistant to black rot.

Hari Rani Gol

Nath 501
Sri Ganesh Gol
Seeds and Sowing
        700-800g of seed for varieties and 300-500g of seed for hybrids are required to
transplant one hectare or a nursery raised in 100 sq meters with a seed rate of 700-800 g
will be sufficient to transplant one hectare. Treat the seed with Triram 3 g/kg of seed.
Plough the soil 4-5 times to get a fine tilth. Apply 5-6 tons of farmyard manure in 100 sq
meters area and incorporate it in the soil. Prepare raised nursery beds (10-15 cm height)
with 4 metres length and 1 metre width. Mix the seed with sand or compost and then sow
the seed uniformly on the nursery bed. Then cover the seed bed with dry leaves, to avoid
shifting of the seeds from one place to another while giving irrigation.
        Remove all the dried material from the nursery bed, after plant attains 1 cm height
with 2-3 leaves. Drench the soil with 0.2% Copper fungicide as against the diseases. Spray
Malathion @ 2 ½ ml/lit of water to control leaf eating caterpillar.
        Plough the land 4 or 5 times till to get a fine tilth, 10-15 days before transplanting of
seedlings. Prepare furrows and ridges at 60 cm distance for long duration varieties and 45
cm for short duration varieties. Plant to plant distance 45 cm and then transplant 25-30 days
old seedlings.
Manures and Fertilizers
Basal Dressing
        Apply farmyard manure @ 40-50 tons/ha, 150-200 kg/ha Superphosphate and 100
kg/ha muriate of potash in the lat puddle and incorporate in the soil.
Top Dressing
        Apply 60-80 kg N/ha in three equal split doses i.e. first dose 25-30 days after
treansplanting, second dose 50-60 days after transplanting and third dose 75-80 days after
transplanting. Irrigate the crop immediately after fertilizer application.

        The plants will establish within 15 days. Weeding and hoeing should be done once
within 20-25 days after transplanting and second time 45-60 days after transplanting. Deep
hoeing should be avoided.
        Irrigate the soil whenever the top soil moisture finds dried up upto 5-6 cm depth.
Light soils weekly once, heavy soils 10 days interval irrigate the crop.
Physiological Disorders
Browning (Brown Rot or Red Rot)
        This is caused by Boron deficiency. The trouble first appears as water soaked areas
in the stems and on the surface of the curd. Later, these areas change into a rusty brown
colour. Browning is associated with hollow stems, other symptoms are changes in colour of
foliage, thickening, brittleness and downward curling of older leaves.
        Application of Borox at the rate of 10-15 kg/ha on acid soils controls browning. On
alkaline and neutral soils larger quantity should be used.
        Development of small heads or buttons is called buttoning. Deficiency of nigrogen is
the main cause of bottoning. So care should be taken in selection of the suitable varieties in
the season and timely application of nitrogen.s
        Bling cauliflower plants are those without terminal buds. The leaves which develop
are large, thick, leathery, dark green. Blindness is due to low temperature when the plants
are small or due to damamge to the terminal bud during handling of the plant or injury by
insects and pests.
        It is harvested when the head is of suitable size, firm but tender. In case of delaying
of harvest protect the heads from sunlight by covering the heads in the lower leaves.
        10,000-15,000 kg/ha.
Plant Protection
Diamond Back Moth (Plutella xylostella)
       Caterpillars feed on under surface of leaves and bite holes on leaves and cause
serious damage. Affected leaves present a withered appearance. In severe cases the leaves
are skeletonised.

       Spray Malathion 0.1% (2 ml/lit of water) or 50 WP carbaryl 0.15% (3 g/lit of water)
or 40 EC Monocrotophos 0.04% (1.0 ml/lit of water) or 35 EC Endosulfan 0.05% (1.5 ml/lit
of water) or 50 EC fenetrothion 0.05% (1.0 ml/lit of water).
Borer (Hellula undailis)
       The larva webs the leaves or bore into stem, stalk or leaf veins and cause damage by
making the produce unfit for consumption. They also bore into the cabbage head.
       Spray Malathion 0.1% (2 ml/lit of water) or Carbaryl 0.15% (3 g/lit of water) or
Endosulfan 0.05% (1.5 ml/lit of water).
Mustard Sawfly (Athalia lugens proxima )
       Grubs alone are destructive. The bite holes into leaves and prefer young growth,
leaves are skeletonised completely heavy defoliation takes places in severe cases.
       Spray Dimethoate 0.06% (2 ml/lit of water) or Endosulfan 0.07% 2 ml/lit of water.
Painted Bug (Bagrada cruciferarum)
       Both nymphs and adults suck the sap from leaves, shoots, resulting into wilting and
affect the vigour of the plant.
       SprayMalathion 0.1% (2 ml/lit of water) or 30 EC Dimethoate 0.06% (2 ml/lit of
water) or 35 EC Phosalone 0.05% (1.5 ml/lit of water).
Leaf Webber (Crocidolomia binotalis)
       Leaves are skeletonized by the larvae which remain on the under surface of leaves in
webs and feed on them. They also attach flower buds and pods.
        Spray Monocrotophos 0.04% (1.0 ml/lit of water) or Malathion 0.1% (2 ml/lit of
Green Semilooper (Trichoplusia ni)
       Larva bites holes and cause severe damage by skeletonising the leaves.
       Spray application of Endosulfan 0.07% (2 ml/lit) or Quinalphos 0.05% (2 ml/lit)
Aphids (Brevicolve brassicae, Lipaphis erysimi)
       They suck the sap from the under surface of leaves and cause damage.
      Spray Melathion 0.1% @ 2 ml/lit of water, or Dimethoate 0.06% 2 ml/lit of water.

Tobacoo Caterpillar (Spodoptera litura)
        Caterpillars are active during night time and feed on leaves fresh growth. Young
caterpillars skeletonise the tender leaves. Later broad leaves are completely eaten.
        Before head formation spray 100 EC Phosphamidon 0.05% (0.5 ml/lit of water) or
endosulfan 0.05% (1.5 ml/lit of water) or Carbaryl 0.15% (3 g/lit of water) after head
formation spray Malathion 0.05% Carbaryl 0.15% (2 ml/lit of water).
Bacterial Blackrot (Xanthomonas campestris)
      Blighting of leaves from margin to midrib in „V‟ shape and blackening of vascular
bundles are the main symptoms of this disease.
        Seed treatment with hot water 50-52OC for 20 minutes or soaking in streptocycline
(100 ppm) for 2 hours effectively control the disease under field conditions, rouge out
infected plants and drenching the soil with Formalin (1 part in 250 parts of water) is also
White Rust (Albugo candida)
        Located white rust like pustules are seen on leaves and stems. When fully developed
these pustules have a powdery consistency and hypertrophy or stems and flowering parts
takes place.
       Spray Dithane M-45 0.2% at 10-14 days intervals or 2 to 3 sprays of 0.4% Blitox or
any other Copper Oxychloride preparation at 10 days interval after disease appearance.
Club Rot (Plasmodiphoria brassical)
        Roots enlarge to form “Clubs” (Spindle shaped). This is followed by secondary
invasion of soft rot bacteria forming materials toxic to plant and finally wilting takes place.
        Avoid infected fields. Treat the seedlings with Mercuric Chloride solution (1:1500) at
the rate of 125 ml per 100 seedlings at the time of transplanting.
Damping Off (Pythium spp., Rhizoctonia spp.)
        Stem of seedlings softened at the ground level, due to infection, the infected plants
collapse and finally die.
        Treat seedfs with thiram 2-3 g/kg sees. Drench seedlings in nursery beds with
Captan (1:1500) in water.


                                    (Solanum tuberosum L)
        Potato is a short duration tuber crop. It is grown in Andhra Pradesh in a limited area
i.e. about 6,637 hectares producing 1.33 lakh tons. It is cultivated in Hyderabad, Medak,
Chittoor and Visakhapatnam districts. It is a high caloric valued tuber.
        It requires cool climate i.e. 32OC maximum for growth and night temperature below
20OC for tuber development. At high temperatures it grows luxuriously but fall to tuberize.
        It is grown in Rabi only. Sowings are to be done well at the starting of winter.
Normally under Hyderabad conditions it would be ideal to sow between 15 th October to 1st
week of Novermber.
        Sandy or red loamy soils with good drainage and irrigation facilities are the best.
Avoid saline or heavy soils which hinder the development of tubers, slighty in soils is
considered favourble.
Kufri Chandramukhi
        Plant semitrailing wider leaves. Tuber big, long, skin brown with shallow eyes and
good creamy flesh colour. High yielding 20 to 24 tons/ha, duration 90 to 100 days.
Kufri Chamtkar
        Plant trailing and smaller leaves. Tuber medium size, spherical; few and deep eyes.
Skin brown, flesh-creamy white, 18-28 tons/ha, 90-100 days duration.
Kufri Alankar
        Plant semi trailing and wider leaves. Tuber medium, oblong, brown colour skin,
creamy flesh, few eyes and shallow 18-20 tons/ha, 90-100 days duration.
Kufri Sindhuri
        Plant erect and medium size leaves. Tuber red medium, spherical eyes few and
deep. Flesh pale yellow coloured. Yield 22-26 tons/ha 100 to 110 days in duration. It is
ideally suited for cultivation in our State. Keeping quality very good.
Preparatory Cultivation
        Plough the land well 4-5 times and apply heavy dose of well rotten organic manure
25 to 30 tons/ha. Incorporate FYM evenly in the last ploughing and form ridges and furrows
50 cm apart. In last ploughing apply Aldrin or heptachlor @ 45-50 kg/ha, to control tuber
infested pests.

Breading of Dormancy in Potato
          Sprouted tubers establish better and gap filling can be avoided. Treat tubers with
carbon disulphide (20 cc/100 kg of seed) 90% of tubers sprout in a period of 40 days.
Seeds and Sowing
          Select Disease free tubers (obtain from reliable source) of about 35-40 g in weight
and with 2-3 eyes which have already sprouted. If the tubers are big in size, they may be
cut into 2-3 bits having 2-3 eyes i.e. sprout. About 1.5 to 2 tons of the cut seeds are
required per hectare and tubers should be kept for 2-3 days under shade so as to form
callus on the cut end. The tubers are to be treated with Agallol 25 to 50 g/10 lit of water for
2-5 minutes to check seed borne fungal disease. The planting is to be done on one side of
ridge with sprouts upwards. A spacing of 20 cm x 50 cm should be adopted. The land should
be irrigated immediately after planting.
Manures and Fertilizers
          100 kg of N + 60 kg P2O5 + 100 kg of K2O/ha is recommended. The entire P2O5 and
half K2O and 40 kg of N is applied as basal dose and 40 kg of N and 50 kg K 2O at 30 days at
first earthing up and remaining 20 kg of N at 50 days after planting. Irrigate the plot after
application of fertilizers.
          The developing tuber should not be exposed to sun as they turn green. Earthing up
is to be done by 50 dyas after sowing and the exposed tubers are covered with soils.
          Irrigation requirements are to be determined keeping the soil and climate in view.
Generally under chalka soils in winer 7-8 days interval in the beginning during sprouting and
4-5 days during tuber formation.
          The stems of the plant turn pale yellow to brown and collapse. This indicates the
time for harvest of tubers. The crop is ready in about 90-120 days after planting in winter
depending on variety. Harvest the crop carefully by digging with a pick-axe without
damaging the tubers. Allow the tubers to dry under shade and harden, before they are
Plant Protection
Tuber Moth (Phthorimaea operculella (Zeller))
          The larval stage of the moth damages bud and later on the tubers.

        Spray 50% EC Sumethion or Endosulfan 35% EC at 2 ml per litre of water at an
interval of 10 days.
Cut Worm (Agrotis ipsilon )
        Cut worms damage the base of the plants particularly during night time. During day
time, they hide under the leaves and clods.
        Spray Endosulfan 35% EC 0.07% at 2 ml/lit of water.
Epilachna Beetles (Epilachna vigintioctopunctata (Fab.))
        The grubs of this beetle scrape the green matter on the leaves and damamge the
        Spray 50% Carbaryl W.P. at 2 ½ g/lit of water or Malathion 50% EC at the rate of 2
ml/lit of water at an interval of 10 days.
Aphids (Myzus persicae), Jassids (Empoasca devastans Dist.) and White Flies
(Bemisia tabaci)
        Nymphs and adults of their insects suck sap from the leaves and growing shoots
resulting in puckering and yellowing of leaves.
        Spray Monocrotophos 1.5 ml/lit of water or Metasystox 25% E.C. 2 ml/lit of water at
10 days interval.
Early Blight (Alternaria solani)
        Black spots are formed on the surface of leaves and branches. If the attack is severe
the whole plant will dry and fall on the ground.
        Spray 0.2% Dithane Z-78 or 1% Bordeaux mixture or Chloromatonil (0.2%) 30 days
after planting at an interval of 8 days. Spray 5-6 times during crop period.
Ring Disease (Corynebacterium sepedonicum )
        This disease spreads through seed tubers making them unfit for seed purpose.
        Before planting the tubers, treat the seed tubers in Agallol solution prepared by
mixing 25 g of Agallol in 10 lit of water. Immerse the seed tubers for thirty minutes in the
Agallol solution before planting.

                                     ELEPHANT FOOT YAM
                                  (Amorphophallus paeniifolius)
         Elephant foot yam is an important crop grown in Srikakulam, Visakhapatnam, East
and West Godavari, Krishna and Nellore districts. It is rich in carbohydrates, minerals and
vitamin A and B
         It requires well distributed rainfall with fairly high temperatures during sprouting,
warm and humid conditions for vegetative growth and cool dry conditions are favourable for
corm development. Heavy rainfall or water stagnation are detrimental to growth and cause
rotting of tubers and wilting of the plant.
         It is generally planted from April to June.
         It can be grown from well drained light loams to heavy soils. It thrives best in heavily
manured sandy loam soils.
Gajendra (Theepi Kanda)
         Released from Horticultural Research Station ,kovvur       and is high yielding (50-60
tons/ha). It has less oxalate content and delicious with good cooking quality.
         Propagated by corms. Usually 500-750g (small size) tubers should be used as seed
material . If the corms are big, cut the tubers into 2 to 4 bits keeping atleast a part of the
central sprout.
Preparatory cultivation
         Deep ploughing (20 to 25 cm depth)       for four to five times to get fine tilth. Beds of
convenient size are formed (50 x 50 x 30 cm pits with a distance of 60 cm apart.
Seeds and Sowing
         Use the corms 2 to 2 ½ months after harvest as the corms do not sprout
immediately due to dormancy. Plant the corm at a distance of 60 x 60 cm. The corms have
to be planted at 10 – 15 cm deep with the main sprout facing upwards. Planting early in
summer i.e., 1st week of April is preferred. A mulch with paddy straw or banana trash or
paddy husk would be beneficial to conserve moisture in summer and also controls the

Manures and Fertilizers
         It is a heavy yielder and as such a heavy feeder too. 30 to 35 tons of FYM/ha is to be
applied with 60kg of P2O5 as basal dose and 250 kg/ha of N and 250 kg of K 2O in 3 equal
doses at 30,75,120 days after planting. The fertilizers are placed in pockets on either side
of the plant.
         Frequent weeding and 2-3 hoeings has to be done to keep the plots free from
         Irrigate the field immediately after planting and later on at weekly interval till the
south west monsoon breaks. If dry spell prevails, the irrigation may be given at least for
every 10 days in chalka soils.
         Crop is ready for harvest within 6-8 months. The leaves turn yellow and fall on the
ground. Harvesting of the corms is done by digging with crow bar without damaging the
tuber and separating the root.
Post-harvesting Technology
         The corms can be retained in the soil for 1-2 months even after maturity. In such a
case irrigate at a long intervals to avoid desiccation of corms in the soil. The harvested
tubers can also be kept under the shade of the tree for 1-2 months.
Plant Protection
Aphids (Aphis gossypii)
         Yellowish speckling and curling of leaves. In severe case sooty mould develops,
reducing vitality of leaves.
         Spraying of Dimethoate or Quinalphos or Fenthion 0.05% or 0.20% Captan at 30
and 60 days after planting.
Thrips (Callothrips indivus)
         Characteristic silverfish white specks with black dots develop on leaves. Drying of
leaves takes place.
         Spray of Dimethoate 0.2% (2ml/lit)

Mealy bugs (Pseudococcus citriculus, Rhizocecus spp.)
        Tuber surface is covered with nymphs and adults with its powdery meal. Leads to
poor germination and affect cooking quality.
        If pest infestation is severe. Spray Dimethoate 0.2%
Soft rot or Collar rot (Sclerotium rolfsii)
        Water soaked lesions on stem, yellowing at the tips of leaves which moves
downward. Collapse of stem due to rotting at collar region. Rotting of stems takes place
causing 20-100% yield losses.
        Grow crop in rotation for 2-3 years, keep the field clean. Drench soil around the
plants with 0.3% Copper oxy Chloride as soon as incidence of disease noticed.
Mosaic (Amorphophallus mosaic virus)
        Mosaic mottling and distortion of leaf lamina. In severe cases leaf strapping, shoe
string, puckering and upward curling of leaf lamina are symptoms. Reduction in chlorophyll
content results in yield losses.
        Use healthy corms for planting. Rogue out infected plants from field.

                                    (Colocasia esculenta L)
        Colocasia is an important tuber crop in Andhra Pradesh. It can be grown all over the
State both in Coastal and Telangana districts. It is generally cultivated for its tubers which is
used as vegetable. The tubers has wide acceptance when compared to other tuber crops.
        It is a warm season crop requiring high moisture content. Temperature 21-27OC,
1000 mm rainfall with high humidity ideal for crop.
        In Telangana area it is generally planted from February-April where as in Coastal
districts there are two seasons i.e. February-April and June-July under irrigated conditions
with a duration of about 150-210 days.
        Fertile and well drained black loamy alluvial soils and deep sandy loams.

        A Variety released from Horticultural Research station, Kovvur, a free budding type
with round medium sized tubers. It is suitable to grow in Andhra Pradesh. The duration is 6-
7 months .The tubers are low in oxalate with excellent cooking quality and good market with
an yield of 22 tons/ha.
Pancha Mukhi
        A high yielding variety with tuber yield of 23 tons/ha. Leaves are also used as
Sripallavi (C-266)
        It is also a high yielder with 23 tons of tubers/ha. Leaves used as vegetable.
        Yield 18 t/ha, round and oblong, less in oxalate content, good cooking quality.
        It is a long Duration variety ( 8 months ) with good quality tubers and an yield
potential of 35 t/ha.
Short duration variety with (5 months) good quality tubers and an yield potential of 24 t/ha .
Land Preparation
        One deep summer ploughing and 3 – 4 times with Cultivator
        Propagated commercially by daughter or mother corms. Generally daughter corms
are preferred.
Seed rate : 750-1000 kgs/ha
Seeds and Sowing
        Sow the sprouting tubers (40-50g) in the bed at a distance of 30x45 cm spacing for
short duration varieties and 45x45 cm for long duration varieties. Seed tubers should be
treated in 0.3% copper oxychloride     for 30 minutes before planting to prevent seed borne
diseases. For good establishment, irrigation should be given after planting.
Manures and Fertilizers
        Apply 25.0 t. of FYM/ha in last ploughing. The recommended dose of fertilizers is
120:60:80 Kg. of NPK/ha. Total phosphorus is to be given as basal and Nitrogen and Potash
to be applied in 3 equal doses at 30, 60 and 90 days after planting.

         The plot is to be kept free of weeds for the first three months till the plant cover the
inter spaces. Pre emergence herbicides like Butachlor or Pendimethalin@ 5.0 lit/ha or
fluchloralin2.5 lit/ha mixed in 500 litres of water may be sprayed imeediately after sowing to
control the weeds during the initial months.
         First earthing up is to be given by 2nd month of planting. A subsequent earthing up
can be done lightly to prevent exposure of the growing tubers which would otherwise turn
         Irrigations at 7 – 15 days interval depending on soil type and season
         The crop is harvested when the leaves turn yellow brown and dry up. Harvesting is
carried out by ploughing carefully to avoid damage of the tubers or manual digging by
Post harvest Technology
         The freshly harvested tubers (daughter corms) are sorted out from the mother
corms, cleaned and send to the market. It has a shelf life of 2-2 ½ months, but sprouts in
February. The seed material can be stored under shade for the next planting season.
Plant Protection
         They suck the sap from the under side of the leaves and the leaves become chlorotic
and in severe cases the leaves become dry and the yield will be reduced.
         Spraying of Dimethoate or metasystox @ 2ml/lit of water can control the pest .
Leaf Blight (Phytophthora colocasiae)
         This disease is more severe during rainy season. Small dark round spots on upper
surface enlarge, coalesce together, forming characteristic rings of yellow and brown zones.
Infection in petioles leads to collapse of plants. It destroys chlorophyll and reduces
photosynthetic area, causing 25-50% yield losses.
           Spraying of Mancozeb 0.25% or Ridomyl 0.2% in 20 days interval can control the

                                       (Dioscorea alata L.)
        Dioscorea is mainly grown in Srikakulam and coastal districts of Andhra Pradesh. It is
a rich source of carbohydrates and has significantly high source of iron and vitramin „A‟.
Some of its species are useful as medicinal plants.
        It comes up well in warm climate. Continuous water stagnation is detrimental to
growth and cause tuber rot.
        It is usually planted in April-June
        Well drained deep sandy loams are the best suitable.
        A local collection from West Godavari is found to be high yielding (30-35 tons/ha). It
is very delicious with good cooking quality. It has a shelf life of 2-3 months.
        Released by CTCRI. Duration 9 months, yield 25-30 tons/ha. Tuber conical in shape,
1-2 tubers per plant, skin brown in colour, white flesh with good quality tubers.
Sri Rupa
        Duration similar to Sri Keerthi (9 months duration) 2-3 tubers per plant, skin brown
in colour, flesh white with good taste and quality.
        Mature tubers of previous crop weighing 100-125g are selected as planting material
Preparatory Cultivation
        The land is ploughed up to a depth of 12-20 cm. pits are of 45 x 45 x 45cm deep at
60 x 60cm spacing. Pits are filled with FYM.
Seeds and Sowing
        The tubers are treated with wettable sulphur or Dithane M-45 (0.25%) for half an
hour. Plant the tuber in the pits at a distance of 60 x 60cm with the buds facing upwards
and cover them with soil. Mulch the soil with paddy straw for promoting quick germination.
Manures and Fertilizers
        Apply 25-30 tons of FYM with 60kg P2O5 as basal dose while 100kg N and 80kg K2O
in two equal split doses applied by pocketing method at 30 and 60 days after planting.

       Weeding is done 3-6 times to check the weeds. Earthing up of tuber is done. The
tubers sprout with in 20-25 days after planting. In 60 days the vines can be trained on poles
of 6‟ height.
       Irrigate the field immediately after planting and frequent irrigations are given during
dry weather. In dry spell irrigation at least once in 10-12 days is to be given.
       Crop is ready for harvest within 8-9 months, when the leaves turn yellow. The tubers
are dug without injuring. Dried root hairs are removed before storing and marketing.
Post harvest Technology
       The corms can be retained in the soil for 1-2 months even after maturity. It should
be lightly irrigated to avoid drying of corms. The cured tubers can be stored in shade for 2-3
Plant Protection
       Tuber rot is occasionally observed other wise the crop is almost free from pests and
diseases. Avoid water logged areas. To control leaf spot disease, crop rotation, seed
treatment of tubers, spray mancozeb 0.25% 4 times with an interval of 10 days.

                                  (Manihot esculenta Crantz)
       Tapioca also known as “Cassava” is cultivated mostly in East Godavari and to a lesser
extent in Srikakulam, Vizianagarm and Visakhapatnam districts covering an area of 25,000
to 30,000 hectares in Andhra Pradesh. It is mostly grown as rinfed crop in the uplands and
agency areas where a number of sago and starch mills are existing. Its fresh tubers are
used commercially in Sago industries. In addition, industries make use of tapioca tubers for
producing starch, glucose and bio-fuel(Ethanol). The boiled tubers are consumed as staple
food largely on the West Coast. The dried leaves of Tapioca are rich in protein, serving as an
excellent cattle feed. Of late the fresh leaves are being used for rearing Eri Silk warms. Dried
chips and outer peel of tubers are used as an ingredient in cattle and poultry feeds. The
fresh tubers and leaves contain harmful „Hydrocynic acid‟(HCN) and hence are to be either
sun dried for 5-7 days or boiled for 15 mintues for human consumption or cattle purpose.

        Tapioca is a tropical crop requiring warm humid climate. It requires well distributed
annual rainfall when grown under rainfed conditions. It is known for its drought tolerance
and hence being grown as rainfed crop successfully.
        Light soils viz., sandy loam or red loam of laterite with pH between 4.5 to 6.6 best
suited. Soils of low fertility status can also be used.
        Semi-branching hybrid and bears medium sized tubers with light brown skin having
purplish patches. The flesh is white. It possesses good quality tubers. It can be harvested 7-
8 months and contains 29% starch, suitable for industries. Average yield ranges between
25-30 t/ha.
        Non-branching and bears short, conical tubers with golden brown sking. It can be
harvested after seven months. Contain 23-24% starch. Average yield 25-30 t/ha.
Sree Sahya
        Semi branching and the tubers are light brown, white fleshed, encased in a creamish
rind. The starch content is 30.0% with a yield potential of 30 t/ha. Well suited for human
consumption and for sago industry.
Sree Prabha
        Semi spreding and the tubers are light brown, white fleshed, encased in a creamish
rind. The starch content is 29.0% with a yield potential of 35-40 t/ha. Suitable for both
upland and low land conditions.
Sree Prakash
        Sparsely branching, short duration (7 months) selection. The tubes are brown, stout
and medium sized having white flesh, yield ranges between 20-25 t/ha. The starch content
is 20.0%
Sree Jaya
        Sparsely branching, short duration (7 months) selection. The tubes are brown, stout
and medium sized having white flesh, yield ranges between 26-30 t/ha.

        Non branching table variety. It can be harvested in 8-10 months. The tubes are
brown, linear and medium sized having white flesh, yield ranges between 18- 23 t/ha.
        Tapioca is propagated through stem cuttings taken from mature healthy and disease
free plants. Around 6-8 cuttings of 20 cm can be obtained from mature stem, rejecting the
tender growth at the top and thick woody portion at the base.
Preparatory Cultivation
        The land should be ploughed 4-5 times to a depth of 30-35 cm. Apply FYM 12.5 t/ha,
in the last ploughig along with 375 kg Super phosphate (60kg P 2O5 ) and 50kg Lindane dust
(to control termites) and incorporate in the soil by ploughing. Prepare the land into flat beds
with good drainage channels.
Planting of Rooted Cuttings
        The mature stems should be made into 20 cm cuttings using any sharp implement
(country knife or Kattipeetha) without damaging the buds. The cuttings are to be immersed
in a solution of Dithane M-45 (3 gram) + Dimethoate 2 ml/lit of water for 5 minutes and
then planted in a raised nursery bed, side by side for 7-10 days with daily watering to allow
them to initiate rooting.The rooted cuttings are to be planted in the main field at 90 x 90
cms to a depth of 5cm inside the soil. There should be optimum moisture at the time of
planting. There should be 12,345 plants per ha. For which about 13,000 rooted cuttings are
to be maintained including those for gap filling.
Manures and Fertilizers
        A fertilizer dose of 60:60:60 kg of NPK/ha has to be applied along with FYM 12.5
t/ha. Whole P2O5 is to be applied as basal dose in the last ploughing. N and K 2O are to be
applied in three equal split doses at 30, 60 and 90 days after planting. They are to be
applied around the plant by making a ring at 10-15cm distance from the palnt and cover
with soil.
        It is an important operation in Tapioca cultivation. Light digging or hoeing should be
given at least thrice during early stages to remove weeds. Two healthy shoots per plant
have to be retained on opposite side by removing the rest.
        Each rooted cutting has to be given pot-watering at the time of planting if there is no
adequate rain or moisture in the soil. Later on, if dry spell prevails, irrigate the crop at 15-20
days interval in chalka soils.

       Intercrops like Greengram, Blackgram, Groundnut and Maize can be grown to derive
an additional income of about Rs. 1500/- per ha. with in 2 ½-3 months. The intercrops have
to be sown along with planting of Tapioca and fertilized separately as per their fertilizer
requirement. They are to be harvested before 90 days.
       The practice of growing intercrops is seldom followed in Tapioca in East Godavari
District of Andhra Pradesh as it comes in the way of frequent operations of local „gorru‟ in
between the rows by the farmers for checking weed growth and to make the soil prous for
better growth and development of tubers.
       Tapioca becomes ready for harvest by 7-8 months after planting in East Godavari
District. Harvesting is done by digging with crow bars. The fresh tubers are highly perishable
and can be stored only for 2-3 days.
       Tubers may be cut into chips and sun dried for a week and stored with 12-13% of
moisture content for 2-3 months in air tight containers.
Post harvest Technology
       The palnting material is to be stored as whole stem under the shade of trees with
stems in vertical position for next planting season. They should be treated with fungicide like
Dithane M-45 (3 g) /) + Malathion (2 ml) or Chloripyriphos (2 ml) per litre of water to
prevent the incidence of diseases and pests during storage.The planting material can also be
stored safely in “ Zero energy cool chanber method”.
Plant Protection
Scale insect (Aonidomytilus albus)
       White scale colonics appear on stems. Drying of stems takes place under storage.
Stem becomes weak and dry, causing side branching to give bushy appearance. Viability of
planting material is reduced, resulting in the poor establishment.
       Scale free stems should be collected for storing and planting. Staking stems in
horizontal position encourages multiplication of scales due to the development of higher
temperature and humidity. Therefore healthy stems are to be kept in vertical position under
shade to facilitate easy aeration and diffused dry light. As a prophylactic measure the stems
may be sprayed with Dimethoate 0.05% at the time of storing. If further infestation is
observed, one more spraying may be done. The infested stems should be rejected and burnt
at the time of palnting. In case of acute shortage of planting material and the scale attack is

mild, sets can be given a dip in the above insecticidal solution for 10-15 minutes before
Spidermites (Tetranychus cinnabarinus, T.neocaledonicus)
       This group of spidermites colonizes on lower surface, causes elongated yellowish
streaks, chlorosis, withering and drying of leaves. Depletion of chlorophyll content of leaves
affecting photosynthetic efficiency and yield.
       Spray Dimethoate or Methyl demeton 0.05% in severe infestation January-April.
Sprayng water at run off level is also effective. This has an added advantage of preserving
the biotic agents of mites. Foliar application of urea followed by spraying of Dimethoate
0.05% in severe case to contain the pest out break is recommended as an IPM approach.
Cassava mosaic disease (Indian cassava mosaic geminivirus)
       The most important disease of Tapioca is „Cassava mosaic‟ in Andhra Pradesh. Only
stem cuttings from mosaic free plants should be used for planting to minimize the spread.
The mosaic disease is transmitted by a vector called white fly (Bemesia tabaci).
       Chlorotic areas intermixing with normal green tissue gives mosaic pattern. In severe
cases leaves are reduced in size, twisted and distorted, reducing chlorophyll content and
photosynthetic areas. It causes 25-80% yield reduction.
       Use disease free planting material. Grow field tolerant varieties H165 and Sree
Sahya. Rouge out infected plants and follow strict field sanitation.
       Spraying 0.03% Dimethoate 3-4 times at monthly intervals for the first four months
of the crop, controls the vector and there by the spread of the disease.

                                       SWEET POTATO
                                      (Ipomea batatas L)
       In Andhra Pradesh it is cultivated in an area of 697 hectares producing 13,940 tons
mainly in Visakhapatnam, East Godavari, Guntur, Nellore and Telangana areas. It is mainly
cultivated for vegetable purpose. In addition it is also utilized as animal feed and also for the
preparation of starch and alcohol.
       It is a tropical crop and requires plenty of sunshine and moderate rainfall with cool
nights and days for the growth.

        The main season for sweet potato is Rabi (October-November) but can also be
grown in Kharif (June-July) and summer (February-March).
        Well drained light loams are best suited. Rich soils, heavily manured soils tend to
produce much vegetation at the expenses of tuber formation. A soil pH of 5.6-6.6 is
Samrat (S-30)
        The tubers are white with pink streaks and can be cultivated in all the three seasons
of the year with an yield potential of 15-20 tons/ha in a period of 120-135 days.
        This variety released by APAU. Tubers are orange in colour with grayish streaks High
yielder of Medium duration (120 days). Can be cultivated round the year, moderately
tolerant to sweet potato weevil and yields 18-20 tons/ha.
        White skinned short duration type can be cultivated through out the year, with an
yield potential of 15-17 tons/ha.
        Semi matured vine cuttings are utilized for commercial propagation. Small tubers can
also be used for raising nursery.
Preparatory Cultivation
        Plough the land 4-5 times to get fine tilth. If ploughed deep, there is a tendency for
the roots to grow deeper. Therefore deep ploughing is avoided, plots of covenient size are
being formed and separated by irrigation channels.
Seeds and Sowing
        30-40 cm long cuttings preferably from the top with 5-6 leaves intact is selected. The
cuttings are planted vertically by pushing atleast 2-3 nodes in the soil at a distance of 60 x
20 cm in the flat beds. A nursery of 20-25 cents is sufficient to platn one ha.
Manures and Fertilizers
        Apply 10-15 tons of FYM/ha. Incorporate 60kg of P2O5 in the soil as basal dose. 60
kg/ha each of N and K2O is applied in two split doses at 30th and 60th day after planting.

       Two or three weedings and light hoeing may be given at 15-20 days after planting.
Occasional lifting of vines and gently turning them is necessary to break and disconnect the
roots formed at their nodes 45 and 75 days after planting.
       Irrigate at weekly interval in the early growth period and increase the frequency at
the time of tuber formation (60 to 90 days after planting). Late on irrigation at 10-15 days
interval should be given.
Harvesting and Post harvesting Technology
       The crop will be ready for harvest in about 4 to 4 ½ months after planting as
indicated by yellowing of leaves. Do not keep the mature tuber in the soil longer than
necessary as they would be severely affected by weevils. Cut the vines and lift the tuber
with crow bar or pickaxe. In light soil, plough with country plough and collect the tubers.
The tubers are cleaned and send to the market. The tubers can also be stored under the
shade for 15-20 days without getting sprouts.
Plant Protection
Sweet Potato Weevil (Cylas formicarius)
       Adult weevil makes puncturing on vines and tubers. The grubs bore and feed by
making tunnels. Feeding and adult emergence holes can be seen on vines and tubers. In
severe infestation the collar region of the plants shows unusual thickening due to
proliferationa dn hypertrophy of tissues casing of a characteristic terpenoisd odour. Even the
slightly damaged tubers are unsuitable for consumption due to bitterness. Yield loss may go
up to 100% in severe cases. On an average, 20-55% tuber loss occurs.
       Remove and destroy alternate hosts. Use pest free planting material. Use weevil free
tender planting material. Earthing up or reridging the crop 30 and 60 days after planting is
essential. Adopt crop rotation. Spray Fenthion, Fentrothion or Endosulfan 0.05% at one
month interval. Use synthetic sex pheromone Z-3 dodecen-l-ol-E2-buterate) 1 mg dose.
       Apply carbaryl 20 to 25 kg/ha (5% dust) before planting. Avoid using infected vines.
Dipping of vines before planting in 0.5% fenitrothion for 5 minutes. Spray fenitrothion 0.1%
(2ml/lit) at 15 days interval. Adopt crop rotation

                                       (Daucus carota L)
         Carrot is an important root vegetable commonly grown in the State. It is rich in
viramin „A‟ and some of the major minerals. The total area under Carrot in Andhra Pradesh
is about 4,954 hectares with estimated annual production of 88,925 tonnes
      August-November (15 days gap)
      Well drained deep loamy soils are best suited for its cultivation
Pusa Kesar
         It has red coloured roots and self coloured core. Suitable for early sowing (from
August to early-october), it matures in 90-110 days and yields 30 t/ha. It contains 7,753 mg
carotene/100g fresh weight.
Nantes Half long
         Cylindrical, stumpy roots, well shaped with abrupt tail, orange scarlet with self
coloured core, flesh sweet, fine grained with good flavour and orange scalet in colour. It
takes about 110-120 days for root formation.
Glant Chanteney
Early Gem
Early Nantes
       Almost cylindrical roots terminating abruptly in small, thin, tail, 12-15cm long, fine
textured, orange flesh with self coloured core, maturity 90-110 days.
         An excellent variety for canning and storage. Roots are conical to near conical, thick,
attractive orange, smooth, thick at the shoulders with gradual tapering towards the distinct
stumpy end. Core indistinct, flesh tender, sweet and fine textured.
Pusa Yamadagni
         Orange flesh, self coloured core, earlier by a week to 10 days than Nantes.
Seeds and Sowing
         5kg of seed per hectare may be dibbled at a spacing of 30cm x 5cm
Manures and Fertilizers
         Apply farmyard manures at the rate of 25 tons/hectare in the last ploughing and
incorporate it in the soil. Nitrogen 50 kg/ha. Phosphorus 40 kg/ha. Potash 50 kg/ha.
         Nitrogen is applied in two split doses i.e. 25kg N ones with last ploughing as basal
dose and remaining 25kg N next 6 weeks after sowing as top dressing. All P2O5 and K2O as

        Irrigate the field once in 7-10 days depending upon soil type and weather conditions.
Keep the land free from weeds.
Spray Schedule
        Spray the crop with 20ml Malathion or 40g Carbaryl with 24g to control the leaf
hoppers, weevils and aphids. Wettable sulphur and 30g Copper oxychloride in 10 litres of
water 4 weeks after sowing. About 360 lit of spray mixture is required per hectare, for the
control of leaf spot, blight and powderymildew.
        Repeat the same spray 7 weeks and 10 weeks after sowing. Use about 450 and 540
lit of spray mixture per hectare respectively.
Harvest and Yield
        The crop will be ready for harvest in about 3 months. About 20,000 kg tubers may
be expected from one hectare.
Plant Protection
Leaf hopper (Empoasca punjabensis)
       Both adults and nymphs suck sap and deviatalize the plants.
        Apply Monocrotophos or Phosphamidon or Dimethoate or Oxymethyl demeton
Weevil (Listronotus oregonensis)
        Spraying of monocrotophos 0.05% or carbaryl 0.15% two or three times at 10 days
Aphids (Cavariella aegopodii)
        Spray 0.1% Dimethoate 3ml/l of Methyl demeton 2ml/l of Acephate 1.5g in one litre
of water. Spray alternating the chemicals at weekly interval.
Leaf spot (Cercospora carotae)
       Seed treatment with hot water at 50OC for 15 minutes. Spray Copper oxychloride or
Mancozeb @ 3g/lit water for 2-3 times at 7 days interval
Powdery mildew (Erysiphe polygoni)
        Spray Dinocap @ 1ml/lit.



                             (Amaranthus blitium and A. tricolor)
       Amaranthus blitium and A. tricolor are mostly grown in South India. The tender fresh
green leaves are rich source of calcium, iron and vitamin A and C. The soft fibrous matter
provides the roughage in the diet. The dieticians recommended daily consumption of atleast
116g of leafy vegetables for balanced diet.
       Amaranthus is a warm season crop, good quality crop is produced in summer. A.
tricolor can be grown in summer and Kharif season. This plant is taller with thick stems and
larger leaves.
       Loose and friable soils with high organic matter are most ideal for an early and heavy
yield. The crop cannot withstand water logging. The crop goes to seeding under drought
       There are two varieties based on leaf colour i.e. green leaf and red leaf. The
improved varieties are
RNA-1 (A.tricolor)
       It was developed by Vegetable Research Station, ANGR Agricultural University,
Rajendranagar, Hyderabad. It is rich in vitamin C & A. Leaves and stems are tender and
green in colour. First picking can be done 15-20 DAS. Average yield of 6-7 tonns per acre
can be obtained. It is tolerant to drought and leaf spot disease.
Co-1 (A.dubius)
       It is suitable for growing for tender greens and immature stems which are thick and
fleshy. It produces 7-8 tonnes of green matter from hectare in 25 days after sowing. The
leaves are broad, thick and dark green in colour. Flowering starts at 50-55 days and seeds
are available in 90 days. The seeds are very small and black in colour.
Co-2 (A.tricolor)
       Leaves are lanceolate and dark green. The stems remain tender and succulent.
Hence, it is suitable to be harvested even 30 days after sowing as Thandukkeerai in
Tamilnadu. Both leaves and stems are used as vegetable. It produces 10-11 tonnes of green
matter on 25th day of sowing. Seeds are bold and black in colour.
Co-3 (A.tristis)
       It is also called as Arakkeerai or Killukeerai in Tamil. The cultivar lends itself for ten
clippings commencing from 25 days after sowing and provides a continuous supply of

luscious tender green for a period of three months at weekly interval. The total green matter
yield would be 10 to 12 tonnes/ha.
Choti Chaulai(A.blitum)
       Plants are dwarf in stature with succulent small leaves, suitable for greens, responds
well to cutting. Flowers are borne in clusters in leaf axils suitable for both summer and rainy
Badi Chaulai (A.tricolor)
       Plants are tall, stem is thick, tender green in colour, leaves large and green in colour,
responds well to cutting and can be grown for longer period of time. It is suitable for
summer and crop may prolong up to the end of rainy season.
Seeds and Sowing
       About 2-3 kg seed is required to sow one hectare. The seed sowing is done by
broadcasting after mixing with equal quantity of fine sand for uniform distribution. Give light
irrigation immediately after sowing, if the soil is dry. Seed sowing in ridges and furrows will
facilitate weeding and manuring practice.
Manures and Fertilizers
       Application of 15 tonnes of FYM per acre is recommended during the last ploughing.
Small quantity of Ammonium sulphate is applied in the beds as basal dose. Foliar spray of
one per cent urea after two weeks of sowing will increase the leaf yield. 50kg of Nitrogen,
50kg of Phosphorus and 20kg of Potash per hectare is recommended.
       In sandy soils 4-5 days irrigation frequency is maintained in summer season, while in
rainy season the irrigation frequency is based on soil moisture level.
       Harvesting usually starts around 4 weeks after sowing. About 8 to 9 cuttings can be
taken at weekly interval. In some parts of the state the crop is harvested by pulling out the
plants along with roots, after 3-4 weeks of sowing. The seed rate required for this type of
harvesting is 3-5 kg/ha. An average yield of fresh green leaves is about 8,000 kg in a span
of 60 days.
Plant Protection
Defoliators (Helicoverpa armigera, Spodoptera litura, S. exigua)
       Larvae feed on leaves by making holes in the lamina. These are nocturnal in habit,
remain hidden in soil during day.
       Poison baiting with bran, jaggery and chlorpyriphos (8:1:1 W/W) is very effective.

Leaf Webber (Hymenia recurvalis)
        Caterpillars initially feed on leaf epidermis, later web the leaves together with silvery
silken secretion and feed within. Leaves become devoid of chlorophyll and dry up.
        If infestation is severe spray Endosulfan or Carbaryl. Leaves should not be harvested
for about a week after spray.
Stem Weevils (Hypolixus truncatulus)
        Grubs bite their way into stem, as a result the affected part bulges. Gurbs feed on
pith making irregular turnnels, which are filled with excreta. Affected stem becomes weak,
may split longitudinally, plants get dried. Adults feed on tender leaves and stems but cause
negligible loss.
        Removal of wild amaranthus prevents simultaneous and off season multiplication of
the pest. Remove and destroy affected plants with grubs and spray Dichlorvos. Leaves
should not be harvested for about a week after spray.
General Control of Pests
        As Amaranthus is regularly grown for leaf type, avoid spraying insecticides. In case
of severity, spray Malathion 2ml/lit. For grain purpose spraying with neem oil can be taken
Leaf Spots
Cercospora Leaf Spot (Cercospora bertrandii)
Phyllosticta Leaf Spot (Phyllosticta chenopodii)
Anthracnose (Colletotrichum spinaciae)
        Small brown spots appear on the leaves. The spots are roundish with concentric
rings in the beginning which later increase in size and may coalesce.
        Usually no fungicidal sprays are required. In case of severity spray Carbendazim @
1g/lit. Leaves should not be harvested for about a week after spray.

                                      (Spinacea oleracea)
        It is a cool season annual vegetable. The rosette of leaves produced during
vegetative phase is used as vegetable. Leaves are rich in Vitamin „A‟ (5,580IU) and C
(28mg), folic acid (123mg) and minerals-iron (17.4mg), calcium (190mg) and phosphorus

       This crop can withstand frost and tolerate warm weather but high temperature leads
to early bolting without giving sufficient cuttings. It performs well during winter months.
During hot weather leaves pass edible stage quickly.
       Palak can be grown in any type of soil having sufficient fertility and proper drainage
but does best in sandy loam soils . Acidic soils are harmful, the optimum pH is 6.0 to 6.5.
       In spinach, 4 sex types exist. They are externarlly male, vegetative male, female and
monoecius. Male plants bloom early and hence are poor yielders. Female plants give failry
high yield because they flower late and have longer vegetative phase.
       There are prickly seeded varieties and smooth seeded varieties. Similarly savoy
(Wrinkled), semi savoy and smooth leaved varieties exist. Virginia Savoy and Early smooth
leaf are improved exotic varieties. Banerjees Giant, Banarasi (Katvi palak), Khara Lucknow
and Khara palak are popular desi types.
Seeds and Sowing
       About 37 – 45 kg seed is required to sow one hectare. If proportion of male seed is
more in the seed lot, a higher seed rate is required.
       The seeds can be sown either in beds or on the ridges and furrows at a spacing of
60cm x 2.5 cm. sowing should be done not more than 1- 2 cm deep otherwise poor
germination may be resulted.
Manures and Fertilizers
       As palak is a leafy vegetable it requires more Nitrogen for crown growth. Apply 30
tons of farmyard manure, 20kg Nitrogen 40kg Phosphorus, 20kg Potash/ha is applied as
basal dose and 30kg Nitrogen in the form of urea as foliar spray starting from first cutting.
       Since the crop duration is short, keep the soil loose and friable and free from weeds.
       Leafy vegetables need more water for good growth and quality leaf production.
Therefore assure good water supply at regular intervals based on soil moisture. Excessive
irrigation leads to certain pests and diseases.
        Tender and succulent leaves are cut from the base when they are 20-25 cm long at
an interval of 10 to 15 days.

        Average yield of fresh green leaves is 8-10 tons/ha. Pusa Jyothi gives about 25%
higher yield.
Plant Protection
Aphids (Lipuphis erysimi, Myzus persicae, Hyadaphis indobrassicae)
        These are small insects attacking tender growing leaves. They suck the sap from
foliage and excrete honey dew and resulting in yellowing of the leaves. They also transmit
the mosaic disease from one plant to another. Plant becomes stunted and weak. Quality of
the leaves is reduced.
        Cut and destroy infested leaves along with colonies of aphids and spray Dichlorvos.
Do not harvest leaves for atleast one week after spray. Leaves should not be harvested for
about a week after spray.
Leaf Eating Caterpillars (Helicoverpa armigera, Spodoptera litura, S.exigua )
        They feed on leaves and make holes. The quality of the leaves is deteriorated. Yield
is reduced. Affected leaves are not acceptable to consumers.
Spray Malathion at 0.1 percent. Harvesting of leaves should not be done for 6-8 days after
spray. Leaves should not be harvested for about a week after spray.
Damping off (Pythium sp., Fusarium sp., Rhizoctonia solani)
        The young seedlings are attacked soon after emergence. Many of them are killed
and fall over the ground.
        Avoid excess moisture and provide adequate drainage. Seed treatment with thiram
or captan is recommended. Leaves should not be harvested for about a week after spray.
Leaf spot
Cercospora Leaf Spot (Cercospora bertrandii)
Phyllosticta Leaf Spot (Phyllosticta chenopodii)
Anthracnose (Colletotrichum spinaciae)
        On lower leaves, small circular spots appear with ash colour in centre and deep violet
or reddish purple border. Later the spots coalesce, leaves wrinkle and ultimately dry and fall
down. Formation of new leaves remains continued.

        Remove all the plant debris. Treat the seeds with carbendazim @ 1g/kg seed. Follow
the long crop rotation. Spray the crop with Mancozeb at 0.2 percent.

                                      INDIAN SPINACH
                                 (Beta vulgaris var. bengalensis)
        It is a cool season crop requiring mild climate. It tolerates frost and high temperature
under good irrigation. Under high temperature conditions, early bolting occurs and leaves
pass edible stage quickly with poor yield.
        Though palak can be grown on a wide range of soils, well fertile, sandy loam soil
with good drainage is ideal. Palak is tolerant to slightly alkaline soils and is highly tolerant to
salts also.
All green
        It is a small leaved, uniformly green, tender leaves and gives about 6-7 cuttings in
15-20 days intervals with an average yild of 125 q/ha.
Pusa Jyoti
        It is a gaint leaved strain evolved at I.A.R.I. It has thick tender succulent leaf with
late bolting qualities. Plants are vigorous, quick growing and regenerate quickly after each
cutting. It gives 6 to 8 cuttings with an average yield of 450 q/ha.
Jobner Green
        It produces uniform green, large, thick succulent, tender leaves with strong flavour.
It is a prolific, yielder and yields about 29.6q/ha. This variety can be successfully grown in
soil even at pH 10.
Pusa Harith
        It was developed by hybridization between sugar beet ( Beta vulgaris) x local palak
(B.vulgaris var. bengalensis) at IARI Regional Research Stration, Katrain, H.P. Suitable for
hilly areas. It tolerates alkaline soils. Leaves thick broad in size, late bolting and high yielder.
Banerjees giant
        It is a popular variety of West Bengal developed by S.P. Banerjee by crossing palak x
Beetroot. It produces large thick leaves with succulent stem and fleshy root.
        October Under south Indian conditions, the best crop can be taken by sowing during
November/ December. It can be sown throughout the year in places like coimbattore where

mild climate prevails. In North Indian plains , the crop is sown in June-July and September-
October. In the hills, it is sown from April- June.
Seed rate
        8-15 kg/ha.
        60 x 60cm
        Each seed ball contains 2-3 seeds. Hence during sowing only one seed is sown in
each hill. Beds of convenient size are prepared and lines are drawn 20 cm apart. Along these
lines, seeds are sown at a spacing of 10 cm and covered with top soil. The depth of sowing
should not be more than three to four cm. Otherwise, there will be difficulty in germination
of seeds. The seeds will germinate in 8-10 days after sowing. To sow one hectare, a
quantity of 25-30 kg of seed would be required.
Manures and Fertilizers
        Application of 25 tonnes of FYM is recommended during last ploughing. Nitrogen
60kg per hectare should be top dressed after every cutting, it will enhance quick and
luxuriant growth of leaves. Phosphorus 60kg and 40 kg potash per hectare should also be
applied as a basal dose for better yield.
        Weeding and hoeing have to be done two or three times from 20 days after sowing
once in a fortnight. A quantity of 25 kg of nitrogen has to be applied after each cutting and
the crop is irrigated.
        A light irrigation is given immediately after sowing. Again on the third day and
subsequently once in 7-10 days depending on the soil moisture, watering is done.
        Well grown green succulent leaves are cut along with petiole. The crop comes to first
cutting three to four weeks after sowing.
        On an average, a total green yield of 8-10 tonnes can be harvested from one hectare
in four to six cuttings.

                                       (Mentha arvenis L)
       Can be cultivated both under tropical and sub tropical climate. A temperature of 20-
25 c is optimum for the crop growth. For oil purpose, high altitude areas are preffered.
Temperature more than 30 oc results in more oil content.
       All type of soils are suitable for cultivation. Fertile soils with more organic content,
sandy to clay loam soils with proper drainage are preffered. Ill drained soils are to be
       No improved varieties are available for vegetable purpose.
       Year round
       Stem cuttings of 4-5 cm lenth having 2-3 nodes are used for propagation.
       45 x 10cm
       Dipping of stem cuttings with carbendazim 1gm/lit or captan 3gm/l is done prior to
planting. Planting is done on ridges at a spacing of 30-45 cm between the rows and 10 cm
within the row at a depth of 1-2 cm.
Manures and Fertilizers
       Application of 10 tonnes of FYM is recommended during last ploughing. Nitrogen
50kg per hectare should be applied twice 20 and 40 days after sowing. Phosphorus 40kg
and 50 kg potash per hectare should also be applied as a basal dose for better yield.
       Weeding is done regularly at 25, 50 DAP and after the first picking.
       As the crop is shallow rooted frequent light irrigations are given. Depending upon the
soil moisture, irrigations are given at 8-12 days in winter and 3-4 days interval in summer.
       The crop comes to first cutting three months after planting leaving 4-5 cm from the
ground level. Subsequently after a month second cutting is done near to the ground level.

        In two pickings, an average leaf yield of 10-12 t/ acre can be obtained. 65-70 kg of
oil can be extracted per acre.
Plant Protection
        These are small insects sucking the sap from tender growing leaves. They transmit
the mosaic disease from one plant to another. The growth of the plant is checked, they
become weak. Quality of the leaves is reduced.
Leaf Eating Caterpillars
        They feed on leaves and make holes. The quality of the leaves is deteriorated. Yield
is reduced. Affected leaves are not acceptable to consumers.
        Avoid insecticides Spray Malathion at 0.1 percent . Harvesting of leaves should not
be done for 6-8 days after spray.
Leaf spot
       On lower leaves, small circular spots appear with ash colour in centre and deep
violet or reddish purple in border. Later the spots coalesce, leaves wrinkle and ultimately dry
and fall off. Formation of new leaves remains continued.
        Usually no fungicidal sprays are required. In case of severity spray Copper
Oxychloride @ 2g/lit or Carbendazim @ 1g/lit.
Wilting of plants are observed which reduce the yield of the crop.
        Application of Trichoderma culture 1 kg along with 10kg Neem cake and 90 kg of
FYM. Adopt crop rotation.



                                       (Capsicum annuum L.)
        Chilli is an important commercial crop that gives a range of processed products such
as chilli powder, oleoresins etc, there by offering excellent potential for export. Chillies
constitute about 20% of Indian spice exports in quantity and about 14% in value. Andhra
Pradesh is the largest chilli producing state constituting a major portion of the total
production. It is grown in an area of 2.37 lakh ha with a production of 7.48 lakh tonnes and
productivity of 316 kg/ha. In Andhra Pradesh, it is largely grown in Guntur, Khammam,
Warangal, Prakasam and Krishna districts. From Guntur, chillies is being exported to USA,
UK, Japan, France, Srilanka etc to a tune of Rs100 crores annually.

        Composition of green chillies (per 100 g of edible portion) (Aykroyd 1963)
             Moisture             : 85.7 g           Nicotinic acid      : 0.9 mg
             Protein              : 2.9 g            Phosphorus          : 80 mg
             Fat                  : 0.6 g            Iron                : 1.2 mg
             Minerals             : 1.0 g            Sodium              : 6.5 mg
             Fibre                : 6.8 g            Potassium           : 217 mg
             Carbohydrates        : 3.0 g            Copper              : 1.5 mg
             Calories             : 29               Sulphur             : 34 mg
             Calcium              : 30 mg            Chlorine            : 15 mg
             Magnesium            : 24 mg            Thiamine            : 0.19 mg
             Riboflavin           : 0.39 mg          Vitamin „A‟         : 292 I.U
             Oxalic acid          : 67 mg            Vitamin „C‟         : 111 mg

Season                           Kharif/Rabi
Sowing of seeds           July-August/Sept-October
Direct Sowing             July 15th to August 15th
        Black soils are best suited for chilli cultivation. If irrigation is available can be taken
up in light and alluvial soils. Soils with poor drainage are not suitable for chilli cultivation
Seeds and Sowing
        For open pollinated varieties, raising 1 cent nursery 650 g seed was optimum, which
was sufficient to transplant one acre. For hybrids raising 1 cent nursery 100 g seed was
optimum, which was sufficient to transplant one acre.

        Preparation of raised beds with dimension of 1 m width, 40 m length, 15 cm height
(40 m2) is required for transplanting in an acre of main field. Leave 30 cm gap between two
beds for irrigation, weeding and spraying. Application of 80g of fipronil granules per 40m 2is
recommended against sucking pests. Seed treatment with Thiram or Dithane M-45 is done
at the rate of 3g/kg seed. Spraying copper fungicide on 12th day and 19th day of sowing to
prevent damping off disease. Six weeks old seedlings are to be used for transplantation.
        Direct sowing of chillies @ 2.5kg/acre behind the seed drill / gorru is recommended
in first fortnight of July for reaping high yield. Thinning is to be done in direct sown chilli
crop maintaining a distance of 60 cm between plants
        Seedlings are ready for transplanting five to six weeks after sowing. Recommended
spacing varies depending on cropping system, soil type, and variety. Transplant in the late
afternoon or on a cloudy day to minimize transplant shock. One seedling in case of hybrid
and two seedlings per hill in case of varieties are transplanted according to spacing.
        Rainfed        :       56 x 15 cm
        Irrigated      :       75 x 30 cm (or) 90 x 60 cm
        Released during 1938. Pods lengthy, sickle shaped, tip pointed, calyx persistent,
resistant to thrips. Yield 18-20 q/ha.
        Released during 1954. Calyx cup shaped, tip pointed, wide adaptability. Yield 20-25
        Released during 1962. It is cosmopolitan in habit and comes up well both under
irrigated and rainfed conditions. Ideal for foreign export. Recommended for all the districts.
Fruits are medium in size with 44% seed to pod. Calyx cup shaped and persistant. Average
dry chillies yield in rainfed 10-12 q/ha and under irrigation 25-30 q/ha with a maximum yield
potential of 40q/ha.
G 4 (Bhagya Lakshmi)
        Released during 1968. It gained extensive spread throughout the state particularly
under irrigated areas. Fruits are medium with 40% seed to pod and olive green colour
turning to bright red on ripening. Recommended for all the districts under irrigation. Suitable
for green chillies and tolerant to virus disease. Average dry chillies yield in rainfed 12-13

q/ha and under irrigation 30-35 q/ha with a maximum yield potential of 50q/ha. Average
green chillies yield is about 200 q/ha.
G5 (Andhra Jyothi)
       Released during 1971. Fruits are short and stout with conical shape. Seed content
42%, calyx semi cup shaped, suitable for Nellore and Chittoor districts. Average dry chillies
yield in rainfed 11-12 q/ha and under irrigation 30-32 q/ha with a maximum yield potential
of 50q/ha.
Sindhur (CA-960) (Hot-Portugal)
       Released during 1977. Early in bearing by two to three weeks. Plants tall growing
fruits long and stout with cup shaped clayx and blunt tip. Pericarp light green turning to
bright red on ripening. Seed content 38% and pungency is mild. Recommended for green
chilli production in Cuddapah, Ananthapur, Kurnool, Prakasam and Krishna Districts.
Recommended for dry chillies in Krishna, West Godavari, Warangal and Karimnagar Districts
where there is liking for stout and mild pungent types. Average dry chillies yield in rainfed
12-14 q/ha and under irrigation 30-35q/ha with a maximum yield potential of 60 q/ha.
Average green chillies yield is about 250 q/ha.
Kiran (X-200)
       Released during 1972. Fruits are long and thin with light green pericarp and srosey
red colour on ripening. Fairly tolerant to thrips, mites and aphids. Calyx persistent and
cupshaped. Seed content 42%. Average dry chillies yield in rainfed 12-14 q/ha and under
irrigation 30-35 q/ha with a maximum yield potential of 50 q/ha.
Aparna (CA 1068)
       Released during 1982. Plants tall growing and late in bearing by two weeks when
compared to other strains. Fruits yellow in colour on ripening. Fruits medium long and stout
with semicup shazped calyx and blunt up. Seed content 42%. Recommended to yellow chilli
zone of East Godavari, Visakhapatnam, Vijayanagaram and Srikakulam districts. It is tolerant
to salinity and can with stand drought as well as high moisture conditions. Average dry
chillies in rainfed 12-14 q/ha and under irrigation 30-35 q/ha with a maximum yield potential
of 50 q/ha.
Bhaskar (LCA 235)
       Released during 1885. This varieties characterized by compact plants with short
internodes, small leaves and flowers with yellow anthers. Pods are olive green (5-6 cm long)
with high seed content (45%) and high degree of pungency. Fairly tolerant to sucking pests
like thrips, mites and aphids. The yellow another colour which is a rare character serve as a
marker gene in maintenance of purity. Recommended to all the districts. Fairly tolerant to

virus. Average dry chillies in rainfed 20-25 q/ha and under irrigation 40-45 q/ha with a
maximum yield potential of 70 q/ha.
Prakash (LCA 206)
        Released during 1991. Plants tall grown with light green leaves, fruits long and
slender, fruits shining, red colour on ripening. Seed content 40%, suitable for both rainfed
and irrigated crop in all the districts of A.P. Average dry chillies in rainfed 22-23 q/ha and
under irrigation 40-42 q/ha with a maximum yield potential of 60 q/ha.
LCA 305 (Lam 305)
        Released during 1993. Pod larger than Bhaskar 235 with shining red colour plant
bushy in type. Fruits 7-8 cm long and fairly tolerant to virus disease. Average dry chillies in
rainfed 20-25 q/ha and under irrigation 40-45 q/ha with a maximum yield potential of 65
        Plants dwarf and spreading with light green and broad leaves. Pods thin, 9-10 cm
long and wrinkled. Suitable for green cillies to be grown round about Hyderabad. Seed
content 35%. Average green chillies yield is about 200 q/ha.
        Similar to N.P. 46 A, but pods are longer (10-12 cm). Suitable for green chilli
production round about Hyderabad and to export to Hyderabad city. Average green chillies
yield is about 180 q/ha.
LCA 334 (Lam 334)
        Released during 2006. Medium to late maturing variety. Plants are erect and semi
spreading, pods slender, medium size with bright red colour suitable for export. Moderately
tolerant to viruses and abiotic stresses. Yield 60-65 q/ha.
LCA 353
        Released during 2008. Early to medium maturing variety. Plants semi spreading,
pods slender, medium size with bright red colour suitable for export. Moderately tolerant to
viruses. Yield 60-65 q/ha.
LCA 424
        Early variety. Less pungent, suitable for export. Fruits are long and stout. Yield 40-45
q/ha. Ready for release.
LCA 436
        Less pungent suitable for export. Plants are spreading, medium tall with medium
bold fruits. Yield 45-50 q/ha. Ready for release

Manures and Fertilizers
        Apply a basal dose of 25 tonnes of Farm Yard Manure per hectare in the last
ploughing. Sheep penning of 2500 to 3000 sheep per hectare is advisable, if available. Apply
neem cake at 3-4 q/ha preferably mixing with basal dose of chemical fertilizers at the time
of final ploughing. In the main field where chilli crop will be transplanted in the forthcoming
months, short duration green manure crops like pillipesara/greengram /sunhemp may be
raised and incorporated into the soil before flowering. For quick decomposition of the
incorporated green manure crop, apply 200 kg of Single Super phosphate/ha.
       A recommended dose of fertilizer i.e., 300N:60P:120K ha-1 can be applied as N in the
form of 50% Urea and remaining as Ammonium Sulphate/ Calcium Ammonium Nitrate and K
in the form of 50% as Muriate of Potash and remaining 50% as Sulphate of Potash was
found to give enhanced seed yield and profitable returns per unit area in chilli
       Chilli requires frequent intercultivation.    In the direct sown crop blade harrow is
worked starting from 30th day of sowing.        Four intercultivations are needed at 10 days
intervals alternated with blade harrow and tyned harrow. Final inter cultivation is given by
the country plough. For an irrigated crop, intercultivation is either by junior hoe or light
plough after each irrigation. Intercultivation is followed by hand weeding to check the weed
growth. Application of pre-emergence weedicide Pendimethalin 30% @ 1.3 l/acre was found
effective when applied 1-2 days immediately after sowing in direct sown crop. Post
emergent weedicide Quizalofop-P-ethyl @ 400 ml/acre was found effective for grassy weeds
except Cyprus.
       Chilli can not with stand heavy moisture, hence, irrigation should be given only when
necessary. Frequent and heavy irrigations induce lanky vegetative growth and cause flower
shedding and spread of diseases. The number of irrigations and interval between irrigations
depend upon soil and climatic conditions. If the plants show symptoms of drooping leaves at
4.00 PM, it is an indication that irrigation is needed.
Flower drop
       Flower drop is natural in chillies. Only 30-40 per cent flower set into pods. Flower
drop will be high during cloudy days. To minimize flower drop and to increase pod set,
Naphthalene acetic acid (NAA) at 10ppm can be sprayed thrice at fortnightly intervals
starting from November. Spraying of 0.125% Tricontanol and IAA 10ppm significantly
increased yield by reducing flower drop and increasing fruit set.

       Green fruits will be ready for picking from 2½ months of planting and red ripe fruits
can be harvested 3-4 weeks later. For better quality and higher yields, the red riped fruits
are harvested immediately. For rainfed crop 3-4 pickings and for irrigated crop 6-8 pickings
are necessary. Avoid application of pesticides just before picking i.e follow waiting period to
prevent pesticide residues in the produce. Don‟t allow the fruits to over ripe/ dry on the
plant itself and periodical picking is recommended to get quality produce. The harvested
fruits are dried in sun light on a drying floor. After drying, insect bored and diseased fruits
(White coloured fruits) are separated and bagged.
Post Harvest Technology
       Dry the ripe pods till the moisture content reaches 8-10%.Dry the ripe pods in Poly
house solar driers or tarpaulins or cement floor or polythene sheet to avoid aflatoxin
contamination. Store the produce in clean & dry gunny bags and stake them on wooden
plank 50-60 cm away from the walls to prevent contamination. Sort out the damaged and
white spotted fruits to market the graded quality produce. Do not use any chemical for
improvement of color like Sudan R-I as they are hazardous (toxic) and are prohibited for
use. Do not write with ink on chilli field gunnies to prevent contamination of toxic chemical
Rhodomine B which will be absorbed by the dried and packed chillies.
Plant Protection
Root Grubs (Holotrichia consanguinea)
       Eggs laid in soil /compost dumps / manure pits during pre-monsoon showers. Grubs
damage the chilli plants by cutting the roots and several plants die in standing crop rows as
it bores in to root system also. Adults feed on leaves. The attacked plants die and can be
easily identified. Their damage can be seen in the field up to the end of November.
      Deep summer ploughing and destruction of grubs, pupae.
      To prevent root grubs, use only well rotten farmyard manure.
      Apply 250-500kg Neem cake/ha maxing with farmyard manure.
      In severe cases apply 25kg Phorate (10G) or 33 kg Carbofuran (3G) granules/ha.
Thrips (Scrtothrips dorsalis H.)
       Both nymphs and adults damage the crop. They lacerate the leaf tissue and suck the
sap. The infested leaves develop crinkles and curl upwards. The severely infested plants
develop bronze colour. If the plants are affected at early stage they remain stunted in
growth and flower production and pod set are arrested causing severe loss in yield.

      Application of Fipronil 0.3% granules @ 8 Kg/ha at 15 and 45 days after
      Spray carbaryl 3gr or Phasalone 3ml or Fipronil @ 2 ml or or Chlorfenpyr @ 2ml,
       Difenthurion @1.5g or Spinosad@ 0.25ml per one liter of water. In severe conditions
       repeat the spray with 4-6 days interval
Mites (Polyphago-tasonlmus latus)
       The affected leaves curl down ward along the margins of the leaf and attain an
inverted boat shape. The petiole of the leaves gets elongated and the young leaves at the
tip of the branch cluster. The affected plants develop dark green colour. Severely affected
plants show distorted leaves with brownish patches leading to drying up of entire foliage. In
the affected plants the vegetative growth is inhibited and flower production is ceased and
yields are considerably reduced.
        Spray Dicofol (kelthane) 5ml or Wettable sulphur 3 g or Micronised sulphur 2.5g/litre
of water. In severe conditions repeat the spray with 4-6 days interval with thorough
coverage of bottom side of leaves.
Aphids (Aphis gossypi)
       Aphids appear on the tender shoots, leaves and on the lower surface of the old
leaves. They suck the sap and reduce the vigour of the plant. They secrete sweet substance
(Honey dew) which attract ants and develop sooty moulds. The pods that develop black
colour due to sooty moulds loose quality and fetch low price. The yields are also reduced by
aphids directly and more through the spread of virus diseases acting as vectors.
       Spray 0.1% Dimethoate 3ml/l of Methyl demeton 2ml/l of Acephate 1.5g in one litre
of water. Spray alternating the chemicals at weekly interval.
Blossom midge (Asphondylia capsici)
          Damage occurs only to flower buds and flowers. Adults lay eggs on unopened
flower bud. Maggot feed on developing ovary resulting in ovary bulging prominently to
wards one side with white discoloration. Pupation takes place with in ovary. As a result
infested flower drops off. But those retained develop in to abnormal fruits with poor seed set
and quality in infested fruits is effected. Damage causes severe flower drop, deformed,
twisted pods and dropping of pods.

        Spray Trizophas @ 1.25 ml followed by Chloropyriphos @ 2.5 ml/l in an interval of 4
Pod borers (Spodoptera litura, Spodoptera exigua, Heliothis armigera )
        Pod borers are polyphagous and appear on chilli crop both in vegetative phase and
at the time of pod formation. The caterpillars are pale greenish brown and smooth with dark
markings. They enter chilli pods in second and third instar by making a hole near calyx and
feed on chilli seed. The affected pods drop off or develop white colour on drying. The fully
grown caterpillars enter the soil for pupation.
       Deep ploughing of the filed in summer to expose resting stages of insect pests to hot
       Grow castor and marigold in chilli field as trap crops against Spodoptera and
        Helicoverpa pod borers.
       Growing sorghum/maize as border crop two to three rows around chilli field as
        barrier crop to limit immigration of insect pests and to encourage build up of
        beneficial insects like predators and parasites to take care of the key pests that occur
        on chilli crop.
       Erecting bird perches @ 10/ac to promote predation of pod borers
       Spray Acephate 1.5g or Chloropyriphos @ 2.5 ml or Thiodicarb 1 g or Spinosad
Damping off (Pythium aphanidermatum, Phytophthora spp. )
        It is the nursery disease caused by soil borne fungi under favourable conditions.
Affected plants usually die in patches in nursery beds or low parts of fields. Seedlings may
be infected before or after emergence. If infected before emergence, the germinating plants
become soft, brown and decompose. If infected after emergence, water soaked lesions form
about 1cm above or below the soil line. The stem softens and cannot support the seedling
which collapses and die. Excessive moisture, high relative humidity, over crowding, poor
drainage and applying excessive levels of nitrogen in soil are favourable for the disease
development and spread in the nursery.
       Treat seed with Mancozeb (3g/kg seed) before sowing.
       Raise seedlings on raised nursery beds to avoid ill drained conditions and practice
        the rotation.

          Optimum seed rate (650g/cent) is to be used to avoid over crowding of the
          Drench the nursery beds with Copper oxychloride 3g/litre, 2-3 times at 4 days
           intervals starting from 9th day of sowing as a prophylactic measure.
Choanephora blight (Choanephora cucurbitarum )
           The disease causes damage to the crop during rainy season. It occurs in nursery as
well as in main field. Brown water soaked lesions occur on the middle of the stem gradually
the lesions become black, coalesce and leads to rotting of tissue. The damage spread to
upward and downward direction and leading to drying of effected plant or branches. In the
field, the disease can be identified based on the appearance of a stiff silvery mass of whisker
like or hairy strands of the fungus growing out of the affected tissue topped with a ball
made of great number of spores.
           Spraying 1g Streptocyclin mixed with 30g of Copper oxychloride per 10 lit of water
twice at one week interval.
Bacterial leaf spot (Xanthomonos vesicatoria)
           It occurs in October to December months. In the beginning small brown spots are
seen on leaves which turn into grayish or black spots. In severe cases the affected leaves
turn yellow and drop-off. Stem infection results in wilting of tender branches and twigs.
           Spray Plantomycin 2g or Streptocyclin 1g plus 30g Blitox in 10 lit of water at
fortnightly intervals.
Cercospora leaf spot (Cercospora capsici)
           It is a fungal disease appears on the crop from October to February. The disease first
manifests as small brownish spots on the leaves and gradually develop in to the big circular
grayish spots with whitish center. Later they form in to large lesions due to coalescing of the
spots. Infection on fruit stalk and calyx is also very common in severe cases. Affected leaves
become yellow and defoliated.
           Spray Carbendazim @ 1g/l or Mancozeb @ 2.5g/l of water 2-3 times at one week
Dieback or Fruit rot (Colletotrichum capsici)
           It is a seed as well as air borne disease. It appears in October-November at the time
of flowering. Individual flowers get infected and dry up. The infection gradually spreads to
the stem also. In the affected stem, the bark first turn brownish and then turn to shiny

white in long and narrow strips containing several black dot like fructification. Affected twigs
get with red and dry up from tip downwards, after on, the disease spreads to the fruits also.
Circular to oval, black spots occur on the ripe pods. Severally affected pods turn straw
coloured instead of normal red, shrivel and dry up.
       The seed from disease free crop only should be used for sowing.
       Seed treatment with Captan or mancozeb at 3g per kg of seed should be taken up.
       Early removal of isolated cases of die-back will be helpful in checking further spread.
       Spray Captan 1.5g or Mancozeb at 2.5 g or Copper oxychloride 3.0g or Propiconzole
        1 ml, Difenconazole 0.5ml, Copper hydroxide 2.5g or Azoxystrobin 1ml per litre of
        water at the time of flowering i.e, in October-November and repeat the spray after
        15 days if the disease in seen.
Powdery mildew (Laveilula taurica)
        This disease occurs in December-February. Whitish powdery patches are seen on the
lower surface of the leaves. In advanced stages, the leaves turn yellow and drop-off. Further
flower production is ceased.
        Spray Karathane 1ml or Wettable sulphur 3g/lit of water two to three times at 10
days interval.
Virus complex
        Viruses have become most serious causing extensive damage. The wide spread virus
diseases in Andhra Pradesh are given below.
Leaf curl (Transmitted by whitefly)
        Symptoms consist of abaxial and adaxial curling of leaves accompanied by puckering
and blistering of interveinal areas and thickening and swelling of veins. It causes 60-70%
losses in yield.
Peanut bud necrosis virus (Transmitted by thrips)
        Infected leaves show mosaic and necrotic spots, older leaves show small concentric
rings. Initial infection may cause yield loss up to 70-80%
Cucumber mosaic virus (transmitted by aphids)
        Stunted plant growth, leaves become narrow and show foliar mottling. Mosaic
mottling of leaves. Yellow rings are produced on leaves and fruits. The disease causes 50-
60% yield loss in case of early infection Drop prematurely.
Control of Virus complex
       Select virus tolerant varieties like LCA 334, G 4 and LCA 235

      Treat the seed with Imidacloprid @ 8g/kg seed against thrips to prevent PBNV
      Control vector by applying Furadon granules 3 G @ 30 kg/ha or Fipronil Granules @
       20kg/ha twice at 15 & 45 days after transplantation.
      Sowing of barrier crops like jowar, maize or sunflower
      The vectors of viral diseases viz., thrips (PBNV), aphids (CMV & Poty viruses) and
       white fly ( Gemini virus/ leaf curl) should be regularly monitored and should be kept
       under check as a prophylactic measure to avoid the incidence of viral diseases
      Virus infected plants if noticed, have to be uprooted and destroyed immediately to
       avoid further spread
      Main field and bunds of the fields should be kept weed free to avoid the incidence of
       viral diseases.
                                     CHILLI- EXPORTS
       India exports chillies in the form of dried chillies, chilly powder, pickled chillies and
chilly oleoresins. Indian chili is mainly exported to USA, Sri Lanka, Bangladesh, the Middle
East and the Far East. The highly pungent "Sannam" & the mildly pungent 'mundu' chilies
are internationally popular varieties. Chillies are exported as whole, with or without stalks &
with clipped stalks and fresh and dried capsicum and as powder, oils and oleoresins. Byadgi
chilli grown in Dharwad district of Karnataka and Tomato chillies of Warangal, Andhra
Pradesh are demanded for their high colour value. The value added products from chilli have
wide export demand in the world market under WTO scenario provided the quality
standards are maintained.
       Chilli importing countries and consumers over the world today places much emphasis
on quality aspects. Pesticide residues, Aflatoxins and other microbial contaminations and
mixing of undersirable chemicals like "Sudan R-1" for imparting colour caused great damage
for exports of chilli products from India to other countries particular to European countries.
       In view of this, utmost care shall be taken to meet the international quality standards
besides reducing the cultivation cost to enhance the export potential under the situation of
extreme competition among different countries and WTO scenario.
       There are mainly three quality standards that are followed for chilli and chilli
products. They are
(1) Agmark standards
(2) ASTA standards
(3) European standards.

Description of quality factors
Length of Pod
   The length of the pods shall be reckoned with from the tip of the fruit to the pedicel
point where the stalk is attached. For accidental errors in grading, tolerance upto 5% for
pods not conforming to the specified length will be allowed in all grades.
Whole pods
   Pods which are intact lengthwise to the extent of 75% or more of the whole pods.
Broken Pods
   Pods which are broken into places of size not included under whole pods.
Loose Seeds
Seeds out of chilli pods will be considered as loose seeds.
Damaged and discoloured Pods
   Damaged pods are those pods, which are damaged materially, affecting the quality.
Pods having brown, black, white and other coloured patches covering 25% or more surface
area of pods will be considered as discoloured pods.
Foreign matter
   Extraneous matter, calyx, pieces and loose stalks will be treated as foreign matter.
Tolerance for moisture
       Though the optimum moisture level is 12% an additional tolerance of 0.5-1% will be
allowed during monsoon season i.e. 1st June to 30th September.
Chillies in International market
Importing from India                             Sri Lanka, U.S.A., Canada, England, Saudi
                                                 Arabia, Singapore, Malasia, Germany.
Chillies producing countries                     India, China, Pakistan, Moracco, Mexico,
                                                 Turki, Bangladesh
Export competitors for India                     China, Pakistan, Bangladesh

Varieties suitable for export
Maximum pulp yielding varieties        : Pusa Jwala, Badigadabbi, LCA-235, 334, 324, Sindhur
Maximum colour yielding varieties      : LCA-206, 304, 305, 357, 424, Sindhur
Maximum pungent yielding varieties : LCA-235, 324, 334, Pusa Jwala, Aparna, PKM-1
Importing standards set by American Spices Board
Insect residues        –       4/lb.
Excreta                –       1/lb.

                                 Part             Content         Limit
                                              Other material     5%
                              Chilli pods
                                              Insect damage      5%
                                              Ash                1.3%
                            Chilli Powder     Fiber              3%
                                              Oil                2%

Classification based on the Capsicin content
Range (%)            Content                                   Varieties
> 1.00            High                  Foreign chillies, white foreign chillies, Nigirian chillies
0.76   – 1.00     Medium to high        K-2, Jawahar
0.51   – 0.75     Medium                G-4, Jwala, Musatwadi
0.26   – 0.50     Low to medium         LCA-235, G-4, G-5, LCA-334, LCA-353
0.10   – 0.25     Low                   Sindhur, LCA-206, LCA-424, LCA-436

                                            (Allium cepa L)
         Onion is an important crop used widely both as a condiment and vegetable. It
occupies an area of 28,000 ha. in Andhra Pradesh. Kurnool, Mahaboobnagar and Cuddpah
are important districts. Onion is rich in riboflavin and calcium.
         There are two main seasons.
         Rabi (Main Crop) – December to April
         Kharif June-July to October-November
         Onion crop is propagated mostly by seed and in some parts bulbs are also used.
         Loamy soils are highly suited for proper development of bulbs. Good drainage and
irrigation facilitates better crop growth. Alkalinity or water loggings are not tolerated by
Bellary Red
         Big bulb, 1-2 split under each buld. Less pungent, suitable all over the state.
Rampur Red
         Similar to Bellari red, popular in North India.
White Onion
         Big size, not very high yielder, more pungent.
Naisk Red
         Medium size, red colour bulbs, pungent tubers, popular in Maharashtra.

Small Red Onion
       One or more splits small in size, sweetish, the bulbs are pungent, grown extensively
in Visakhapatnam area.
Pusa Red
       A very popular short to intermediate day long variety. Bulbs medium, flat to globular
red average weight 70-90 gram and less pungent. It has less bolting. Gets ready in 125-
140 day seed yield 4-6 q/ha.
Agrifound Dark Red
       Bulbs round globular in shape with tight skin, moderately pungent and dark red with
bulb diameter of 5-8 cm. Takes 150-160 days for maturity. Better keeping quality and
storing capability. Seed yield 4-7 q/ha.
Agrifound Light Red
       Small size, solid, light red colour bulbs with more pungency. Suitable for transport to
longer distances. Good export value. Useful for direct sowing. TSS 13%, Takes 162-165
days maturity. Best suitable for rabi season.
Seed and Sowing
       Sow nursery during June-July. 7-8 Kg seed sown on raised beds in 500 m 2 will be
sufficient to transplant one hectare. The seedlings will be ready within 45 days. Plant on
both the sides of ridges or beds with a spacing of 30 x 10 cm. Dip the seedlings in 1%
Bordeaux mixture before transplanting.
       Nursery has to be raised during December, 7-8 kg of seed ha is sown in 500-600
sp.m area to transplant one hectare. Plough thoroughly and add 100 kg of well rotten FYM
for 10 sp. meters area raised in nursery beds of 120 cm width and 3 metre lenth are
formed. Seeds are sown in lines. The beds are to be not watered and hand weeded. In the
nursery 0.5% Bordeaux Mixture is to be sprayed at 10 days intervals to prevent damping.
The seedlings will be read with in 45 days.
       The land is prepared in to ridges and furrows or beds and channels depending upon
the conditions. The ridges are to be made at 30cm apart. The seedlings are planted on both
sides of the ridges at half way on the slope at 7.5cm distance. In black soils, they can be
placed at a little wider space up to 10cm. For seed production spacing up to 30cm either
way is given. At the time of transplanting, the seedlings are to be dipped in 1% Bordeaux

Manures and Fertilizers
       Incorporate FYM at 25 t ha-1 during preparatory cultivation and apply fertilizers @
100:50:60 NPK Kg/ha. Apply entire P,K and half of the N as basal and the remaining 50 N
has to be top dressed in two equal doses at monthly intervals.
       In addition to the FYM, 50kg N, 40-50 kg P2O5 and 60kg K2O per hectare are to be
given. Nitrogen is applied in one or two doses at monthly intervals after transplanting as top
dressing. Split application is recommended for light soils.
Harvesting and Post-harvest Technology
       The seedling transplanted crop comes to harvest in about 100 days, while raised
from bulbs it takes 120 days. The last irrigation is to be given 3 days before harvesting to
facilitate pulling of bulbs. The yields, in case of Bellary variety ranges from 20-25 t/ha and
the smaller bulbs range 10-15 t/ha. In case of seed production the flower heads are to be
harvested as and when ripe and dried under shade. About 500 kg of seed can be
Seed Production
       Two methods are used most commonly for the production of onion seed. The most
common is bulb to seed method, which involves first producing bulbs for the market and
then replanting them for seed production. Medium sized bulbs are selected (2.5 to 3cm
diameter) about 1500 kg/ha of bulbs are required to transplant. The bulbs are planted by
the first fortnight of October at a spacing of 30cm with in the row and 45cm between the
rows in ridges. About 850kg of seed can be produced from one hectare. If large sized bulbs
are planted more seed yield can be obtained (about 1000kg) but it requires more seed rate
and larger space. For nucleus and foundation seed production, the bulb to seed method
should be followed. The storing and transplanting of bulbs provide an opportunity for
selection and rouging. However seed to seed method may produce a higher quality of seed
but roughing becomes problem.
       Manual weeding followed by earthing up at 30, 45 days after transplanting
Weed management
       Spraying pendimethalin 3.5 l/ha one week after transplanting onion seedlings.

Plant Protection
Thrips (Thrips tabaci)
          Both nymphs and adults remain at leaf bases and whorls and feed by sucking. The
infestation causes pale whitish blotches on leaves and in case of severe attack, the leaves
dry from tip downwards. The development of onion or Garlic bulbs is affected to a great
          Spray dimethoate @ 2.0 ml/l or methyl dematon @ 2.0 ml/l or moncrotophos @ 1.5
Mite (Aceria tulipae)
          Infested leaves show yellow patches. Plants get stunted.
          Apply Dimethoate/Ethion (0.05%) at initial stage of infestation.
Onion Fly (Delia antiqua)
          Maggots feed on developing bulb underground. Secondary infection by fungus
causes soft rot of onion.
          Cultivars of Allium fistulosum are resistant. Apply arbofurean/Phorate (0.5 kg/ha) ro
neem cake (500 kg/ha) to soil while sowing only
Cut-worm (Agrotis ipsilon)
          Seedlings are cut from the base at night by cut-worms.
          As and when observed soil application with Chlorpyriphos (0.1%) may be done.
Groundnut earwing (Euborellia annulipes)
          Bores into onion bulbs
          As and when observed soil application with Chlorpyriphos (0.1%) may be done.
Leaf Eating Caterpillar (Spodoptera exigua)
          Caterpillar bores in to Onion leaves. The early instar larvae feed on surface of leaves
in group and later instar larvae form irregular holes. At bulb maturing stage larvae feed on
the internal content of the bulb.
          Spray Endosulfan 0.07% 2 ml/l of water.

Leaf Blight (Alternaria perri)
       This is the most common and devastating disease of onion in the state and is noticed
at all stages of the crop from November to May. Purple to dark coloured spots appear on the
leaves and at the spots increase in size and colour, the leaves turn yellow and whither. In
severe cases the leaf gets girdle out at the infected region, and dry up. Incidence up to 48%
has been observed.
       Spray mancozeb @ 2.5g/l or ziram @ 2g/l or carbendazim @ 1g/l four to five sprays
at 7-10 days interval starting from first symptom appearance.
Leaf spot (Cercospora sp.)
       It is noticed in the off season crop in the form of large oval and grey spots on the
leaves. In this case the affected leaves gradually turn pale and dry up. The leaf infection
was found up to 3%.
       The incidence of the above two leaf diseases can be minimized by timely sprays of
Bordeaux mixture 1% fortnightly intervals.
Damping Off (Corticium solani)
       This affects the germinating seeds and seedlings in the nursery beds. The important
commercial varieties like Bellary big, Sattenapalli, Devanapalli and Rayaduraga are found
       Drenching the soil with 1% Bordeaux mixture or wettable Ceresan 0.3% reduces the
disease incidence.
Storage Rot (Erwinia spp.)
       The onions while in storage are subject to rotting caused by abactirium and fungus
resulting in a loss upto 30%.
       Storing of the bulbs in proper aerated and well ventilated storage structures and
elminating the rotted bulbs by periodical turning of the storage heaps are recommended in
minimizing the losses during storage. Remove debris and disinfect walls of warehouse with
Formaldehyde (1% in 10 gallons of water) or copper sulphate 0.5kg in 25 lit of water.

                                      (Allium sativum L)
        Garlic has been considered as a rich source of carbohydrates, protein and
phosphorus. Garlic having various medicinal uses is used as a gastric stimulant, which aids
in digestion and absorption of food. It is also reported to be useful in reducing the
cholesterol concentration in human blood. The inhalation of garlic oil or garlic juice has been
recommended in cases of pulmonary tuberculosis, rheumatism, cough and red eyes. Apart
from medicinal uses garlic has been reported to contain certain insecticidal, fungicidal and
bactericidal action also.
        Nutritive composition of fresh peeled garlic cloves and dehydrated garlic powder
(Pruthi,1979) is as given below.
        Particulars                     Fresh peeled            Dehydrated
                                        garlic cloves (%)       garlic powder (%)
        Moisture                                62.80                     5.20
        Protein                                  6.30                    17.50
        Fat                                      0.10                     0.60
        Mineral Matter                           1.00                     3.20
        Fibre                                    0.80                     1.90
        Carbohydrates                           29.00                    71.40
        Calcium                                  0.03                     0.10
        Phosphorus                               0.31                     0.42
        Potassium                                  -                      1.10
        Iron                                    0.001                    0.004
        Niacin                                     -                      0.70
        Sodium                                     -                      0.01
        Vitamin „A‟ (I.U.)                         -                    175.00
        Nicotinic Acid (mg/100g)                 0.40                       -
        Vitamin „C‟ (mg/100g)                   13.00                    12.00
        Vitamin „B‟ (mg/100g)                      -                      0.68
        Vitamin „B2‟ (mg/100g)                     -                      0.08

        Garlic has originated from Central Asia. This is a crop of the tropics, grown
extensively in India. This is a common spice in Indian house hold and has several medicinal
        Garlic prefers mild temperatures and does not stand either drought or ill-drained
conditions. It will not tolerate excessive humidity or rainfall. It is generally grown as a cool
season crop in our State.
     It is normally grown in rabi season.

        Loamy soils with good drainage and adequate irrigation facilities are ideal for
development of bulbs.
        There are hardy any recognized variety in our state. Local varieties are common.
Ramnagar variety of Rajasthan
        It produces bold cloves and popular variety in Rajasthan and other areas in the
Desi or Local Variety
        Cloves are white in colour and have fairly big cloves.
Agrifound White (G - 41)
        Bulbs are compact, silvery white with creamy flesh, bigger elongated cloves with 20-
25 in number and high yielder.
Yamuna Safed (G -1)
        Bulbs are compact, silvery white with creamy flesh, sickle shaped cloves with 25-30
in number and high yielder.
Yamuna Safed – 2 (G -50)
        Bulbs are compact, attractive white with creamy flesh, with 35-40 cloves in number
and high yielder.
Yamuna Safed – 3 (G -282)
        Bulbs are creamy white and bigger in size with 15-16 cloves per bulb and medium
storer and the variety is suitable for export.
Yamuna Safed – 4 (G -323)
        Bulbs are silvery white and bigger in size with 20-25 cloves per bulb.
Agrifound parvathi – (G-313)
        Bulbs are bigger in size creamy white colour with pinkish tinge, 10-16 cloves per bulb
and tolerant to common diseases.
Planting material and Sowing
        The garlic is propagated by the segments of the bulb which are known as cloves. It
may be sown by broadcasting or planted in furrows or dibbled at a distance of three inches
within the row and 6 to 9 inches between rows. The cloves are put down at a depth of 1 to
2 inches.
        The field is irrigated immediately after sowing to facilitate sprouting of the cloves.
Gap filling is done within the first fortnight.

Manures and Fertilizers
          The field is made into small beds and channels for convenient size and 15 to 20 cart
loads of farmyard manure is incorporated in the last ploughing. The Fertilizer requirements
are 60 kg N, 35 kg P2O5 and 60 kg K2O/ha for chalka soils or light sandy soils. But this is to
be adopted according to the soil and local conditions. The P 2O5 may be given in the last
ploughing before forming the beds.
          Crop should be irrigated at an interval of 8-10 days during vegetative growth and
10-15 days during maturation.
          First weeding is done after one month planting and second weeding is done after
two months of planting. Hoeing the crop and earthing up just before the formation of bulbs
(about two to two and half months after sowing) loosens the soil and helps in the setting of
bigger and well filled bulbs.
          Garlic crop is harvested when the tops turn brownish and shows signs of drying up.
The leaves of the bulbs are tied together and after curing them in shade for 3 to 4 days they
are stored in ventilated rooms. The tops are separated before marketing.
          The normal yield is about 100 – 150 q/ha, under proper culture and yields upto 200
q/ha can be obtained.
Plant Protection
Thrips (Thrips tabaci)
       Both nymphs and adults remain at leaf bases and whorls and feed by sucking. The
infestation causes pale whitish blotches on leaves and in case of severe attack, the leaves
dry from tip downwards. The development of onion or Garlic bulbs is affected to a great
          Spray dimethoate @ 2.0 ml/l or methyl dematon @ 2.0 ml/l or moncrotophos @ 1.5
Mite (Aceria tulipae)
          Infested leaves show yellow patches. Plants get stunted.
          Apply Dimethoate/Ethion (0.05%) at initial stage of infestation.

                                      (Zingiber officinalis L)
        Ginger is an important spice crop cultivated in India in an area of 1,766 hectares.
India is the largest producer of dry ginger in the world accounting for more than half the
total world production. In Anhra Pradesh, it is cultivated in an area of 2508 hectares mainly
in Visakhapatnam ( 1931 ha), Medak (311 ha), Rangareddy (91 ha), Nizamabad (77 ha),
Guntur (58 ha), Srikakulam (25 ha) and limited areas in other districts lke Krishna East and
West Godavari.
        Warm humid weather is congenial
        The seeds will be sown from the end of April to first fortnight of May. Delayed
sowing increases, the rhizome-rot disease and reduces the yield.
        It can be grown in a wide range of soils with good drainage like sandy or clayey
loams and red loams to laterite loams. Garden soils rich in humus content are idea.
However, well drained soils are most suitable. The site selected should not have any
impervious hard rock or heavy clay layer within 45 to 60 cm depth impending drainage.
Siddipet Local - Suitable for Telengana region

Rio-de-janeiro (Brazil) - It can be used as a fresh ginger, high in fibre prefixed for
extraction of oleoresin. Susceptible to diseases.
V1 S1-8
V3 S1-8
V2 E5-2 (171) - Less fibre content tolerant to leaf spot diseases. Good quality with high
yield potential.
Seeds and Sowing
        Prepare beds of 1.2 m x 1.8 m sizes. These beds should be provided with alternate
irrigation andf drainage channels. The irrigation channels can be 20 to 25 cm depth but the
drainage channels should be 45 cm deep.
                   Procure healthy seed rhizomes from disease free crop. They should be well
matured, plumpy and hard when pressed. Before planting, cut the sprouted rhizomes into

pieces, weighing about 10-25 g and treat them with 0.3% Dithane M-45 for half an hour
plant the seed pieces with sprouted buds in the first fortnight of May. Plant the seed 45 cm
apart and 10 to 15 cm with in the line. 2250 rhizomes sufficient per hectare of palnting.
       Sowing of cowpea at the rate of 50-60 kg/ha as mulch crop to provide shade,
conserve moisture and ensure better germination of ginger. Showing of castor on bunds
alround the ginger field (and also at 9 meters intervals within the field) to serve as wind
break and also to provide some shade. Remove cowpea 60 days after sowing and earth up
ginger forming ridges and furrows spaced 45 cm apart.
Manures and Fertilizers
       Farmyard manure 50 t/ha and P2O5 60 kg/ha should be applied as basal dressing.
       30 kg of Nitrogen and 30 kg of Potash/ha apply near the rhizomes at 40 th day after
       60 kg Nitrogen and 60 kg Potash/ha at 80 th day and a final dose of 30 kg Nitrogen
and 30 kg Potash/ha should be applied at 120 th day followed by eating up of the crop.
       As and when micro-nutrient deficiencies like Zinc, manganese etc., are observed they
may be applied by foliar spray.
       The beds are mulched immediately after planting. Field is hand weeded three or four
times and plants earthed up once or twice. The rainfed crop is given a second and a third
leaf mulch at the time of weeding, hoeing and earthing up. In coconut and young coffee and
orange gardens, ginger is grown as an inter crop.
       Irrigate the crop during the different seasons according to the soil and climatic
conditions and crop needs. Irrigations may be given a 4 days interval in summer, 7 days
interval in post monsoon period. During the rainy season, it may not be necessary to irrigate
ginger crop if there is more than 2.5 cm rain in 12 days. During heavy rains, care should be
taken to see that there is no stagnation of water in the field after the rain.
Harvesting and Post-harvest Technology
       The crop gets ready for harvest from November onwards when the leaves turn
yellow and stems begin to dry. A part of it may be harvested a little early, if there is a good
demand for green ginger. Complete drying of leaves and pseudostem indicate the maturity
of the crop. Leaves are cut close to the ground. Underground rhizomes are dug out by
manual labour. In case of poor growth or dull market, the crop can be left unharvested for a
year to make up in growth and yield.

       After reserving a small quantity of rhizomes for seed, the ginger is cleaned of
adhering earth and soaked in water to facilitate removal of skin. The skin is scraped off with
pieces of sharpened bamboo or bits of sea shells. Scraped produce is washed, dried in the
sun for three or four days and hand rubbed. It is again steeped in wate for two hours, dried
and then rubbed with coarse cloth to remove all remaining bits of skin. Sun drying also
bleaches the produce.
Plant Protection
Rhyzome Fly (Chalcidomyia atricomis)
       These maggots are white in colour and stay in decayed rhizomes. Good cultivation
practices should be adopted to avoid decaying of rhizomes. Proper drainage should be
ensured. If the infestation is high apply phorate 10 g @ 1.00 kg a.i/ha (10 kg/ha).
Skippers (Udaspee folus)
       These larvae fold the leaves and feed on the chlorophyll.
       Spray 0.1% carbaryl 50% W.P. i.e. @ 2 g/l of water once in 10 days intervals
depending on necessity. 500 l of spray fluid is required per hectare.
Shoot Borer (Dichocrosic punctiferalis)
       These larvae bore on shoots, resulting the death of central shoot.
       Spray endosulfan 0.07% of 35% EC @ 2 ml/l of water about 625 l of spray fluid is
sufficient for one hectare.
Root Grubs
       At the time of germination these grubs cuts away the growing shoots.
       Dusting of BHC Carbarg 5% dust 25 kg/ha.
Soft Rot (Pythium spp.)
       Symptoms like drying up of the shoot and decaying of rhizomes will be noticed.
       Treat the seed with Thiram 0.25% i.e. @ 2.5 g/l of water. Afterwards, spraying on
the main field is also good to some extent.
Leaf Spot (Phyllosticta zingiberi)
       In Andhra Pradesh the disease is common during monsoon months. Initially disease
appears as small, yellowish oval to elongated spots on the leaves measuring 0.5-1.0 mm.

The spots enlarge, turn to white and papery at the centre with dark brown margin
surrounded by ayellow halo. Spots are usually isolated but under humid conditions they
coalesce with one another developing towards the margin forming a big lesion. Black minute
pycnidia develop in the white papery centre of the spots which is conspicuous in the later
stages of the3 disease.
        Spray Dithane M-45 @ 0.20%.

                                        (Curcuma longa L)
        Turmeric is an important spice crop grown on a commercial scale and is in great
demand in India and other oriental countries. India occupies a pride of place with an area of
5.71 million hectares producing 7.93 million tones. Andhra Pradesh stands first in the
country with an area of 67.78 thousand hectares producing 420.19 thousand tones.
        It is mainly cultivated in Krishna, Guntur, Cuddaph, Kurnool, East and West Godavari,
Nizamabad, Karimnagar, Srikakulam and Visakhapatnam districts of Andhra Pradesh.
        It is widely used in food as a spice and condiment and also used in Indian medicines
and cosmetics.
        Humid climate is congenial. Hence, there is a practice of providing shade to the crop
by inter-planting castor.
        Optimum time of planting is last week of May for short duration varieties, first
fortnight of June for medium duration varieties and second fortnight of July for long duration
        Turmeric is a tropical crop. It grows on light black, ashy loam and red soils in
irrigated and rainfed areas. However, it thrives best in a welled rained sandy soil or clayey -
loam soil. The crop can't stand waterlogging or alkalinity. Rich loamy soils having natural
drainage and irrigation facilities are ideal for this crop.
Long Duration Types (9 months)
       It is a selection form Mydukur type. Plant grows to 60cm height. Rhizomes are long,
stout, smooth and hard with pale yellow colour, with a curcumin (colour) content of 1.46%.
Yield ranges from 25 to 37 t/ha or raw rhizomes with curing percentage of 19.3. It has been
found to be the highest yielder in all Zones of the State and resistant to leaf blotch.

         It isa selection from Telkurpet type and resembles Mydukur type. Curcumin content
of rhizomes is 3.0%. Yields equal to that of CLL-326. Curing percentage is 21.8 and this is
resistant to leaf blotch diseases.
         This variety is popularly grown in Guntur district. It is requted for fast yellow
coloured rhizomes. Yields upto 25 t/ha.
         Popular Nizamabad district, yields range from 25-30 t/ha and matures in nine
months. Rhizomes are reputed for fast yellow colour. Yield ranges from 12-18 t/ha.
Medium Duration Types (8 months)
      It is a selection from amruthapani Kothapeta type. Plant grows upto 57cm. Rhizomes
are medium long. Thick with narrow constructions. Cucurmin content is 3.8% yield ranges
from 25-35 t/ha and curing percentage is 19.6%. It is resistant to leaf spot and susceptible
to leaf blotch.
         This variety is popular in Cuddapah and Kurnool districts and a medium duration type
(8months). Rhizomes are thick and wrinkled. Yields range from 15-25 t/ha. It is susceptible
to leaf spot.
Short Duration Types (7 months)
         It is a selection from Dindrigam type of Orisaa and matures in seven months. Plant
grows to a height of 50 cm with dark green toliage. Rhizomes are long. Thin with shiny skin
and aroma and curcumin content is 1.46%. Yield ranges from 15 to 20 t/ha. Curing
percentage is 26.7%. Crop is tolerant to leaf spot and resistant to leaf blotch disease.
         It is popular in agency and Godavari districts. Yields upto 15-20 t/ha and rhizomes
are reputed for aromatic flavour.
         Among the clonal selections Cls NO.2A, Cls NO.9A and G.L. Puram selections (Ca
66J, Ca 66A). Yield 23-25 tons per hectare.
Suguna (PCT-13)
         Suitable for rhizome rot effected areas, 190 days duration yield 29 t/ha curing
percentage 20.4.

Sudarsana (PCT-14)
        All characteristics similar to that of „Suguna‟ yield 28 t/ha and curing percentage
        Finger rhizomes are found to yield better crop than mother rhizomes. Healthy finger
rhizomes of 7 to 8 cm length with sprouting buds have to be selected.
Preparation of land
        Turmeric crop requires clean cultivation and fine tilth and to achieve this 6 to 8
ploughings have to be given. Before the last ploughing basal dose of 25 t/ha. Farmyard
manure is applied.
Preparation of Planting Material
        Healthy finger rhizomes with sprouting buds are selected and distinfected by dripping
in 0.3% Dithane M-45 and 0.5% Malthion for 30 minutes and subsequently air dried.
        About 2,500 kg of finger rhizomes are required per hectare and rhizomes are dibbled
along with the country plough. In loamy soils rhizomes are dibbled at 15cm apart in the
plough furrows spaced 30cm aprt. Land is leveled and flat beds of 3 x 1.8m size are
prepared providing necessary irrigation channels. In heavey soils ridge and furrow system is
adopted and rhizomes are sown at 15 to 20 cm spacing behind the plough and ridged by
breaking the adjacent ridge. Spacing between ridges is 45 to 60cm in low lying areas and in
stiff black clay soils planted on raised beds of 1.7m x 1.2m x 0.2m length with 30cm wide
channels in between. Planting is done in lines on these raised beds with 30 x 15cm spacing.
Yields are higher in this method than the ridge and furrow method.
Seeds and Sowing
        Healthy, well developed well-dried and disease -free whole or split mother rhizomes
and fingers of 2500Kg. per hectare are used for planting. The crop can be sown during May-
June with the receipt of Pre-monsoon showers. Planting is done by dibbling rhizomes in
furrows behind the country plough. The seed rhizomes are treated with Metalaxyl +
Mancozeb @3g/lit before sowing.
Manures and Fetilizers
        Turmeric needs very heavy manuring during the four months period after planting.
Crop requires 300kg N, 125 kg P2O5 and 200 kg K2O per hectare in organic and inorganic
forms. A minimum of 25 t of farmyard manure need to be applied in the last ploughing and
the rest of the nutrients have phosphorus requirement has to be applied in two or three
splits. First split dose of potassic fertilizer can be applied before planting. Nitrogen also has

to be applied in three of four split doses. The first dose has to be applied before plant in and
the rest applied at regular periods just after each weeding at monthly intervals. Fertilizer
application should be completed within 120 days from the time of planting. Chemical
fertilizers should be applied along with FYM and organic cakes as detailed below.

             Time of apply                   Fertilizer           Qty./ha
                                             FYM                  25 T
                                             Castor/Neem cake     500 Kg.
                                             SSP                  375 Kg.
                                             MOP                  62.5 Kg.
                                             Neem cake            500 Kg.
                 40 Days after Planting
                                             Urea                 125 Kg.
                                             Urea                 125 Kg
                 80 Days after Planting
                                             MOP                  62.5 Kg.
                                             Urea                 125 Kg.
                120 Days after Planting
                                             MOP                  62.5 Kg.

        The crop may be mulched immediately after planting with green leaves at the rate of
12-15 tonnes per hectare.
        Hand hoeing and weeding are necessary at 60, 90, 120 and 150 days after planting
in light soils. Immediately the plants have to be earthed up. In black soils where ridge and
furrow method of planting and wider spacing are adopted country plough can be worked for
earthing up and removal of weeds and followed by weeding in the lines. Spray Attrazine @
500-800 grams in 2001it. of water a day after sowing of rhizomes when there is sufficient
soil moisture in the soil.
        The number of irrigations given depends on the condition and type of soil. Fifteen to
twenty irrigations are required for clay soils and upto forty irrigations in sany loams.
Harvesting and Post-harvest Technology
        The main season of harvest fall during February-April depending on the duration of
the variety. Complete drying of leaves and speudostem indicate the maturity of the crop.
Leaves are cut close to the ground and the fields are irrigated two days before harvest.
Underground rhizomes are dug with pickages by manual labour. Subsequently clumps are
gathered and feed of roots and adhering soil. Fingers and other rhizomes are separated. In
ridge planting crop can be harvested by polughing and then the rhizomes are gathered.

Curing of fresh Rhizomes
         Within a week of harvest rhizomes are subjected to curing process to get the
turmeric of commerce. Mothe and finger rhizomes are cured separately. Curing process
consists of boiling the rhizomes in water till frothing occurs, with emission of characteristic
turmeric odour and fingers becoming soft. Material is subsequently allowed to sun dry for
10-15 days on hard and smooth drying floor till the rhizomes produce metallic sound.
         For better appearance of the produce the dried produce can be polished in rotaing
         The cured produce can be stored in pits of 4 x 3 x 2m size. Pits are dug in elevated
place and dried for two days. Bottom and sides of the pits are thickly lined with grass or
palmyrah mats. Subsequently cured produce is filled in pits and is covered with mats and
finally with earth. The materials can be stored for one year.
         For preservation of seed rhizomes the material is stored by heaping them under the
shade of trees. Heaps are covered with turmeric leaf and plastered with earth and cow dung
mixture. It can be left undisturbed for 2 ro 3 months until sowing.
Micro-nutrient deficiencies
         Spray Ferrous sulphate @ 5.0 g along with lime salt @ l.Og per litre of water to
control 'Fe' deficiency. To control 'Zn' deficiency, apply Zinc Sulphate @ 20Kg/ac or spray
Zone Sulphate @ 5.0 g + 0.5 ml sticking agent per litter of water.
         Under optimal conditions, 30-35tonnes of fresh rhizomes and 4-5 tonnes of cured
rhizomes can be expected per hectare.
Plant Protection
Rhizome fly (Mimegralla cocruleifrons)
       Maggots feed on rhizomes by boring and result in dead hearts. Rhizomes also rot
due to the infestation.
         Selection of healthy rhizome for planting proper drainage should be provided.
Application of Phorate 10 G 10 Kg or Carbofuran 3 G 33 kg/ha (1kg al/ha) or spray with
Monocrotophos 0.05% 2 ml/l water twice.
Beetle pest
         This pest causes damage on cured produce in storage by making small holes in
rhizomes and feeds on central portion resulting in loss or rhizome weight.

       Pest can be controlled by dusting lindane (0.63% gamma isomer) once in two
months on foliage or Endosulfan 4% dust.
Leaf mite (Pogachuru tegulu)
       It is caused by eriophyid mite which eats away the chlorophyll.
       These mites can be controlled by spraying the foliage with Methyl Parathion 50 EC
0.05% 1 m/l or water
Scale (Aspidiella hartil C.)
       Damage the rhizomes both in field and in storage sucking the sap.
       The pest can be controlled by dipping the seed rhizomes in 0.5% Malathion for 30
minutes prior to storage and at time of sowing.
       Root knot nematodes (Meloidogyne spp.)
       Burrowing nematode (Radopholus similes)
       Root lesion nematodes (Pratylenchus spp.)
Meloidogyne incognita
       Affected plants show stunted growth, yellowing, marginal and tip drying of leaves,
reduced tillering and galling and rotting of roots. High population of M. incognita causes
yellowing and severe stunting and withering in large patches. Plants die prematurely leaving
a poor crop stand at harvest. Infested rhizomes lose their bright yellow colour.
Radopholus similes
       The infested plants show tendency to aging and dry faster than healthy plants.
Infested rhizomes are of yolk-yellow colour copared with the golden yellow colour of healthy
rhizomes and have shallow water-soaked brownish areas on the surface. Roots show rotting
and most of the decayed roots are devoid of cortex and stellar portion.
       Wherever nematode problems are common, use only healthy, nematode free
planting material. Increasing the organic content of the soil also checks the multiplication of
nematodes. Pochoma chlamydosporia can be applied to the beds at the time of sowing @
20g/bed (at 106 cfu/g) for management of nematode problems.

Rhizome Rot or Early Wilt (Dumpa Kullu Tegulu) (Pythium graminicolum, P.
aphanidermatum, P.myriotylum, Fusarium sp. )
      In early stages of crop growth disease causes decay of pseudostem, resulting in the
death of the plant.
       Treating the seed rhizomes with Metalazyl + Mancozeb @ 3g./lit prevents disease.
Apply cultured Thichoderma Viridi to the soil. When the disease is noticed in the field, the
soil around the plants should be drenched with Metalaxyl + Menozeb @ 2.0 g/lit.
Leaf spot (Aaku Macha) (Colletotrichum capsici)
       The incidence commences from 40 to 50 days after planting and spreads rapidly in
humid weather. Oval shaped spots with greenish colour in the centre are developed.
Affected leaves eventually dry up and yields are reduced.
       The disease mainly appears during August - October when there is countinous
humidity in atmosphere. Spray Mancozeb @ 2.5g or Carbendazim @ l.Og or Thiophenate
Methyl @ 1.0 g/lit. along with sticking agent when the incidence is severe.
Leat blotch (Taphrina maculans)
       This disease appears on leaves as small, rectangular or irregular brown spots on
either side of the leaves and the spots turn to dark brown. In severe cases, crop gives a
scorched appearance and the yields are reduced considerably.
       Disease can be controlled by giving 4 to 5 sprays with Dithane M-45 0.25% or
Dithane Z-78 0.25% at 15 days interval.

                                  (Coriandrum Sativum L)

       Coriander is one of the most important minor seed spices produced as well as
exported from India. It is a very popular cheap and versatile spice used in Indian and
foreign dietary and is one of the chief ingredients in Indian curry powder. The green leaves
are used to flavour, seasoned chutney and salads. Coriander seed are also known for its
medicinal properties.
       In Andhra Pradesh coriander is cultivated in an area of about 56 thousands hectares
contributing about 32% of the area and 42% of the production in the country. On an
extensive scale it is cultivated in Rayalaseema (Kurnool and Ananthapur), Coastal Andhra

(Guntur, Prakasam and Krishna districts) and in parts of Telangana (Medak, Adilabad and
Ranga Reddy districts).
        Cool climate with low temperature and good amount of dew fall are favourable for
the crop growth.
        Black cotton soils with good moisture retention are suitable for coriander cultivation
under rain fed conditions.
        It is not cultivated on an extensive scale in light soils under irrigated conditions
except in garden soils of Tadipatri area (Ananthapur District).
        More saline or alkaline soils with water stagnation are unfit for this crop.
        The best season for coriander cultivation is rabi depending upon the fainfall and soil
moisture, the best time for sowing is between October 15th to November 15th.
Sadhana (CS-4)
        Medium duration variety suitable for grains as well as leaf purpose because of its
bushy nature and grows up to a height of 70 cm.
   Resistant to aphids and performs well in moisture retentive black soils.
   Yields range 1000 to 1100 Kg/ha.
Swathi (CS-6)
        Short duration variety (80-85 days). Escapes powdery mildew and gives and yield of
900 Kg/ha
Sindhu (CS-2)
        Medium duration variety with 95-100 days. Grain is medium in size with an yield of
1050 Kg/ha.
Sudha (LCC-128)
   Medium duration variety with 80-98 days duration. Grain is bold, oblong shaped.
   Yield potential is of 1000 – 1500 Kg/ha.
   This variety is having high volatile oil content (0.36% to 0.40%)
C.S-5 (Small grained)
        It is a Cosmopolitan variety with 100 days duration yielding 10-12 q/ha.
C.S-7 (Late mainly for leaf and also for grain)
        This variety yields more leaf and bushy type with 130 days duration yielding 8-10

        The above varieties were developed at all Inida Coordinated Spices Improvement
Project, RARS, Lam, Guntur.
Seeds and Sowing
        The seeds are sown as split or whole seed between 15 th of October to 15th of
November, depending upon the rainfall and soil moisture using about 12-15 kg of
seed/hectare, with a spacing of 30cm x 10/15 cm in between and along the rows. Split seed
germinates in 2 to 3 days.
Manures and Fertilizers
        Azospirillum seed treatment @ 1.5 kg/ha and five FYM/ha and half the Nitrogen (15
Kg/ha) gives maximum yields.
        In the last ploughing well rotten compost (10-15t/ha) is incorporated along with
30kg of N, 40kg P2O5 and 20kg K2O as a single basal dose in the black cotton soils and
levelled. 10kg N and 10kg K2O at 30 days after sowing when irrigation is available.
        In light soils under irrigated conditions 45kg of N, 30kg of P2O5 and 30kg of K2O can
be applied. Nitrogen is applied in two equal split doses i.e. (1 st dose in the last ploughing
and second dose 30 days after germination and total quantity of phosphorus and potash as
a single dose in the last ploughing and irrigated for getting higher yields.
        Two intercultivations before flowering. Broad-leaved weeds can be successfully
controlled by spraying pendimethalin 30 EC @ 1 to 1.5 l/ha immediately after sowing.
        2 to 3 irrigations in light soils.
        Depending upon the variety the crop comes to flowering in about 40-45 days and
matures in 80-130 days. The crop is harvested when 60% to 80% seeds mature and turn to
light straw colour (90-100 days). Harvesting is done by pulling out the whole plants. These
are kept in the field for 2-3 days and dried in partial shade to get good colour and aroma
from the grain. After threshing, the seeds are cleaned properly dried, and stored in gunny
Post-harvest Technology
        The seed after careful drying and packing should be stored in shade and insect and
rat proof godowns. Dusting of insecticides like Malathion dust on bags will ward off the
insect damage. Marketing is done when the price is favourable.

Plant protection
Aphids (Hyadaphis coriandri, Myzus persicae)
        Wilting of tender shoots, leaves and flowers and shriveling of fruits. Adults and
nymphs feed on plant sap and cause wilting of tender shoots, leaves and flowers and
shriveling of fruits. Pest infestation leads to formation of sooty mould.
        Spray Endosulfan 0.05% or Dichlorvos 0.05% or Thiometon 0.03% or Methylo
demeton 0.05% or Monocrotophos 0.1% at 10 to 15 days interval.
        Suck sap from under side of the leaves, severely infested leaves turn yellow to brown
colour and dry.
        Spraying with Dicofol at 3 ml/L of water.
Tobacco caterpillar
      Caterpillars feed on leaves, flowers and grains.
        Spraying with Monocrotophos 1.5ml/L of water.
Powdery mildew (Erysiphe polygoni)
        Infection occurs as whitish circular patches on leaves and stems and later white
powdery mass appears. Affected inflorescences dry up or get shriveled. Total loss of crop in
case of death of plants. When partially infected plants appear stunted. Occasionally plants
become sterile, if seed set noticed seeds are light and immature.
        Spraying with 0.3% wettable sulphur or Carbendazim 0.1%. Used disease tolerant
lines like Sindu, Swathi, CO3 etc.,
Grain discoloration (Alternaria, Fusarium, Curvularia, Helminthosporium)
        Fungal infestation occurs in the semi mature and mature grains when they are still
intact on panicles. Reduction in the yield, quality and appearance take place.
        Spraying with Carbendazim or Mancozeb 0.25% twice at weekly interval after seed


        The crop is becoming important recently in Andhra Pradesh. It is due to the crop is
suitable to all Districts of our state, apart from that there is good market demand and very
few problems while growing this crop. The total area under Ajwan in Andhra Pradesh is
about 4013 hectares with estimated annual production of 2,007 tons
        It is suitable for cool climate and dew also favours for good growth of the crop.
        Black cotton soils (Rainfed) and light garden soils under irrigated conditions.
        Late Kharif to Rabi
Lam selection-1
        Comes to maturity in 150 to 160 days with 400 Kg/ha yield potential under rainfed
        August to September (rainfed)
        Septemeber to October (irrigated)
Seed rate
        2.5 to 3 Kg/ha
        Planting must be done with gorru
Manures and Fertilizers
        20 Kg N, 40 Kg P2O5 and 20 Kg K2O as basal application
        Thinning has to be done after sowing and 2-3 weedings followed by intercultivation
with gorru within 50-60 days of crop duration. Broad-leaved weeds can be successfully
controlled by spraying pendimethalin 30 EC @ 1 to 1.5 l/ha immediately after sowing.
        3 to 4 irrigations at 50, 80 and 110 days after sowing.
        When grains turn to straw yellow colour, plants can be harvested.

Plant protection
Tobacco caterpillar and gram caterpillar
        The young caterpillars skeletonise the tender leaves by feeding the chlorofil, advance
stage instars feed on leaves and flowers.
        Spraying with Chlorpyriphos 2.5ml or quinolphos 2ml/L of water.
        They suck the sap from the under surface of the leaves. In severe infestation leaves
become yellow and dry.
        Spraying with wettable sulphur at 3g/L of water.
        Both the nymphs and adults, suck the sap from leaves.
        Spray Monocrotophos 1.6 ml/L of water.
Powdery mildew
        Whitish powdery patches appear on the lower surface of the leaves.
        Spraying with Karathane 1 ml or carbendazim 1g/L of water

                                  (Trigonella foenumgrecum L)
        Fenugreek is one of the important minor spices in the Country occupying an area of
about 32600 hectares, producing nearly 35710 tonnes of grain. The major Fenugreek
producing. States are Rajasthan, Gujarath, Uttar Pradesh and Madhya Pradesh. In Andhra
Pradesh it is grown mainly for leaf for flavouring purposes of dhals and curries when cooked.
In Telangana even the tender plants with cotylendons and 2-3 leaves are removed and sold
in the market for seasoning purposes. For grain it is grown in very small pockets here and
there in circars particularly in lanka areas.
        The leaves are very rich in proteins ranging from 18 to 40% on dry weight basis
depending upon the age of the plant. The seeds too contain proteins, minerals and vitamins
and are used for improving taste of food stuffs and has rich medicinal properties. The seeds
contain about 0.8% to 1% „diosgenin‟ which is the main ingredient in oral contraceptives.
        It requires cool climate with low temperature and good amount of dew fall.

        It can be cultivated in a variety of soils. The best soils are clay and sandy loams and
light garden type of soils with assured irrigation facilities. In black cotton soils under rainfed
conditions the growth will be tardy. The crop can be grown throughout the State. Better
yields can be obtained with 2-3 light irrigations at flowering and pod development stages.
        The best time to cultivate fenugreek is in rabi season. For leaf when raised on beds it
can be grown throughout the year.
Lam Selection-1
        Bushy type with 75 to 80 days duration with an average yield of 750 kg/ha under
rainfed conditions. The yields can be doubled if cultivated under irrigated conditions.
APHU Methi – 1
        It is a medium duration (80-0 days) variety with an yield potential of 700 – 900
kg/ha under rainfed conditions and 1200-1500 kg/ha under irrigated conditions.
Preparatory Cultivation
        The land is prepared well by ploughing 3-4 times to a fine tilth and levelled.
Seed and Sowing
        Seeds are sown with gorru in the 2nd fortnight of October depending upon the rainfall
and soil condition and can be extended to middle of November.
        When the crop is cultivated under irrigated conditions in light soils the field is
prepared into small beds of convenient size depending upon the slope of the land and the
seeds are dibbled at 30 x 6 cm spacing in between and along the rows.
        The seed rate/ha when sown with gorru is 30-35 kg while for dibbling 12-15 kg of
seed is sufficient. Germination of the seed starts in 3-4 days and will be over in about a
week. Thinning is to be done, if necessary, to avoid over crowding of plant population in the
field. If the crop is meant for leafy vegetable top dressing with N is to be done 10-15 kg/ha
after each cutting. About 2 cuttings can be taken for green leafy vegetable. Flower initiation
starts in about 5 to 6 weeks after sowing and the crop will be ready in 10-11 weeks.
Irrigations are given as and when necessary in light soils.
Manures and Fertilizers
        25 kg N, 50 kg P2O5 and 50 kg K2O as basal application. Rhizobium seed treatment
@ 1.5 kg/ha and five t FYM/ha and half the Nitrogen (12.5 kg/ha N) given maximum yields.
        One hand weeding followed by working with tyned harrow.

        Broad – leaved weeds can be successfully controlled by spraying Pendimethalin 30
EC @ 1 to 1.5 lt/ha immediately after sowing.
        2 to 3 need based irrigation in light soils.
        When 60% to 80% of pods turn to straw yellow colour, the plants are pulled out and
dried in the fields. After drying, the seed is obtained by beating the pods with sticks. The
seed is perfectly dried, cleaned and stored in gunny bags.
        The yield of seed ranges from 750 to 1500 kg/ha depending upon the type of
cultivation (a) rainfed or irrigated and the yield of green matter ranges from 10,000 to
12,000 kg/ha under irrigated conditions. The green leaf is some times dried and the dried
leaf is used in flavouring curries and cooked mixed with dhal etc. The average yield of dried
leaf ranges from 1000-1500 kg/ha. This can be properly packed stored and used upto 6
months without loosing its flavour.
Plant Protection
Leaf eating caterpillar and pod borer
        Caterpillars eat away the young foliage resulting in herbage loss.
        Spraying with Monocrotophos 1.6 ml per liter of water or Quinolphos 2 ml/lt at 10
days interval depending on pest population.
Aphids (Hyadaphis coriandri, Myzus persicae)
        Wilting of tender shoots, leaves and flowers and shirivelling of fruits. Adults and
nymphs feed on plant sap and cause wilting of tender shoots, leaves and flowers and
shriveling of fruits. Pest infestation leads to formation of sooty moult.
        Spray Endosulfan 0.05% or Dichlorvos 0.05% or Thiometon 0.03% or Methyl – o –
demeton 0.05%
Heliothis, Prodenia, Grass hopper and leaf eating insects
        Spray 0.1% of Folidol or Monocrotophos or Coroban at 10 days interval.
Powdery Mildew (Erysiphe polygoni, Leveillula taurica)
        On leaves it appears as discoloured patches and later spreads to whole plants as a
powdery mass. Yield is reduced.

        Spraying 0.3% Wettable Sulphur or Carbendazim 1 gm/liter of water at weekly
intervals or dusting Sulphur dust of 300 mesh twice at fortnightly intervals when the crop is
one month old.
                                      (Foeniculum vulgare)
        Fennel (Foeniculum vulgare) is a stout, aromatic, annula herb (biennial with potency
of regeneration). The volatile oil is used for manufacturing cordials and enters into the
composition of fennel water, which is commonly given to infants as medicine. The root is
regarded as a purgative. The fruits are used as stimulant in carminative and in cure of colic
pains. The essential oil extracted from seeds is used for scenting soaps and flavouring
material for cakes. In Inida, seeds are used for mastication and chewing alone or with betel
leaves. It is mainly cultivated in Gujarat, Rajasthan, Uttar Pradesh, Karnataka, Andhra
Pradesh, Punjab, Madhya Pradesh and Haryana.
        Fennel requires cool and dry climate for its cultivation. Dry and moderately cool
weather conditions during seed formation increase seed yield as well as quality of produce.
        Except sandy soil, fennel can successfully be cultivated in all types of soils having
sufficient amount of organic matter. Black cotton soils, alluvial to sandy loams and other
light soils containing lime with proper drainage are better suited for its cultivation.
Lam Selection – 1
        Crop matures in 150 -155 days with an yield potential of 1000-1100 kg/ha
Lam Selection – 2
        Crop matures in 150 -165 days with an yield potential of 1000-1200 kg/ha
        Under rainfed cultivation sowing must be taken up in the last week of August to first
fortnight of September. Under irrigated conditions September first fortnight to October
second fortnight.
Land preparation
        Land should be prepared to fine tilth with two ploughings followed by harrowing for
direct sowing. Better yield can be obtained by transplanting 40-45 days old seedlings on
ridges made at 60 cm wide with 20 cm spacing from plant to plant.
Seed Rate
        2.25 kg/ha

        60 x 20 cm.
Manures and Fertilizers
        30 kg N, 60 kg P2O5 and 30 kg K2O along with 25 t/ha FYM as a basal dose.
Topdressing with 30 kg N and 30 kg K2O at 30 DAS and 60 DAS by placement.
        Thinning has to be done 15-30 days after germination with in the row (for direct
sown crop) to have a spacing of 20 cm from plant to plant. Fennel faces severe weed
competition at early stages because of slow germination, wider row spacing and frequent
light irrigations. Keep the field free from weeds with 2-3 hoeings. For transplanted crop
weeding at 20th, 40th day followed by earthing up. Pre emergence application of
Pendimethalin @ 1kg/ha supplemented with one hand weeding 50 days after sowing
controls weeds effectively.
        Fennel is long duration crop, requiring more irrigation than other seed spices. Seed
germination in fennel requires one or two light irrigations. It is irrigated at an interval of 15-
25 days. Water stress during flowering and seed formation may adversely affect the seed
formation and grain yield.
        Depending on maturity of variety (150-170 days). All the umbels do not mature at
the same time. The physiologically matured umbels to be plucked 4-5 times shadedried and
        On an average, fennel yields 8 – 10 q/ha.
Post Harvest Technology
        Dried and clean seeds should be stored in jute bags in free aerated store. The seeds
are cleaned with the help of vacuum gravity separator or spiral gravity separator. To get
good price and easy marketing, the produce should be graded and stored properly.
Plant Protection
Aphids (Hyadaphis coriandri, Myzus persicae)
        Wilting of tender shoots, leaves and flowers and shirivelling of fruits. Adults and
nymphs feed on plant sap and cause wilting of tender shoots, leaves and flowers and
shriveling of fruits. Pest infestation leads to formation of sooty moult.

       Spray Endosulfan 0.05% or Dichlorvos 0.05% or Thiometon 0.03% or Methyl – o –
demeton 0.05%
Caterpillars (Helicoverpa sp. and Spodoptera sp.)
       Spray 1.6 ml Monocrotophos or 2 ml Quinolphos or 2.5 ml of Chloripyriphos in one
liter of water twice in 10-15 days interval.
Damping off
   Severe damage in nursery stage affected plants will die in groups.
       Drenching with Copper oxy chloride @ 3g/lit of water
Powdery mildew(Erysiphe polygoni)
       Infection occurs at flowering stage in cloudy weather. In initial stages whitish
powdery patches appear on leaves and on stems.
       Spray 3 gm Wettable sulphur or Kerathane 1 ml or 1 gm Carbendazim per litre
Rumularia blight (Rumularia foeniculi)
        The symptoms appear on lower leaves in dark brown spots. It affects the quality and
yield of crop due to poor seed formation.
Alternaria blight (Alternaria tenius)
       The symptoms appear on inflorescence and in top of young leaves in the form of
brown patches. Flower buds turn yellowish and dries up. in dark brown spots. It affects the
quality and yield of crop due to poor seed formation
       Spraying of 1 gm Carbendazim or Mancozeb @ 2.5 g/lit at weekly intervals.



                                  (Anacardium Occidentale L)
        Andhra Pradesh has an area about 1,82,000 hectares under cashew with annual
production of 1,10,000 tons of raw nuts. Important cashew growing districts in A.P. are
Guntur, Krishna, East and West Godavari, Srikakulam, Visakhapatnam, Vizianagaram,
Nellore and Prakasam.
        It requires a warm humid climate, with a minimum of 600 mm rainfall, but well
distributed rainfall is more important. Cashew thrives under a wide range of temperatures
from 15 OC to 40OC. Cashew does not grow well in areas subject to frost and cold waves. It
is also drought resistant.
        It has a high degree of adaptability and can be raised on any soil free from rocky
strata or hard pan and water stagnation. The best soils for cashew are deep friable, well
drained sandy loam soils. Hilly slopes up to an elevation of 700m above mean scale level can
also be utilized for cashew cultivation.
        The following improved varieties have been released for commercial cultivation from
the Cashew Research Station, Bapatla.
BPP-1 (H2/11)
        A hybrid between Tree No.1 and 273 of Cashew Research Station, Bapatla produces
15% bisexual flowers. Nuts are medium in size weighing about 5g with a shelling
percentage of 26. It yields on an average about 12kg of raw nuts per tree per year
BPP-2 (H2/12)
        This is another hybrid obtained from the same above parentage. Produces about 8%
bisexual flowers. However the nuts are smaller, weighing about 4g with a shelling
percentage of 26. On an average, it yields about 15kg of raw nuts per year.
BPP-3 (SCH 3/3)
        It is a moderate sized tree. A late bearer with about 15 percent bisexual flowers.
The nuts are of medium size (5 g) with shelling percentage of 25. It also yields about 25 kg
of raw nuts on an average per year.
BPP-4 (EPM 9/8)
        This is a vigorous growing tree and produces about 8 percent bisexual flowers. On
an average it gives an yield of about 10 kg per annum.

BPP-5 (TR. No. 1)
        Highly intensive branching type tree. It produces about 10 percent bisexual flowers
and is a prolific yielder. The nuts are medium in size (5 g.) with a shelling percentage of 25.
It gives an average yielding of 42 kg per year at an age of 40 years.
BPP- 6 (TR. No. 56)
        It is a vigorous and high yielder. It produces about 8 percent perfect flowers. Nuts
are of medium size (6 g) with a shelling percentage of 26. At an age of 40 years it gives an
average yield of 57 kg. per year.
BPP-8 (H 2/16)
        This is a hybrid with 18 percent bisexual flowers. Nut size is medium bold weighing
8.2 g. and the shelling percentage is 29. It gives 21.5 kg. yield per tree per year.
BPP-9 (H 3/28)
                This is also a hybrid with 15 percent bisexual flowers. Nut size is medium
bold weighing 6.7 g. and the shelling percentage is 28. It gives 24.6 kg. yield per tree per
VRI-2 (M 44/3)
        This is a selection from Tamilnadu suitable for Andhra Pradesh. Nut size is medium
weighing 5.1 g and shelling percentage is 28. It gives mean nut yield of 7.4 kg per tree.
Preparation of land
        If the selected site is a jungle area, all the vegetation on the site has to be cleared.
If the land is undulating, bunding and terracing are done to check soil erosion. Then the
land is ploughed on both ways to uproot the stumps, stubbles, which are removed promptly.
Finally the land is levelled.
        Cashew is commercially propagated by soft wood grafting which has been
standardized and commercially utilized for large scale production of plant material in the
        Seedlings raised from the raw nuts should not be used as planting material as it
gives lot of variation in growth and yield. Grafts are recommended for precocity, uniformity
in quality and for higher yields.
        Normal spacing recommended for cashew is 8 m x 8 m for poor soils to 10m x 10m
for rich and deep soils and sandy coastal areas. On lands with steep slope, the rows may be
spaced 10-15m apart with a spacing of 6-8 m between the trees in a row. High density
planting wit 4mx4m spacing (625 plants/ha) was found to give increase in yield by 2.5 times

over normal density planting in the initial 10 years. After 11 th year, alternate plants need to
be thinned out in order to avoid overlapping of canopy.
       Grafts of above 6 months age with 10-12 leaves can be planted in pits of 60 X 60 X
60 cm size during June to January months by providing irrigation or pot watering. During
planting the graft joint must be at least 10-15 cm above the ground level and the ball of
earth should not be disturbed. Pits has to be filled with FYM, need cake, red soil, tank silt
and rock phosphate or SSP
After care
       For the first two or three years, regular watering is necessary for the better
establishment of the young grafts. The grafts are stalked and protected from scorching sun
in summer by providing shade with palmyra leaves and from cattle damage by fencing. The
allies are ploughed to suppress weed growth. The basins of young plants may be mulched
with dry leaves to conserve moisture in summer and also to suppress the weed growth in
the basins.
Manures and Fertilizers
       Cashew responds well to manuring. Manuring is very essential to get early and high
yields in new plantations and to get regular high yields in mature plantations. The following
fertilizer schedule is recommended in grams per tree.
Since cashew is grown under neglected conditions, application of nutrients is not usually
done. Cashew responds well to fertilizer application. Application of organic manure at 30
kg/tree along with in organic fertilizers i.e., NPK at 500 g + 125g + 125g /tree in two splits
during June-July and September- October based on soil nutrient status increases the yield.
In red soils recommended dose can be applied in single split.
       Improving the soil fertility through application of organic manures and raising of
green manure crops. Being a deciduous tree cashew provides approximately 5.0 tonnes of
cashew biomass in the form of fallen leaf, twigs, flowers and apples. Use of earth worms for
the production of vermicompost from cashew biomass is a low cost technology. About 3.5
tons of vermicompost can be produced from an area of 1 ha of grown up cashew orchard.

Age of tree         June-July 1st Dose                    September-October 2nd Dose
            N (g/tree) P (g/tree) K (g/tree)            N (g/tree) P (g/tree) K (g/tree)
Firtst year FYM, Neem cake, SSP in pits
Second year 85          20          20                  85             20           20
Third year  170         40          40                  170            40           40
Fourth year 250         60          60                  250            60           60

       The above fertilizers are to be applied in two split doses. The first dose may be given
in July-August, while the second dose in October-November. Fertilizers are applied in
trenches (10-15 cm deep) dug about 100-150 cm away from the trunk.
       Inter crops like groundnut, black gram, cowpea, ragi, gingelly, vegetables, fruit crops
such as pineapple, spices such as turmeric, pepper, ginger are found profitable inter crops
where increase in total returns from unit land is high during early stage of cashew
       Grafts needs regular watering for initial establishment. Irrigation during nut
development (March, April and May) will increase the nut size and yield.
   Cashew is mostly cultivated under rain fed conditions in many parts of the country. By
providing protective irrigation of 200 Lt/tree once in 15 days from flowering to fruit
development    doubles the yield. Application of water through drip irrigation @ 80Lt/tree at
4 days interval also increases the yield by two folds since the cashew is predominantly
grown under rain fed condition it is essential to conserve the water as well as soil. In flat to
medium sloppy lands terraces have to be made with crescent bund for efficient utilization of
the available water during pre and post monsoon periods.
       Majority of the cashew plantations are established without proper pruning, training
and canopy management. Such plantations become unmanageable due to erratic branching
and un even spreading of canopy. Lower branches die due to shading effect resulting in
poor flowering and fruiting branches per unit area there by reducing the yield. Pruning as to
be taken up alternate years by removal of dried and criss crossed branches and branches
crawling close to the ground in the month of June to July.
Top Working
       Top working is a technique evolved to rejuvenate the unproductive and senile
cashew trees. Poor yielding trees of 5-20 years of age can be successfully rejuvenated by
top working. The unproductive trees are to be headed back to a height of 0.75 to 1.00 m
from the ground level. The stem should be sawed off to avoid stump splitting. The best
season for beheading trees is May-September. Soon after beheading, the stumps and cut
portions should be given a swabbing with blitox and sevin 50% WP (50 g. each per litre of
water). Sprouts emerge 30-45 days after beheading. Sprouting will be profuse in young
trees. On 20-25 day old new shoots, graft scions of high yielding varieties following soft
wood grafting technique. 10-15 graftings are to be done on every tree to ensure at least 6-7

successful grafts per tree. The best season for grafting is July-November. Thinning of the
extra shoots arising from the stumps should be done to obtain better growth of the grafts.
Removal of sprouts below the graft joint and removal of polyethylene strip from the graft
joint should be done. Top working is simple and can be done by farmers themselves after
getting proper training.
          The top worked trees start yielding right from the second year of top working. Early
bearing can be treated as one of the best advantages of this technique.              The major
disadvantage associated with top working is the huge casualty of trees due to stem borer
attack.    Intensive care and management to ward off stem borer is essential.           As such
adoption of top working on a larger scale would be difficult.
          Cashew trees (Grafts) normally come to bearing in 3-5 years after planting, but
economic yields can be expected only after 7th year and by 10th year the yields will be
          Cashew flowers in January-February in A.P. Harvesting commence from April and
ends by May-June.
          The nuts take 45-60 days to mature and for complete development and hardening
and when the growth of the nut ceases the apple starts growing and ripens in 20 days,
requiring about 60 days for complete development.
          The fallen ripened apples with matured nuts are collected and after separation of the
nuts from apple, the nuts are sun dried for 2-3 days before storing to bring the moisture
content down to 10-12% and stored in tins or gunny bags.
          The tree yields in cashew vary very widely. An ideal cashew tree should give an yield
of 20kg of raw nuts per tree per year. However, majority of the trees yield 2 to 3 kg per tree
in the existing plantations.
          Cashew nut is the most versatile of all nuts. The kernels are rich in nutrients and are
put to use in a variety of ways. The kernels are used in cocktail parties, in confectionaries.
They are mostly salted. The kernels are low in carbohydrates but rich in proteins, fats and
vitamins. The kernel oil is reported to be superior to olive oil and almond oil. The testa of
the kernel is rich in tannins and hence mainly used in leather industry. It is also used as
poultry feed.
          The cashew nut shell liquid is extracted from the hard shell. It is a by-product of the
cashew industry. It is a versatile industrial raw material being used in preparation of resins,
varnishes, paints, plastics, insecticides, brake linings, wood preservatives, cosmotics etc.

       The brightly coloured, swollen peduncle of cashew furits is cashew apple. The apple
is fleshy, juicy and is rich in vitamin C. However, at present most of the produce is not at all
being utilized. From cashew apple, tasty drinks can be prepared by mixing with juice of lime,
pineapple, grapes etc. Jam, chutney and pickles can also be prepared out of cashew apple.
Feni is most popular wine prepared from cashew apple in Goa.
Plant protection
       Cashew plantation should be kept weed free, the lower and dried branches should be
cut and removed for allowing sunlight to the base of the tree. At the time of pruning the cut
ends of branches should in variably be treated with neem oil 5% mixed with carbaryl 0.2%
immediately to avoid oviposition by cashew stem and root borer.
Stem and root borer (Plocaederus ferrugineus L.)
       The pest is common in old and neglected plantations. It occurs throughout the year,
but more prevalent during the rainy season. The adult lays eggs in crevices and cracks of
bark on the trunk and exposed roots. The hatched grubs bore in to the bark. As a result
the vascular tissues are damaged, the ascent of the plant sap is arrested, leaves turn yellow
and are shed and finally the tree dies. The grubs pupate in a calcareous cocoon in the
feeding tunnel. The symptoms of infestation include the presence of small holes in the collar
region, gummosis and extrusion of fross.
      Periodical monitoring of the crop is very essential to prevent the infestation by
       cashew stem and root borer. Neglected management is the root cause of cashew
       stem and root borer problem.
      Trees with symptoms of yellowing, dried and dead trees should be removed
       immediately along with roots by digging pit of 2 feet around the base of the trunk
       and disposed off. The cocoons present around the trunk and root system 1 to 2
       feet below the soil surface should be destroyed mechanically.
      Tree base must be kept clean and weed free so as to observe the gum exudation
       which is the early symptom of borer attack.
      Extraction and killing of the grubs & cocoons by chiseling the affected portion of
       bark of trunk or root followed by spraying the chiseled portion with neem oil 5% or
       chlorpyriphos 0.2% or carbaryl 1.0% and earthling up on to the chiseled portion.
      More than 50% of the bark circumference on the trunk/root should not be removed
       while extracting the grubs and or cocoons.

      As prophylactic measure the tree trunk up to a height of 1 m.and the exposed roots
       should be sprayed with neem oil 5% thrice during the year at an interval of 4 months
       starting from June onwards or onset of monsoon.
      Swabbing the pest infested portion after removal of different stages of pest and
       drenching the root zone with chlorpyriphos 0.2% as post extraction prophylaxis
       effective in reducing re infestation up to 70.7%
Tea mosquito bug (Helopeltis antonii. S)
       The tea mosquito bug is one of the serious pests of cashew tree. The nymphs and
adults attack the tender shoots, leaves, inflorescence, tender nuts and apples. Sucking of
the plant sap by the bugs results in different types of symptoms. Crinkling, distortion and
drying up is the common symptom on tender leaves. On tender shoots there is oozing out
of a resinous substance which later on hardens into a gummy substance. The spots later on
turn to black lesions and gradually the shoots dry up. Feeding on the inflorescence results
in black patches on the axils and later on the whole inflorescence turns black and dries up
resulting in heavy crop losses. The scorching and drying up of inflorescence is also called as
„blossom blight‟. When tender nuts are attacked, blackish depressions appear on the nuts
and the nuts shrivel and dry up. Trees heavily attacked cashew trees by Helopeltis present
a scorched appearance which can be made out from a distance.
       Spraying with monocrotophos (1.4 ml/litre), Chlorpyriphos (2.0 ml/litre) and carbaryl
(2 g/l) during flushing, flowering and nut formation stages respectively are essential to
control the pest.
Leaf and blossom webber (Lamida moncusalis W.)
       This is a major pest in the state, appearing regularly throughout the year particularly
at the time of emergence of new flush. Generally young trees suffer more. The adult moth
lays eggs at the growing point. The caterpillar on emergence webs the terminal leaves as
well as panicles and feeds inside, by scrapping the epidermal layers.       The pest can be
identified by such webs on the plants. As a result flowers fail to open and there will be no
crop. It also feeds on tender, developing nuts and apples by scraping the epidermal layers,
which drop prematurely.
       Spraying with monocrotophos (1.4 ml/litre), Chlorpyriphos (2.0 ml/litre) and carbaryl
(2 g/l) during flushing, flowering and nut formation stages respectively are essential to
control the pest.

Apple and nut borer (Thylocoptila panrosema M.)
       This pest causes direct loss to the crop. It appears at the time of fruiting. The
larvae bore into either apple or nut at the joint and feed inside. As a result the development
of kernel is arrested, the nuts get shrivelled, apples get hallowed and shrivelled and they
drop prematurely. As the caterpillars reside inside the apple and nuts, they are out of reach
for the chemicals. As such preventive measures are more important.
       All the foliage, floral and fruit & nut feeders [ from (ii) to (vi) above] can be kept
under control by application of the insecticides as per the schedule which consists of
sprayings with monocrotophos (1.4 ml/litre), Chlorpyriphos (2.0 ml/litre) and          carbaryl
(2g/litre) during flushing , flowering and nut formation stages respectively at an interval of
about one month.
Flower Thrips (Rhynchothrips raoensis, Scirtothrips dorsalis )
       They cause immature shedding of flowers. Scabs on floral branches, apples and nuts
are affects.
       Spray Monocrotophos @ 1.5 ml/litre or Chlorpyriphos 0.05%
Leaf miner (Acrocerops syngramma M.)
       This pest appears regularly at the time of emergence of new flush. The caterpillars
mine into the young and developing leaves and cause blisters on the leaves and feed on the
       Spray Monocrotophos (1.4 ml/litre), Chlorpyriphos (2.0 ml/litre) and carbaryl (2 g/l)
during flushing.
Shoot and Infloresence tip borer (Hileria haligramma. M)
       The pest appears throughout the year, particularly at time of flowering and fruiting .
The caterpillar feeds on leaves, tender shoots, inflorescence stalks, apples and nuts. At the
time of new flush the caterpillar folds the tender leaves from one margin and feeds inside.
Then it enters the tender shoots by making a hole at the tip and feeds inside, causing drying
up of twigs and panicles. At fruiting time, the larva enters the fruit at the joint of the apple
and nut and feeds inside, causing premature fruit drop.
       Spray Monocrotophos (1.4 ml/litre), Chlorpyriphos (2.0 ml/litre) and carbaryl (2 g/l).

Damping off seedlings (Fusarium spp, Phythium spp, Phytophthora palmivora
spp, Cylindrocladium scoparium )
      The fungi attack either root or collar region of the tender seedlings. In case of
P.palmivora attack, affected seedlings become pale, showing water soaked girdles of dark
tissues around the stem and seedlings droop and die. In case of C.scoparium wilting and
withering of seedlings and presence of necrotic lesions leading to rotting of underground
parts occur. The disease occurs in the nursery stage, causing mortality of seedling.
       Drenching of seedlings/grafts at fortnightly intervals with Bordeaux mixture 1%
during rainy season and cloudy weather conditions.
Anthracnose (Colletotrichum gloeosporiodes)
       Reddish brown, shiny, water soaked lesions along with the resinous exudation.
       Removal of effected leaves, spraying of Carbendazim 1g/l or 1% Bordeaux mixture
as soon as the disease appears. Monitor for the disease particularly during rainy season and
cloudy weather conditions which enhance the disease very fast.

                                      (Cocos nucifera L)
       The coconut palm is a versatile plant with a variety of uses. Every part of it is useful
to manking in one form or the other. It supplies food, drink and shelter and also raw
materials for a number of industries. Coconut is frequently used in various ceremonies like
wedding, dedication of buildings and sacrificial occasions. Mature dehusked nut possesses
three district raw materials i.e., wet meat or Kernel (50%), water (17%) and shell (33%) by
weight approximately.
The Wet meat or Kernel
       The Kernel or endosperm of the matured coconut is an important food in all the
coconut growing countries. Apart from being used for culinary purposes, the milk or cream
obtained by sqeezing the grated kernel goes into preparations of commercial importance.
The chemical composition of fresh coconut meat (percentages)

                                        Carbo                    Mineral
      Meat       Protein      Fat                     Fibre                  CaO       P2O5
                                       hydrates                  Water
       36.3        4.5       41.6        13.0          3.6         1.0       0.01      0.24
      Fe2O3                    A           B            C           E
                             I.U.        I.U.         I.U.        I.U.
    Per 100g               Per 100g    Per 100g     Per 100g    Per 100g

Coconut Water
The liquid endosperm of tender coconuts (seven months old) makes a popular refreshing
drink. The tender coconut water is recommended incases of gastroenteritis, diarrhea and
vomiting against dehydration. It is also urinary anticeptic and eliminates poisons through
kidneys in case of mineral poisoning. It has a caloric value of 17.4 per 100 gm of water. The
following is the composition of water of the tender nuts.
          Water                  -       95.5%
          Protein                -       0.1%
          Fat                    -       < 0.1%
          Mineral matter         -       0.4%
          Carbohydrates          -       4.0%
          Calcium                -       0.02%
          Phosphorus             -       < 0.01%
          Iron                   -       0.05% mg/100g
          Coconut shell as it is used for antiques, i.e. preparation of various attractive articles.
It is also used for making activated charcoal.        Shell has a variety of uses in the organic
          Apart from the kernel, coconut water and shell, the trunk of mature palm is used for
house construction and furniture making, leaves to thatch house in coconut growing areas
and woven into baskets.
Area in India and Andhra Pradesh
          India, with 1.9468 million hectares under coconut cultivation and 15,840 million nuts
production is one of the largest coconut producing countries in the world. Andhra Pradesh
ranks third in India both in area and production with 102.5 hectares and 1,092.7 million nuts
respectively. The important coconut growing districts in the state are East Godavari, West
Godavari, Srikakulam, Chittoor, Visakhapatnam and Vizianagaram.
          The coconut palm is essentially a tropical crop which grows best in a warm humid
climate. It does not tolerate extremes of temperature and fails to come up well in places
where long dry spell and severe cold conditions prevail. In well drained soil, a high
precipitation of 2000 to 3000 mm can be of better advantage. If the precipitations are
comparatively well distributed, even a low rainfall of 1000 mm is sufficient for commercial
          June-July in upland areas and October-November in low lying and heavy rainfall
areas for planting.

        Coastal alluvial, sandy and sandy loam soils of Godavari delta and other areas with
rich porous soils where rainfall is not less than 100 cm are suitable. Areas away from
seacoast are also suitable for coconut if sufficient irrigation facilities are available.
East Coast Tall (ECT)
        It is a commercial variety, grown extensively in Andhra Pradesh, commonly called
„Desavali‟ variety. This is a tall variety with fairly stout trunk. It is long living, hardy and
yields economically for about 75 years. They normally come to bearing in about 6 to 8 years
after planting. The average annual yield ranges from 75 to 100 nuts per palm. The copra
content per nut is 154g, oil percentage ranges from 62-65 per cent
Chandrakalpa (Laccadive Ordinary)
        This type resembles the ordinary tall variety. The average yield under ordinary
conditions is about 127 nuts/palm/year. The copra content is 155g and oil content is 72%.
This variety is recommended at National level for commercial cultivation as it is very high
yielder compared to all other tall varieties grown in the country.
Double Century (Philippines Ordinary)
        It is a tall cultivar which comes to bearing in 6-8 years after planting with an average
yield of 130 nuts per palm/year. The nuts are big in size with 200g of copra having 66 per
cent oil content. It was released from HRS, Ambajipeta as „Double Century‟ in 1993 for
cultivation in Andhra Pradesh.
        This is a semi dwarf variety, comes to bearing in about 4 years. The nuts are
medium sized and have elliptical shape, with good sweet water content. The mean yield is
about 60 nut per palm/year. It is mainly intended for hybridization.
Godavari Ganga (E.C.Tall x Gangabondam)
        This hybrid was released from HRS, Ambajipeta during 1992 for A.P. It is a cross
between East Coast Tall as female parent and Gangabondam as male parent. It comes to
bearing within 3 to 4 years. The mean annual yield is 150 nuts/palm/year. The copra
content is 150g with an oil content of 68%.
        Select seed nuts from high yielding middle aged mother palms giving not less than
100 nuts per year. Collection of seed nuts should be done from January to May for planting
in June. Fully matured nuts of 12 months old should be collected. Keep them in shade,
arrange them in layers, cover with sand and sprinkle water on the heaps regularly to

prevent drying of nuts in storage. Planting of nuts horizontally in the nursery may be done in
June or July after the onset of monsoon at a spacing of 30 x 30cm.
Selection of Seedling
       Select only vigorously growing seedlings characterized by early germination, good
girth at the collar, more number of functional leaves and early splitting of leaflets, at the age
of about nine to twelve months.
       Use 9-12 months old seedlings for planting, in pits dug to a dimension of 1 x 1 x 1
metre and filled with a mixture of top soil, farmyard manure or compost in equal
proportions. Add sand to this mixture if the soil is heavy black clay. Give a spacing of 8 x 8m
for hybrids and tall varieties in the main field. Give protection to newly planted seedlings
against grazing by cattle and provide shade in hot weather.
Manures and Fertilizers
       Sow green manure crops like sunhemp or diancha with the onset of rains in June and
plough the crop as soon as it comes to flowering. Cattle and sheeop penning and application
of neem cake @ 2kg/palm/year in winter would also be advantageous.
       Apply 1 kg Urea (460 g N), 2.0 kg single super phosphate (320 g P 2O5) and 2.5 kg
Marinate of Potash (1500 g K2O) per bearing palm, per year should be applied in two equal
splits in June-July and October-November. The second dose can be given even in
December-January if irrigation facilities are available. For young palms ¼, ½ and ¾ of this
dose may be given during 1st, 2nd and 3rd year, respectively after planting and the full dose
from the 4th year onwards. The fertilizer should be applied between 0.5 to 2.0 m away from
the trunk in the basins after making 2.0m basin around the trunk.
       Irrigate the gardens 3 to 4 times through basins during the dry period from January
onwards till the monsoon sets in. Depending on the soil conditions the frequency has to be
increased. If the summer is severe irrigation should be given through basins, once in 7-10
days. Irrigate the gardens at 15 days interval in black and heavy soils and once in a week in
red loams during the dry period from January onwards till the monsoon sets in.
       Coconut garden may be ploughed 4 times a year two times in rainy season and two
times in winter season. To prevent button drop, and bud and fruit rot, 3-4 sprays of 1%
Bordeaux mixture in rainy season may be given.

       Grow inter and mixed crops like banana, turmeric, elephant foot yam, colocasia and
other vegetables etc., in the inter spaces of young gardens upto 7 to 8 years of age and
Pepper, Pineapple, Cocoa and other tree spices, in the old gardens of over 20 years age.
Cropping Systems
       Coconut seedlings are planted 8m apart and hence the wider space available in
between offers opportunity for additional income through raising other crops. Diversified
multi species of crops are grown to generate ample cash, food, fruit, fodder, fuel etc.
Annuals of seasonal crops when grown in the inter space of coconut palm, it is called as
inter cropping. When inter crops and mixed crops are raised in combination, it is termed as
multistoreyed cropping.
       The common intercrops grown during pre bearing (upto 4 years) period of the palms
are Elephant Foot Yam, cassava, colocasia, sweet potato, ginger, turmeric, banana,
vegetable etc. and crops such as pepper, pineapple and cocoa could be successfully raised
as mixed crops in aged coconut garden. A multi storeyed crop combination with Banana,
Cocoa, Turmeric and Elephant Foot Yam appears promising under Andhra Pradesh
conditions. A mixed farming involving coconut fodder live stock in order to integrate animal
in the plantation can also be practiced to suit the needs of small farmer. Similarly, fish
ponding also can be taken up in coconut gardens.
Button drop
       Prevent button drop by giving 3 to 4 spraying of 1% Bordeaux mixture during rainy
season. If the drop is severe spray 60 ppm, 2, 4-D or NAA solution (2 ml/10 L) on the
spadices at brown stigma stage of buttons. Ensure adequate moisture in the soil throughout
the year and prevent prolonged water stagnation during rainy season by providing adequate
drainage facilities and can be managed through judicious Nitrogen fertilization (500 g
Barren nuts
       This problem can be managed by the application of Borax @ 75 – 100 g/palm/year in
the rainy season.
       Harvesting is normally done at 30 days intervals during summer and 45 days
intervals during rainy season. In some parts of the state harvesting is done three times a
year. Harvesting is usually done by experienced climbers who climb the palms with the help
of a rope ring round the feet or ankles.       Nuts are harvested by cutting down after
examination for maturity. In Srilanka harvesting is done from the ground with a knife, tied

to a bamboo pole. In Malaysia and Thailand trained monkeys are used for harvesting or
Storage of nuts
        After the harvest, the nuts are to be stored in heaps under shade for few days.
Storing of nuts in heaps facilitates husking easier, shelling cleaner, obtaining higher out put
of superior quality copra.
Post harvest Technology
        Coconuts are popularly traded as the dried nuts which are dehusked and marketed
as whole nuts or as copra after removing the shell. The nuts to be made into two halves by
cutting across, water drained off and spread the cups on the floor for sun drying. After the
moisture content of the endosperm comes down to 5-6% the endosperm is scooped out of
the shell and sent to market. In unfavourable weather conditions, smoke drying and klin
drying is also being practiced.
Plant Protection
Black headed caterpillar (Opisina arenosella)
        Larval galleries made of silk and excreta seen on the lower side of the leaflets, loss
of chlorophyll leaving only epidermal layer of leaves are symptoms of damage. Burnt
appearance of infested garden, button drop and reduction of nut yield are also associated
with the infestation.
        Cut and burn the severely pest infested non-functional lower leaves leaving one-
meter midrib portion. Release parasitoids sequentially depending on the stage of the pest as
               Larval: Bracon hebetor and Goniozus nephantidis
               Pupal: Brachymeria nosatoi
The parasitoids may be obtained from Horticultural Research Station, Ambajipeta (E.G.Dt.).
If larval population is high, the pest can be managed with root feeding of monocrotophs (10
ml + 10 ml water) duly observing 45 days safety period.
Rhinoceros beetle (Oryctes rhinoceros)
        Beetles bore into the soft tissues of the crown by cutting and chewing the tender
unopened leaves and inflorescences. The affected leaf appear like a fan with geometrical
cut. It breeds in manure pits and dead palm trunks.
        Release of baculovirus @ 10-15 inoculated beetles/ha at 3 months interval. Spraying
of Metarhizium solution on manure heaps @ 1 lt of spray fluid for 3 mt 3 of heap.

Establishment of rhinolure traps @ 1 trap/2ha. Mechanical hooking of the beetle from palm
crown. Destruction of dead logs and boles of palms in the garden.
Red palm weevil (Rhychophorus ferrugineus)
       Dark brown gummy liquid oozes from the site of infestation on the stem. From small
holes on the stem chewed fiber pieces protrude. Due to continuous larval feeding, tunnels
will be formed within the stem making it weak and ultimately palm dies.
       Root feeding of monocrotophos 10 ml with 10 ml water/palm would be effective.
Remove and destroy pest affected dead palms. Avoid injuries to the stem.
Slug caterpillar (Macroplectra nararia ) and Phalaera sp.
       Due to feeding of leaf lamina by larvae only midribs remain and leaf spots appear
during the early stages of larval feeding. Leaves dry up and results in yield loss. Small
pellets of faecal matter will be observed near the base of the trunk.
      Monitoring of the pests by keeping light traps from the second fortnight of
       January would help to forecast the pest.
      Mass trapping and destruction of moths by placing light traps would be an
       efficient method of pest management.
      Spraying of carbaryl 50% wp @ 3 gm/lt. of water in the young gardens will
       check the pest.
      Root feeding ofmonocrotophos 36% WSL @ 10 ml + 10 ml of water/palm by
       observing 45 days safety period will control the caterpillar stage of the pest.
      Cutting and burning of severely infested and dried leaves will reduce the pest
       population to a greater extent.
      Collection and destruction/cleaning of pupal cases from the crown/leaf axils
       would help in the reduction of pest population to a great extent.
      Checking the pest on non target intercrop also helps to keep the pest under
      Immediate application of recommended dose of fertilizers [1 kg Urea, 2 kg
       Single Super Phosphate and 2½ kg Muriate of Photos] and irrigation will
       boost the palms to recovery early.
Eriophyhid mite (Aceria guerreronis Keifer)
       Due to feeding of mite colonies, white streaks/triangular yellow and brown patches
appear near the perianth region on nuts of 2 to 4 months age. These brown patches

increase on the nut surface in the advanced stage causing longitudinal cracks. Button drop
or reduced nut size and thereby decreased copra yield are associated.
       Collection and destruction of mite infested dropped nuts. Root feeding with
Azadiractin 10000 ppm @ 10 ml + 10 ml of water/spraying of Azadiractin 10000 ppm 5 ml/lt
of water. Application of neem cake @ 5 kg/palm/year along with other organic manures
including green manuring. Application of recommended dose of fertilizers (1 kg U, 2 kg SSP,
2.5 kg MOP/palm/year) Providing regular irrigations. Growing of intercrops like banana,
yams, cocoa and turmeric or vegetables.
Termites (Odontotermes obesus)
       Seedlings are attacked through the nut or at the base of the young shoot. Older
palms through trunk to crown. Affected seedlings wither and die.
       Location of termitoria, and their destruction mechanically. Adoption of field sanitation
by disposal of organic matter in nursery soil and covering germinating nuts with a layer of
river sand. Drench the nursery with 0.05% chlorpyriphos twice at 20-25 days interval. Swab
the affected trunk with the same chemical.
Rats (Rattus rattus)
       The rodents damage immature nut and young palms.
       Recommended spacing @ 8 x 8 m should be followed in plantations, Bromodiolone
bait cake should be kept in the palm crown and live burrows in nurseries. Use of smoke
generators in nurseries. Keeping rat traps in the stores where nuts and copra are stored.
Adopt periodical crown cleaning.
Ganoderma wilt or Basal Stem rot (Ganoderma lucidum)
       This is a soil borne disease prevalent in all types of light soils. The disease affects the
underground roots causing root rot. Oozing of dark brown liquid from the cracks on the
stem nearer the ground is the initial symptom. Outer whorls of leaves droop slowly and
within a period of two years after the palm succumb to the disease, the entire crown
collapses and the palm dies.
       The diseased part of the garden should be isolated from healthy area by digging
isolation trench (1m. deep and 0.5 m. width). Injury or damage to roots and pruning or
cutting of roots should be avoided to prevent infection through injured roots. Tale

formulation of Trichoderma viride (50g) in combination with 5 kg neem cake/palm/year
should be applied to all trees in a garden where diseased palms are noticed. Even if one
diseased palm is noticed in a garden, talc formulation of T.viride (50 g) in combination with
neem cake (5 kg) per palm/year should be imposed to all the palms in the garden. Frequent
watering/irrigation should be done during summer months. While irrigating, care should be
taken to avoid flow of water from diseased trees to others. Basin system of irrigation to
individual palms should be adopted.
Bud rot (Phytophthora palmivora)
       The disease affects mostly plants from seedling stage to the age of 25 years. The
spindle leaf and its neighboring 2 to 3 leaves are affected.      The affected leaves show
withering and turn pale green. Later the leaves dry out. The leaf if pulled, comes out easily
emitting foul smell. Later the surrounding leaves also are affected. The rot extends to the
meristem and kills it leading to the death of the plant. The immature nuts in many cases
grow to maturity but the buttons drop.
       The three fourths mature nuts in middle aged trees are commonly affected. Initially
water soaked spots develop on the nuts and coalease forming big spots. These spots slowly
turn grayish. The mesocarp, meat and water rot completely and give foul smell. The meat
loses its consistency and separates out from the shell. Due to the wet rot condition and
increase in weight the nut drops. Initially one or two nuts in a bunch are affected, later
spreading to other nuts and other bunches. Under favourable conditions the disease spreads
to nuts on other trees and also other gardens.
       Spraying of copper oxy chloride @ 3g/lt of water twice at 15 days interval is
recommended. Since bud rot disease is common during rainy season, prophylactic dusting
with Pseudomonas fluorescens talcum powder @ 10 g/palm twice at 15 days interval during
monsoon prevents the disease incidence
Stem Bleeding (Ceratocystis paradoxa)
       The diseased trees show extensive yellowish brown to black bleeding patches from
natural cracks or places of damage due to implements which become infected. The bleeding
is commonly seen about more than one foot above the ground level and never seen on the
trunk at the ground level. This is the major difference in bleeding between Ganoderma wilt
and stem bleeding, besides the colour of the fluid. On chiseling of such bleeding patches on
young trees of 10-15 years age yellowish liquid with a fermented smell flows out.

       Injury or damage to the stem, especially while tractor ploughing should be avoided.
Smearing of talc powder paste of Trichoderma viride on the bleeding patches on the stem.
Soil application of 50 g of talc powder formulation of Trichoderma viride in combination with
5 kg neem cake/palm/year.
Tatipaka disease
       The causal agent is suspected to be Phytoplasm. In early stages, Tatipaka
diseased palms bear heavily and later there will be reduction in bearing below normal
level, leaves turn yellow, leaf size both in length and breadth is reduced and lean in
appearance. Leaf number is greatly reduced. At this stage tapering of stem starts
from the base of the crown. Round nuts are produced and are soft nature. At times in
the same bunch, some round and soft nuts and also some atrophied nuts are seen. In
some diseased palms, leaves bund like an arch, in some cases bend abnormally and
curves up. Fasciation is seen on some palms, chlorotic spots are seen in some palms
when the disease is severe, all the bunches are empty without formation of round and
soft nuts or atrophied nuts. Rotting of root is also high in Tatipaka disease palms.
       Eradication of Tatipaka disease should be taken up on collective basis by cutting and
burning of affected palms. Collection of seednuts from diseased palms should be avoided.

                                          OIL PALM
                                      (Elaeis quineenis)

       Oil palm (Elaeis guineensis) is the highest oil yielding plant among perennial oil
yielding crops, producing palm oil and palm kernel oil. These are used for culinary as well as
industrial purposes. On an average, oil palm produces 4-6 tonnes oil/ha. It can also
contribute substantially to the nutritional and energy requirements of the masses. Oil palm is
a crop for future and a source for diversification, import substitution, value addition, health
and nutrition, waste utilization, energy generation (non-conventional energy) eco friendly
and sustainable.
       Oil palm is a native of West Africa, is now extensively grown in Malaysia, Nigeria,
Indonesia, Republic of Zaire and Ivory Coast. Increasing demand for palm oil and also the
technological developments for its extraction have greatly changed the entire scenario of the
palm industry. In India about 80% of the area is located in Andhra Pradesh and Karnataka.

        Oil palm is a humid tropical palm which thrives well where annual temperature range
is 29O-33OC (maximum) and 22O-24O C (minimum) with an evenly distributed rainfall of
2,500-4,000 mm, relative humidity more than 80%, and not less than 5 hr sunshine/day. It
can be grown up to 900m above mean sea-level.
        Planting is preferably done at the onset of rains during June-July.
        It can be grown on a variety of soils. But moist, deep, loamy and alluvial soils rich in
organic matter with good water permeability are best-suited, for its cultivation. Highly
alkaline, saline, waterlogged and coastal sandy soils should be avoided. At least 1 m depth
of soil is necessary. The soil pH should be 5.5-8.0.
        There are three main types of oil palm. They are dura, pisifera and tenera
        With a thick shell (2-8mm) its fruits have low to medium mesocarp content (35-
55%). This is not grown commercially.
        It is a shell less, fruit bearing variety.
        This is a hybrid obtained by crossing Dura (Female) and Pisifera (Male). It has a thin
shell usually measuring 0.5 to 4 mm with medium to high mesocarp content of about 60-
90%. This is a widely cultivated hybrid all over the world due to higher mesocarp content
and resultant oil output.
Seeds and Sowing
        The seeds are subjected to a temperature of 40 O C for 80 days for stratification.
Seeds are soaked in water for five days changing the water daily. Thereafter the seeds
spread out in shade for drying for two hours. The dried seeds are kept in polythene bags in
cool place in order to maintain the moisture content. The poly bags (preferably black) of
400-500 guage measuring 40 x 35 cm are used. The bags are filled with top soil and
compost, arranged at a spacing of 45 cm2 and one seed/bag is dibbled. The germination
commences in about 10-12 days. Watering the seedlings weekly thrice is essential.

        Oil palm is planted in the main field in triangular system at a spacing of 9 x 9 m
accommodating about 143 palms/ha in hexagonal system of planting. Planting is preferably
done at the onset of rains during June-July.
Manures and Fertilizers
                                                 N      P2O5    K2O
                          First year           400     200    400
                          Second year          800     400    800
                          Third year           1200    600    1200

        Fertilizers should be applied in two equal split doses (in June and September) within
2 m diameter around the palm and forked in. Apply 50-100 g of Borax per tree every year.
Application of potassium fertilizer may be enhanced depending on the requirement of the
Inter cultivation and Weed Control
        The base of the palm is to be kept clean by weeding and pruning of cover crops. For
conserving the moisture in the basins apply coconut husk or paddy husk or saw dust, cut
leaves or male inflorescence as mulching.
        Maximum number of green leaves should be retained on the palm. As a regular
practice, all dead and diseased leaves should be pruned. Severe pruning adversely affects
both growth and yield of palm. Pruning should be done by giving clear cut to the petiole as
close to the stem as possible with the help of a sharp chisel.
        Ablation is the removal of male and female flowers produced in early stages of
plantation. This enables the plant to gain adequate stem girth, vigour and develop adequate
root system. Flowering starts 14-18 months after planting. Ablation can be started
immediately after the appearance of inflorescences on plams and extended upto two and a
half to 3 years depending upon plant growth and vigour. After this stage, pollinating weevil
Elaeidobius kamerunicus has to be introduced for better pollination since oil palm is a cross
pollinated crop.
        Oil palm requires sufficient irrigation, as it is a fast-growing crop with high
productivity and biomass production. Insufficient irrigation reduces the rate of leaf
production, affects the sex ratio and results in inflorescence abortion and leaf production.

For grown-up yielding palms of 3 years age and above, a minimum of 200-250 litres
water/day is a must. However, in older plantations during hot summer, this amount may be
increased up to 300 litres. When water is not a constraint, basin irrigation can be taken up.
Required quantity of water can be given at weekly intervals or once in 5 days depending on
soil condition. Irrigation channels must be prepared in such a way that the individual palms
are connected separately by sub-channels. For light soils, frequent irrigation with less water
should be given. In heavy soils irrigation interval can be longer. If irrigation water is limited
and land is of undulated terrain, drip or microsprinkler irrigation can be advantageous. When
drip irrigation is given, care should be taken to avoid clogging and for uniform discharge of
water. Four drippers are sufficient to discharge 200-250 litres water within 6-7 hr.
        Annuals like chillies, gourds and other vegetables can be profitably grown as
intercrops leaving an area of 2 m around the palm for the first two years only. After the
onset of flowering there should not be any competition from other intercrops for the early
stabilization of yields.
        First harvest 3 ½ -4 years after planting. A chisel is used for harvesting bunches
from young palms. When the palms become taller, a harvesting hook has to be used.
        Under very good maintenance especially with irrigation the yield could be 4-6 tonnes
of oil per hectare per year.
        The fresh fruit bunches harvested from the palm are to be transported for oil
extraction immediately preferably within 24 hours.
Plant Protection
Rhinoceros bettle (Oryctes rhinoceros)
        The adult beetle bores through into the spear leaf, resulting in snapping of the
fronds at the feeding sites. The beetles also bore into the male and female inflorescence
even when they are within the spathe.
        Release of baculovirus @ 10-15 inoculated beetles/ha at 3 months interval. Spraying
of Metarhizium solution on manure heaps @ 1 lt of spray fluid per 3 mt3 of heap.
Establishment of rhinolure traps @ 1 trap/2ha. Mechanical hooking of the beetle from palm
crown. destruction of dead logs and boles of palms in the garden.

Red palm weevil (Rhynchophorus ferrugineus)
       The grubs bore through and feed on softer tisúes of stem, meristem and mesocarp
of fruits. Infested palms show gradual wilting and drying of outer whorl of fronds. In some
cases, rotting of spear can also be noticed.
       Root feeding of Monocrotophos @ 10 ml with 10 ml water/palm would be effective.
Remove and destroy pest affected dead palms. Avoid injuries to the stem.
Bagworm (Manatha albipes, Metisa plana )
       The caterpillars of these species of bagworms cause severe defoliation occasionally
on oil palm.
       Remove and destroy by burning the affected leaves and spray with carbaryl @ 3g/lit
or quinolphos @ 2ml/lit of water.
Leaf eating caterpillar (Opisina arenosella)
       Infest the lower leaves and scrape the leaf and later feed on the leaf lamina making
rectangular cuttings.
       Spray Monocrotophos @ 1.6ml/lit or quinolphos @ 2ml/lit of water.
Bud-rot (Ermima sp.)
       Rotting of spindle and the affected spindle can be easily pulled off.
       Clean the affected tissues and drench the crown with Carbendazim @ 1g/lit.
Basal stem rot (Ganoderma lucidum)
       Appearance of light brown lesions/rotting of the bole at the stem base is a
characteristic symptom of the advancement of the disease.
       The diseased part of the garden should be isolated from healthy area by digging
isolation trench (1m. deep and 0.5 m. width). Injury or damage to roots and pruning or
cutting of roots should be avoided to prevent infection through injured roots. Talc
formulation of Trichoderma viride (50g) in combination with 5 kg neem cake/palm/year
should be applied to all trees in a garden where diseased palms are noticed. Even if one
diseased palm is noticed in a garden, talc formulation of T.viride (50 g) in combination with
neem cake (5 kg) per palm/year should be imposed to all the palms in the garden. Frequent
watering/irrigation should be done during summer months. While irrigating, care should be

taken to avoid flow of water from diseased trees to others. Basin system of irrigation to
individual palms should be adopted.
Stem bleeding (Thielaviopsis (Ceratostomella) paradoxa))
        Gum exudation and stem bleeding on the upper potion of the stem are noticed.
        Excision of the rotten tissues followed by the application of 0.1% calixin and hot coal
tar and plugging the holes with a paste containing sand cement and insecticide to provide
mechanical support.
Bunch rot
        The tissues between the individual fruits are affected leading to rot.
        Remove and destroy the affected inflorescence and spray carbendazim 1g/lit.
Note: Copper fungicides should not be used in oil palm.

                                      (Theobroma cacao)

        In recent years the cultivation of Cocoa as an intercrop in Oil plam and aged (20
years) Coconut gardens, is gaining momentum in Andhra Pradesh.

        Temperature and rainfall affect the growth of cocoa. The optimum range in mean
monthly temperature of cocoa growing regions is 15 o-32OC and minimum night
temperatures ranging from 18-21OC. It grows upto an attitude of 500 MSL.
        Cocoa is a crop of humid tropics requiring well distributed rainfall of 90-100 mm a
month. It can also be grown in regions of low rainfall by supplementing rainfall with
irrigation during dry periods.
        It can be grown on a wide variety of soils, though most of such soils of high rainfall
areas are relatively coarse-textured and acidic to neutral. Virgin, freshly cleared forest soils
are used for cultivation of cocoa. The soils should be rich in organic matter and nitrogen,
well-drained and acidic to netural in reaction. A depth of up to 1.5m is necessary for cocoa.

        The pods are green when immature and yellow when ripe, thick-walled, melon
shaped with rounded ends or very bluntly pointed and warty on the surface with smooth
inconspicuous ridges or furrows. The beans are flat and dark purple when fresh.               It

possesses a „harsh‟ flavour with markedly bitter taste. It is largely grown as a commercial

           The pods are red or yellow in colour, thin walled, pointed and warty on the surface.
They contain large and plump seeds with white or pale purple cotyledons. They possess
bland flavour and pleasant aroma.

           These types have characters of both these types.
Season and Planting
           They can be planted with the onset of monsoon till December. Seedlings are
vegetatively propagated material (budlings or grafts) can used for planting.
           It is planted at a distance of 2.5-3.0 m both between and within rows as a pure crop.
When cocoa is to be raised as a mixed crop in 8 x 8 m spaced coconut, cocoa can be
planted 4 m apart in a single row in between two rows of coconut palms, so as to keep a
minimum distance of 3.75 m from coconut palms.
Manures and fertilizers
           The cocoa plants are manured with 125 g of N, 40 g of P 2O5 and 140 g of K2O per
plant per year in two to four split doses. Trees younger than three years require only half or
three-fourths of those.
           It can not withstand drought hence irrigation is necessary after the cessation of rains
i.e. from October-November to June-July. Depending upon the soil and climate irrigate at 4-
7 days interval. In the drip system it requires 20-30 lit/day. The plantation is irrigated at
weekly intervals during summer. If sufficient irrigation is not available, both the crops will
receive a set-back.
           Cocoa grown in a series of storeys, the „chupon‟ or vertical shoot of the seedlings
terminating at the jorquettle, where four or five fan branches develop. Further chupon
develops just below the jorquette and continue, the vertical growth till another jorquette
develops. First jorquette can be encouraged at 1.5m which will be convenient height for
harvesting and other operations. It is desirable to limit the tree height at that level by
periodical removal of chupon growth. One or two to three for jorquettes can be allowed for
Cocoa, when grown as an intercrop in Coconut.

        Cocoa flowers from the second year after planting. The pods take about 4-6 months
to ripen. Each pod will have 25-45 beans embedded in white pulp or mucilage. Generally,
cocoa gives two main crops in a year, in September-January and in April-June. Harvesting is,
therefore, done every 5-7 days when ripe pods are harvested. While harvesting fruits,
extreme care should be taken to see that the cushions carrying the flowers and fruits are
not damaged. For this, pods are harvested by cutting the stalk with a knife. During
harvesting all the pods damaged by diseases and rodents are removed. The beans are taken
out by cutting the pods crosswise. This should be done within 2-3 days of harvest. Each pod
weighs 300-500 g. The shell constitutes 75% of the pod weight. The fresh bean to dry bean
ratio will be 3:1.
        50-60 pods/tree (300 kg of dried beans/ha/year)
Fermentation and Drying
        It is generally done in sweating boxes made of wood and having holes at the bottom
to allow the sweating from the pulp to drain down and air to enter, are used. The beans,
scooped out from the ripe pods, are placed in the box and covered with few layers of
banana leaves. To facilitate uniform fermentation, beans are stirred after about 48 hours
and second stirring is done after another 48 hours. Fermentation is allowed to continue for
another 48 hours or until the temperature begins to fall and ammonical smell develops when
the fermentation can be considered to have completed. (The beans are dried till moisture
percentage comes to 6-8).
Plant Protection
Stem Borer (Zeuzera Coffeae)
        It bores into branches and trunks of the cocoa trees. The aerial portions above the
point of attack dry up.
        The pest can be controlled by extracting the caterpillar and plugging the burrow with
Carbaryl paste.
Mealy Bugs (Pseudococcus citri & Rastrococcus iceryoides)

        They suck the sap from tender leaves, young shoots, flower cushions and pods.
        Spraying Dimethoate 30% EC @ 0.05% i.e. 1.6 ml/l of water.

Leaf Eating Caterpillars
       Several hairy caterpillars and semiloopers feed on tender foliage and shoots.
       They can be controlled by spraying 0.1% Carbaryl.
Cockkhafer Beetle (Popilla complanata)
       Adult beetles feed only on young leaves causing a series of irregular holes.
       Drenching the soil with 0.15% Carbaryl suspension gives a good control of hiding
adults and white grubs.
Tea Mosquito (Helopeltis antonii. S)
       Suck the sap from the young leaves.
       Spray Endosulphan @ 2ml/lit for control
Aphids (Toxoptera aurantii)
       Suck the sap from the emerging new leaves and young shoots.
       For the control spray Dimethaoate @ 2ml/lit.
Leaf Webbers (Lamida moncusalis W.)
       Caterpillars web the leaves and hide in the webs and continue to feed on the
chlorophyll content of the leaves.
       Spray Dimethaoate or Metasystox @ 2ml/lit for control.
Squirrels (Funambulus palmarum)
       They make holes on ripe cocoa pods and feed on the sweet mucilage surrounding
the beans. They cause very serious damage.
       Poison baiting with zinc phosphide or warfarin, in addition to regularly trapping them.
Black Pod disease (Phytopthora palmivora)
       Pods of all ages are affected during the monsoon season. The infection spreads very
rapidly and soon occupies the entire area of the pod. Infected tissues shrink and become
dark brown in colour and corky in texture.
       Spraying with 1% Bordeaux mixture twice is recommended with the onset of the
monsoons at 45 days interval.

Charcoal Rot (Botryodiplodia theobromae and Macrophoma sp.)
        The affected pods shrivel and hang as mummies. The internal tissues are rotten due
to infection and the affected beans and pods turn black in colour.
        Spraying with 1% Bordeaux mixture is recommended. Rodent and insect damage
should be controlled.

                                        (Piper betel L)
        The Betelvine is an important commercial crop of Andhra Pradesh, occupying about
2772 hectares producing 93,694 tons. It is largely grown in Guntur, Cuddapah, Chittoor,
Nellore and Ananthapur districts.
        It grows well under warm humid climate with diffused sun light, tropical forest
conditions which provide a cool shade, where adequate irrigation facilities exist and where
the required condition of cool humid and shady atmosphere could be artificially created.
        Deep, well drained red laterite and red loamy soils are good for betelvine. It can also
be grown successfully in black (alluvial) soils under good drainage conditions.
Tellaku (Kapoori Type)
        Leaf is greenish yellow, ovate in shape, smooth with acute tip, juicy and non-
pungent. It produces large number of laterals/vine and hence the yield is more when
compared to other types. The vine bears 10-15 lateral shoots. Susceptible to foot rot
disease. It yields on an average 80,000 panthas per hectare per year (approximately) 100
leaves make one pantham.
Karapaku (Bangla Type)
        It is moderately vigorous. The leaf is green to dark green, cordate in shape, thick
with broad lamina, coarse to touch and pungent. With very few or no laterals/vine.
        This is usually propagated by terminal stem cuttings obtained from sufficiently
mature plantations. The length of the vines used for planting is about 30 to 45 cm having 6
to 7 nodes.
Land Preparation
        Apply farmyard manure 25 t/ha as basal dressing in the last ploughing. The land is
laid out into ridges and furrows 45cm apart and irrigation channels formed at convenient

places. Generally Agati is used as supporting betelvines. The seeds of Agati are sown at the
rate of 40 to 50 kg/ha during June-July along the ridges spaced at 100 cm. Irrigations are
given to the standards twice a week or even more frequently. Along the border sow some
seeds of Moringa or Pangara, Glyricidia as wind breaks.
        Apply gypsum @2.5 t/ha and plough the field before sowing live standards in saline
and alkaline soils. Prepare the field into small plots to facilitate good drainage to avoid the
incidence of foot rot disease.
        The vines are planted during September-October in place where live standards are
raised in June-July. 50,000 sets (vine cuttings) are required for planting a hectare. The vine
sets are planted at 100 x 20 cm spacing.
        The seed vines of top „50‟ cms length must be collected from vigorously growing,
disease free gardens.
        Seed vines should be treated with 0.5% Bordeaux mixture + 500 ppm streptomycin
for 15-30 minutes. For seed vine treatment 2 kg copper sulphate, 2 kg lime, 400 lts of water
and 200 g. of streptomycin (9%) per one acre are required.
   For treatment of seed vines require for one acre, the following composition is to be
        Copper sulphate      : 2 Kgs.
        Quick lime           : 2 Kgs.
        Water                : 400 lit.
        streptomycin (9%) : 200 g
        After seed vine treatment the remaining Bordeaux mixture can be applied to the
Manures and Fertilizers
First Year
Black Alluvial Soils
       200 kg N/ha in 4 split doses at monthly interval starting from 2 nd month of planting
through organic (Neem cake) and inorganic manures in 1:1 ratio, 100 kg P2O5/ha through
single superphosphate and 100 kg K2O/ha through Muriate of potash/sulphate of potash as
basal dosage during land preparation.
Red Soils
        200 kg N/ha (100 kg N through FYM or oilcake, 100 kg N through Ammonium
sulphate),100 kg P2O5 through single super Phosphate and 100 kg K2O through muriate of
Second Year
        Manuring schedule of first year except FYM is to be followed.

Third Year
       Manuring schedule of first year is to be followed.
Irrigation and drainage
       Irrigation is given after planting betelvine cuttings, twice in a day for 3 days, once in
a day for next 3 days and later once in two days for 3 times. Later light irrigation is to be
given depending on the soil conditions and season. Subsequent irrigations are to be given
based on the seasonal and soil conditions i.e. once in 2 days during summer and 5 to 6 days
during winter.
       Proper drainage channels are to be provided in the field for every 10-12 m row
length and water should not be allowed to stagnate at the base of plants.
       Weeding should be done whenever necessary.
       Train the vines to the standards at 20-30 days interval. Fix dry bamboos wherever
there is no standard.
       Sesbania (Avisi) tops are pruned at 4m height. The pruning of sesbania branches is a
regular and continuous process. Less number of branches are retained during winter to
allow sufficient sunlight and more during summer to protect the vine from hot sun and wind.
Tying with ropes
       When the vines grow to the top of sesbania, the latter have to bear a heavy burden,
hence they are tied with strong coir and these ropes are tied strongly to a thick bamboo
poles to protect from strong gales during April-May and cyclonic storms during October to
Wind breaks
       The garden is protected from the strong gales, hot summers and cool winters by
sowing some seeds of Moringa/Pangara/Glyricidia or fencing with banana leaves/coconut
fronds/gunny sacs as wind breaks along the border.
Lowering the vines
       When the first year crop is completed, the vine grows beyond 3-3.5m and picking
leaves is difficult. Hence, the vines are lowered by forming a ring (lower leaves of shoots are
stripped and then coiled) and fastened to live supports just above the ground level, leaving
the apical 50cm of the vine. The top 50cm of the vines is erected and tied to live support.
This operation is called lowering of vine for rejuvenation.

Second year garden
       At the time of lowering the vines, the coiled vines are to be sprayed with 0.5%
Bordeaux mixture solution and then tied to the sesbania standard.
Crop rotation
       Crop rotation with maize once in two years recorded the lowest foot rot disease
incidence. Crops like castor, brinjal, chillies, bhendi, tomato should not be included in the
       Generally betelvine is ready for harvest after 2-3 months of planting and thereafter
for every 25 to 30 days.
       Average yield: First year 60,000 - 70,000 bundles/ha
       Second year 80,000 – 1,00,000 bundles/ha
       (1 Bundle: approximately 100 leaves)
Integrated crop Management module
                      Best plant population (50,000 sets vine cuttings)
  200 kg N through Neem cake + Urea (1 : 1) (Neem cake as basal and Urea in 4 splits at
                 bimonthly interval) 100 kg P2O5 and 100 kg K2O as basal.
                           Irrigation 100% replenishment of CPE
                  Application of Bordeaux mixture (4 drenches + 8 sprays)
                           Recommended insecticides if required.
Plant protection
Pests on Betelvine
Leaf eating caterpillars
Tobacco caterpillar (Spodoptera litura)
       Tobacco caterpillars makes holes on leaves which are unfit for market. In case of
severe infestation, the establishment of newly planted seed vines also delayed.
      Installation of sex pheromone traps @ 10/ha from July to October.
      Collection and destruction of skeletonised leaves.
      Before planting of seed vine cuttings spray malathion or chlorpyriphos or
       monocrotophos @ 0.05% when ever the infestation is noticed.

       After planting of seed vines, spray neem oil 0.5% (5ml/lit. of water) during October
        to November two times at 15 days interval.
White mites (Hemitarsonemus piperae) and red spider mites (Tetranychus
cinnabarinus )
      All stages of the pest feed on the under surface of the leaves by sucking the leaf sap
results in Curling and malformation of younger leaves. Formation of red or brown spots on
the lower surface of the leaves is the characteristic feature of infestation by red spider
mites. Characteristic removal of chlorophyll and other plant pigment and leaves turns to pale
yellow and dry after some time.
        Spray wettable sulphur 0.3% during December & January and March-April against
white mites and red spider mites respectively. Repeat the insecticidal spray at 7 days after
first spray if necessary.
Betelvine Bug (Pachypeltis politus & P humerale)
        The nymphs and adults damage the leaves by puncturing and sucking the juice the
leaves shrivel, fade and dry up. P politus cause small brown spots on the leaf which forms
small holes where as P humerale forms dark brown angular patches on leaves. The bugs are
active during June-December and multiply rapidly under warm and humid conditions. They
take shelter in dark and protected places and thrive by feeding on the plant sap.
        Spray tobacco decoction 2% or neem oil 0.5% or endosulfan 0.07% or malathion
0.05% after harvesting of leaves.
Nematodes (Meliodog vine arenaria)
        They attack the roots resulting in the leaves turning yellow and pale. The roots
develop knots and galls.
        Application of Neem cake @ 2 t/ha will reduce the nematode population to a
considerable extent.
Scale insects (Lepidosaphes cornutus, Aspidiotus destructor)
        The insects suck the sap from the leaves and stem. The leaves become yellow and
vine wilts.
        Spray neem seed kernel extract 5%.
White fly (Dialeurodes pallida) & Black fly (Aleurocanthus rugosa)
        They feed on the lower surface of the younger leaves and infest the whole vine
under heavy infestation. Due to feeding by the pest, the vines become stunted and leaves

become chlorotic. The flies infest the crop from October to February and the peak period of
incidence is observed from December to January.
        Spraying of neem seed kernel extract 5% or tobacco decoction 2%.
Leaf folder (Cocoecia sp.)
        The larvae feed on the sesbania foliage by webbing the leaflet on the top portions of
leaves. The fully grown caterpillar migrates to betelvine plant and folds the betel leaf and
pupates with in the fold rendering the leaves unfit for sale because of the crinkling nature of
the infested leaves. Leaf damage to an extent of 5 – 12% during November to January was
recorded in Andhra Pradesh. Maximum incidence of the pest is observed in the betelvine
gardens where there is excessive shade by the prop crop (sesbania).
       Thinning of excessive sesbania foliage.
       collection and destruction of folded leaves containing pupal stages.
Pests On Sesbania (Prop Crop)
Flea beetles (Chaetocnema sp.)
        The pest damages the young plants when they are 10 -15 days old. The adult
beetles feed on the leaves by making holes and also cutting the plants near the ground level
resulting in gaps in the field.
        Spray endosulfan 0.07% as soon as the pest incidence is observed
Leaf eating caterpillar (tobacco caterpillar - Spodoptera litura and green looper -
Semiothisa pervolgata)
      The leaf eating caterpillars which are active from July to September cause defoliation
on sesbania and the infestation is observed when the plants are 1 1/2 to 4 months old.
Maximum damage due to pest is observed during the period synchronizing with the planting
time of the seed vine cuttings. In the case of the severe infestation, the sesbania plants will
be free of foliage.
Monitoring of the pest during the planting time is important. Before planting of seed vines,
spray chloropyriphos 0.05% or monocrotophos 0.05% or endosulfan 0.07%.
Stem borer – Azygophleps scalaris (F.)
        The pest is active from July to February. The larva immediately after hatching bores
into the growing point or top portion of the plant which is indicated by the presence of
necrotic brown spots at the site of infestation. Later, the caterpillar tunnels down into the
main stem and feed on the internal contents. The infested plant gets dried up or will be

broken at the site of infestation even with slight wind or touch. Excessive side branching on
the terminal protion of the plant, bored holes on the stem and the presence of chewed
fibrous material at the base of the infested plant are the characteristic features of stem
borer infestation.
IPM for the management of Sesbania stem borer
      Arrange light traps during July-August which is the peak period of adult moth
       emergence and destroy the adults.
      Remove the top portions of the plants during August-September which harbours
       early instar larvae.
      Before planting of seed vines, spray moncrotophos 0.05% twice at an interval of 15
       days (during third week of July and first and first week of August) synchronizing with
       the first brood emergence.
      After planting of seed vines (within one month) adopt stem application with
       monocrotophos @ 1.25 kg /ha (after dilution with water in the ratio of 1:6) on the
       top portions of the sesbania plants immediately after the last thinning of sesbania
       plants is under taken.
      Drench the soil around sesbania plants with neem seed kernel extract 5% or neem
       oil 2% followed by spraying with insecticide.
Leaf and Foot rot (Phytophthora capsici)
       Leaf spots either deep brown, circular, necrotic spots with distinct greyish brown
zonations (under fluctuating relative humidity conditions) or dark brown necrotic spots
without zonations (Continuous high humidity conditions).
       The plant looses lusture, leaves droop while still green, turn yellow and drop.
Blackish brown marks on the stem at ground level or slightly above. Soft tissues in the root
get disintegrated leaving only fibrous portion. Stem and under ground parts rot and may
break at any point.
Integrated disease management for Phytophthora leaf and foot rot :

      Deep summer ploughing to expose fungal inoculum to high temperatures
      Crop rotation with Jowar or maize once in two years.
      Application of gypsum @ 1 ton/ acre and incorporation into the soil before sesbania
       seed sowing.
      Selection of healthy seed vines from disease free gardens.
      Seed vine treatment.

      Avoid application of inorganic fertilizers two months before seed vine cutting.
      Provide good drainage facilities, especially during rainy season and drain out rain
       water immediately after rain.
      Avoid excess and unnecessary irrigation.
      Do not allow irrigation water to flow from diseased garden to healthy garden.
      Delay fertilizer application during winter.
      Protect the vines from cold waves and don‟t remove sesbania tops during winter.
      Removal and destruction of diseases leaves and vines.
      For the management of leaf and foot rot disease of betelvine, prophylactic soil
       drenching (4 times) with 1% Bordeaux mixture @ 1 lt. per linear meter (4,000 lts
       /ac) and 0.5% Bordeaux mixture as foliar spray (8 times) @ 200 lt / ac at monthly
       and fortnightly intervals respectively should be taken up from November to February
       months in first year garden and with the on set of monsoons in second year garden.
Material required for one soil drenching and one foliar spray/acre
i) 1% Bordeaux mixture (soil drench)
        Cuso4 : 40 Kgs
        Lime : 40 Kgs
        Water : 4000 lts.
ii) 0.5% Bordeaux mixture (foliar spray)
      Cuso4 : 1 Kg
      Lime : 1 Kg
      Water : 200 lts.
Sclerotial wilt, stem rot or collar rot or basal rot (Sclerotium rolfsii)
       The plants are usually attacked at ground level. Dense white cotton like mass of
threads (Mycelium) are seen on stems. This causes rotting of affected portion causing
wilting and ultimate death of plants.
      Crop rotation with maize or jowar.
      Prior to sowing of sesbania seed, flooding the field for one and half month followed
       by drying.
      Seed vine treatment with 0.5% Bordeaux mixture.
      Deep ploughing in summer.
      Earthing up the base of the vine.
      Pressing the soil at the base of the affected vine.
      Soil drenching with 1% Bordeaux mixture @ 1 lt. per linear meter.
      Tieing the coil to sesbania standard just above ground level at the time of lowering.

Leaf spot, marginal blight or Anthracnose (Colletotrichum capsici)
        Small black circular or irregular lesions appear on leaves expanding rapidly in humid
conditions. Leaf spot appears as brownish black centre with yellowish hallow around and in
severe cases the leaves drop owing to shrinkage of tissues.
       Seed vine treatment with 0.5% Bordeaux mixture
       Removal and destruction of affected leaves.
       Spray 0.5% Bordeaux mixture or 0.3% copper oxychloride fungicide.
Powdery mildew (Oidium piperis)
        Small powdery patches on the lower surface of the leaf corresponding upper surface
with yellowish discolouration, followed by reddening and drying of the leaves. In cases
complete defoliation of the affected vines.
        Spray with 0.3% wettable sulphur or 0.5% Bordeaux mixture 2 times at 15 days
Bacterial Leaf Spot, leaf blight or stem canker (Xanthomonas campestris pv.
       Minute water soaked spots initially on the under surface of leaves later appear on
upper surface also are as dark round to angular spots surrounded by yellowish zone. The
centre of spots are mottled brown and later turn black and in severe conditions leaves turn
yellow and fall.
       Selection of healthy seed vines.
       Seed vine treatment with 0.5% Bordeaux mixture + 500 ppm streptomycin for 15-
       Removal and destruction of affected vines.
       Disinfection of tools and implements before use.

                                      BLACK PEPPER
                                      (Piper nigrum)
        Black pepper (Piper nigrum) (Family: Piperaceae) is a perennial climbing vine grown
for its berries extensively used as spice and in medicine. India is a leading producer,
consumer and exporter of black pepper in the world. Black pepper is cultivated to a large
extent in Kerala and Karnataka and to a limited extent in Tamil Nadu and Andhra Pradesh.
Black pepper is cultivating in 271 hectares producing 407 tons in Andhra Pradesh in High

altitude tribal zones of Chintapalli, Araku and Paderu of Visakhapatnam District and
Rampachodavaram in East Godavari district.
        Black pepper is a plant of humid tropics requiring adequate rainfall and humidity. The
hot and humid climate of sub mountainous tracts of Western Ghats is ideal for its cultivation.
It grows successfully between 20° North and South latitude, and from sea level up to 1500
m above sea level. The crop tolerates temperatures between 10 oC and 40° C. A well
distributed annual rainfall of 125-200 cm is considered ideal for black pepper.
        Black pepper can be grown in a wide range of soils with a pH of 4.5 to 6.5, though in
its natural habitat it thrives well in red laterite soils.
        A majority of the cultivated types are monocots (male and female flowers found in
the same spike) though variation in sex expression ranging from complete male to complete
female is found. Out of 75 cultivars of black pepper the following varieties are most suitable
for cultivation in Andhra Pradesh
        F1 hybrid of Uthirankotta x Cheriyakaniyakadan.Suitable to all black pepper growing
regions. Yield potential 1242 kg/ha. It‟s having 11.8 % Oleoresin, 5.3 % Piperine and 3.5 %
essential oil.
Karimunda OP
        Most popular cultivar suitable for most of the Black Pepper growing areas, high
yielder and medium in quality. Suitable for heavily shaded areas.
Other suitable varieties
        Sreekara, Subhakara, Panchami, Pournami and Aimpirian
        Black pepper vines develop three types of aerial shoots, namely (a) primary stem
with long internodes, with adventitious roots which cling to the standards (b) runner shoots
which originate from the base of the vine and have long internodes which strike roots at
each node and (c) fruit bearing lateral branches. Cuttings are raised mainly from runner
shoots, though terminal shoots can also be used. Cuttings from lateral branches are seldom
used since they develop a bushy habit. However, rooted lateral branches are useful for
raising bush pepper.

Production of rooted cuttings
Traditional method
       Runner shoots from high yielding and healthy vines are kept coiled on wooden pegs
fixed at the base of the vine to prevent the shoots from coming in contact with soil and
striking roots. The runner shoots are separated from the vine during February-March, and
after trimming the leaves, cuttings of 2-3 nodes each are planted either in nursery beds or
in polythene bags filled with fertile soil. Adequate shade has to be provided and the
polythene bags are to be irrigated frequently. The cuttings become ready for planting during
Rapid multiplication method
       An efficient propagation technique developed at Sri Lanka has been modified for
adoption in India for quick and easy multiplication of black pepper vines. In this method, a
trench of 45 cm depth, 30 cm width and convenient length is made. The trench is filled with
rooting medium comprising of forest soil, sand and farm yard manure in 1:1:1 ratio. Split
halves of bamboo with septa or split halves of PVC pipes of 1.25-1.50 m length and 8-10 cm
diameter provided with plastic septa at 30 cm intervals are fixed at 45° angle on a strong
support. Rooted cuttings are planted in the trench at the rate of one cutting for each
bamboo split. The lower portions of the bamboo splits are filled with rooting medium
(preferably weathered coir dust-farm yard manure mixture in 1:1 ratio) and the growing
vine is tied to the bamboo split in such a way so as to keep the nodes pressed to the rooting
medium. The tying can be done with dried banana leaf sheath fibers or coir rope. The
cuttings are irrigated regularly. As the cuttings grow, the bamboo splits are filled with
rooting medium and each node is pressed down to the rooting medium and tied. For rapid
growth, a nutrient solution of urea (1 kg), super phosphate (0.75 kg), muriate of potash
(0.5 kg) and magnesium sulphate (0.25 kg) in 250 litres of water is to be applied @ 0.25
litre per vine at monthly intervals. When the vine reaches the top (3-4 months after planting
of the cutting) the terminal bud is nipped off and the vine is crushed at about three nodes
above the base, in order to activate the axillary buds. After about 10 days, the vine is cut at
the crushed point and removed from the rooting medium and cut between each node. Each
cutting with the bunch of roots intact is planted in polythene bags filled with fumigated
potting mixture. Trichoderma @ 1g and VAM @ 100 cc/kg of soil can be added to the
potting mixture. Care should be taken to keep the leaf axil above the soil. The polythene
bags should be kept in a cool and humid place, or should be covered with thin polythene
(200 gauge) sheet to retain humidity. The buds start developing in about 3 weeks and the
polybags can then be removed and kept in shade. The advantages of this method of

propagation are rapid multiplication (1:40), well developed root system, higher field
establishment and vigorous growth as a result of better root system.
Trench method
       A simple, cheap and efficient technique for propagating black pepper from single
nodes of runner shoots taken from field grown vines has been developed at the institute. A
pit of 2.0 m x 1.0 m x 0.5 m size is dug under a cool and shaded area. Single nodes of 8- 10
cm length and with their leaf intact, taken from runner shoots of field grown vines are
planted in polythene bags (25 cm x 15 cm, 200 gauge) filled at the lower half with a mixture
of sand, soil, coir dust and cow dung in equal proportion. The single nodes are to be planted
in the bags in such a way that their leaf axil is above the potting mixture. The polythene
bags with the planted single nodes are arranged in the pit. After keeping the bags in the pit,
the pit should be covered with a polythene sheet. This sheet may be secured in position by
placing weights on the corners. The cuttings should be watered at least five times a day
with a rose can and the pit should be covered with the polythene sheet immediately after
watering. It is advisable to drench the cuttings 2-3 times with copper oxychloride (2g/litre).
After 2-3 weeks of planting, the cuttings will start producing roots which are visible through
the polythene bags. After the initiation of roots the frequency of watering may be reduced
to 3- 4 times a day. After about 1 month, new shoots start emerging from the leaf axil. At
this stage it is advisable to keep the pit open for about 1 hour per day so that the cuttings
would harden and will not dry when they are taken out of the pit. The cuttings can be taken
out of the pit after 2 months of planting and kept in a shaded place and watered twice a
day. These cuttings will be ready for field planting after about 2 ½ months. By this method
80-85%success can be obtained. Foliar application of nutrient solution will also enhance the
growth of the cuttings.
Serpentine method
       Cheaper propagation technique for production of rooted cuttings of black pepper is
serpentine layering. In a nursery shed with roofing sheet or shade net, rooted black pepper
cuttings are planted in polythene bags holding about 500 g potting mixture, which will serve
as mother plants. As the plant grows and produces few nodes small polythene bags (20x10
cm) filled with potting mixture may be kept under each node. The node may be kept gently
pressed in to the mixture assuring contact with the potting mixture with the help of a
flexible twig such as mid rib of a coconut leaflet to enable rooting at that junction. Roots
start growing from the nodes and the cuttings keep on growing further. The process of
keeping potting mixture filled polythene bags at every node to induce rooting at each node
is repeated. In 3 months the first 10 nodes (from the mother plants) would have rooted

profusely and will be ready for harvest. Each node with the ploythene bag is cut just below
the rooted node and the cut end is also buried into the mixture to induce more roots.
Polythene bags filled with solarized potting mixture or soil, granite powder and farmyard
manure in 2:1:1 proportion is recommended for producing disease free rooted cuttings. The
rooted nodes will produce new sprouts in a week time and will be ready for field
planting in 2-3 months time. Daily irrigation can be given with a rose can. On an average, 60
cuttings can be harvested per mother plant in a year by this method.
Selection of site
       When black pepper is grown in slopes, the slopes facing south should be avoided
and the lower half of northern and north eastern slopes preferred for planting so that the
vines are not subjected to the scorching effect of the southern sun during summer.
Preparation of land and planting standards
       With the receipt of the first rain in May-June, primary stem cuttings of Erythina
sp.(Murukku) or Garuga pinnata (kilinjil) or Grevillea robusta (silver oak) are planted in pits
of 50 cm x 50 cm x 50 cm size filled with cow dung and top soil, at a spacing of 3 m x 3m
which would accommodate about 1110 standards per hectare. Whenever E. indica is used as
standard, application of phorate 10 G @ 30 g may be done twice a year (May/June and
September/October) to control nematodes and stem and root borer. When E. indica and G.
pinnata are used, the primary stems are cut in March/April and stacked in shade in groups.
The stacked stems start sprouting in May. The stems are planted in the edge of the pits dug
for planting black pepper vines.
       Existing Coconut gardens having age of more than 15-20 years also suitable for
Black pepper cultivation. 300 nos Black Pepper cuttings are required for planting in one
Hectare area of Coconut garden @ 2 cuttings for each tree.
       Pits of 50 cm at a distance of 30 cm away from the base, on the northern side of
supporting tree are taken with the onset of monsoon. The pits are filled with a mixture of
top soil, farmyard manure @ 5 kg/pit and 150 g rock phosphate. Neem cake @ 1 kg and
Trichoderma harzianum @ 50 g also may be mixed with the mixture at the time of planting.
With the onset of monsoon, 2-3 rooted cuttings of black pepper are planted individually in
the pits on the northern side of each standard. At least one node of the cutting should be
kept below the soil for better anchorage.
Cultural practices
       As the cuttings grow, the shoots are tied to the standards as often as required. The
young vines should be protected from hot sun during summer by providing artificial shade.

Regulation of shade by lopping the branches of standards is necessary not only for providing
optimum light to the vines but also for enabling the standards to grow straight. Adequate
mulch with green leaf or organic matter should be applied towards the end of North East
monsoon. The base of the vines should not be disturbed so as to avoid root damage. During
the second year, the same cultural practices are repeated. However, lopping of standards
should be done carefully from the fourth year onwards, not only to regulate height of the
standards, but also to shade the black pepper vines optimally. Lopping may be done twice
(during June and September) in a year. Excessive shading during flowering and fruiting
encourages pest infestations. From the fourth year, two diggings are usually given in the
inter species one during May-June, and the other towards the end of south-west monsoon in
October-November. Growing cover crops like Calapogonium mucunoides and Mimosa invisa
are also recommended under West Coast conditions as an effective soil cover to prevent soil
erosion during rainy season. Further, they dry during summer, leaving thick organic mulch.
Manures and Fertilizers
                                     N                P2O5                  K2O
                               (g/vine/year)      (g/vine/year)        (g/vine/year)
      1st year                       17                 17                   50
      2nd year                       34                 34                  100
      3rd year and above             50                 50                  150

       Apply the above in two split doses once in June-July and the other in August-
September and applied at a distance of about 30 cm all around the vine and covered with a
thick layer of soil. Care should be taken to avoid direct contact of fertilizers with roots of
black pepper.
       Organic manures in the form of cattle manure or compost can be given @ 10 kg/vine
during May. Neem cake @ 1 kg/vine can also be applied. Application of lime @ 500 g/vine in
April-May during alternate years is also recommended.
       When biofertilizer like Azospirillum is applied @ 100 g/vine, the recommended
nitrogen dose may be reduced by half to 70 g/ vine.
       In soils that are deficient in zinc or magnesium, foliar application of 0.25% zinc
sulphate twice a year (May-June and September-October) and soil application of 150 g/vine
magnesium sulphate, respectively is recommended.
       Black pepper flowers during May-June. The crop is ready for harvest in 6-8 months
from flowering. The harvest season extends from November to January in the plains and
January to March in the hills. During harvesting the whole spike is hand picked when one or

two berries in the spike turn bright orange. The berries are separated from the spikes and
dried in the sun for 7-10 days. The optimum moisture content in dried pepper to prevent
mould attack is 8-10%. The berries can be separated manually or mechanically using
threshers. Threshers with capacities varying between 0.5 to 1.5 tons per hour are available.
This enhances speedy and hygienic separation of black pepper berries. When dried, the
berries retain the characteristic wrinkled appearance of black pepper of commerce.
Post Harvest Technology and Processing
       The fresh berries are dipped in hot water for a minute before drying in the sun which
results in an attractive black colour and also reduces the drying time. The recommended
drying surfaces are bamboo mat coated with fenugreek paste, cement floor and high density
black polythene which gives better appearance and cleanliness to the dried product.
Mechanical driers such as copra drier, convection drier and cascade type driers can also be
employed for drying. The optimum temperature to be maintained in mechanical driers
should be around 60ºC.
       The white pepper of commerce is prepared either from freshly harvested berries or
dried black pepper using special techniques such as retting, steaming and decortications.
The recovery of white pepper from ripe pepper berries is about 25%. Water steeping is the
most popular technique for preparing white pepper in which ripe pepper berries are soaked
in water for 8-10 days and the outer skin is removed, washed and sun dried. The berries of
Panniyur- 1 are ideal to prepare white pepper.
Plant protection
Pollu beetle (Longitarsus nigripennis)
       The pollu beetle (Longitarsus nigripennis) is the most destructive pest of black
pepper and is more serious in plains and at altitudes below 300 m. The term pollu denotes
the hollow nature of the infested berries in Malayalam. The adult is a small black beetle
measuring about 2.5 mm x 1.5 mm, the head and thorax being yellowish brown and the
fore wings (elytra) black. Fully-grown grubs are creamy white and measure about 5 mm in
length. The adult beetles feed and damage tender leaves and spikes. The females lay eggs
on tender spikes and berries. The grubs bore into and feed on the internal tissues and the
infested spikes turn black and decay. The infested berries also turn black and crumble when
pressed. The pest infestation is more serious in shaded areas in the plantation. The pest
population is higher during September-October in the field.
       Regulation of shade in the plantation reduces the population of the pest in the field.
Spraying thoroughly underside of leaves (where adults are generally seen) and spikes

quinalphos (0.05%) during June-July and September-October or quinalphos (0.05%) during
July and Neemgold (0.6%) (neem-based insecticide) during August, September and October
is effective.
Top shoot borer (Cydia hemidoxa)
        The top shoot borer (Cydia hemidoxa) is a serious pest in younger plantations in all
black pepper areas. The pest infestation is higher during July to October when numerous
succulent shoots are available in the vines.
        The adult is a tiny moth with a wing span of 10-15 mm with crimson and yellow fore
wings and grey hind wings. The larvae bore into tender terminal shoots and feed on internal
tissues resulting in blackening and decaying of affected shoots. Fully-grown larvae are
grayish green and measure 12-15 mm in length. When successive new shoots are attacked,
the growth of the vine is affected.
        Spray quinalphos (0.05%) on tender terminal shoots; repeat spraying at monthly
intervals (during July- October) to protect emerging new shoots.
Leaf gall thrips (Liothrips karnyi)
        Infestation by leaf gall thrips (Liothrips karnyi) is more serious at higher altitudes
especially in younger vines and also in nurseries in the plains. The adults are black and
measure 2.5-3.0 mm in length. The larvae and pupae are creamy white. The feeding activity
of thrips on leaves causes the leaf margins to curl downwards and inwards resulting in the
formation of marginal leaf galls. Later the infested leaves become crinkled and malformed.
In severe cases of infestation, the growth of younger vines and cuttings in the nursery is
        Spray dimethoate (0.05%) during emergence of new flushes in young vines in the
field and cuttings in the nursery.
Mussel Scale (Lepidosaphes Piperis) and Coconut Scale (Aspidiotus Destructor)
        They cause serious damage to black pepper vines at higher altitudes and also to
older cuttings in nurseries in the plains. The pest infestation is more severe during the post
monsoon and summer periods. Females of mussel scales are elongated (about 1 mm length)
and dark brown and that of coconut scales circular (about 1 mm in diameter) and yellowish
brown. Scale insects are sedentary, remaining permanently fixed to plant parts and appear
as encrustations on stems, leaves and berries. They feed on plant sap and cause yellowing

and wilting of infested portions; in severe cases of infestation the affected portions of vines
dry up.
          Clip off and destroy severely infested branches. Spray dimethoate (0.1%) on
affected vines; repeat spraying after 21 days to control the infestation completely. Initiate
control measures during early stages of pest infestation. In nurseries spraying neem oil
0.3% or Neemgold 0.3% or fish oil rosin 3% is also effective in controlling the pest
Slow decline (slow wilt) (Radopholus similis and Meloidogyne incognita
     Slow decline is a debilitating disease of black pepper. Foliar yellowing, defoliation and
die-back are the aerial symptoms of this disease. The affected vines exhibit varying degrees
of root degeneration due to infestation by plant parasitic nematodes. The diseased vines
exhibit foliar yellowing from October onwards coinciding with depletion of soil moisture. With
the onset of south west monsoon during May/June, some of the affected vines recover and
put forth fresh foliage. However, the symptoms reappear in subsequent seasons after the
cessation of the monsoon and the diseased vines gradually lose their vigour and
productivity. The affected vines show varying degrees of feeder root loss and the expression
of symptoms on the aerial parts occur after a considerable portion of the feeder roots are
lost. The root system of diseased vines show varying degrees of necrosis and presence of
root galls due to infestation by plant parasitic nematodes such as Radopholus similis and
Meloidogyne incognita leading to rotting of feeder roots. The damage to feeder roots is
caused by these nematodes and P. capsici either independently or together in combination.
There is no spatial segregation of plant parasitic nematodes and P. capsici in the soil under
field conditions.
          It is necessary to adopt a combination of fungicide and nematicide application for the
management of the disease.
          Severely affected vines which are beyond recovery should be removed from the
plantation and destroyed.
          The pits for planting should be treated with phorate 10 G @ 15 g or carbofuran 3 G
@ 50 g at the time of planting.
          Nematode free rooted cuttings raised in fumigated or solarized nursery mixture
should be used for planting in the field.

Foot rot (quick wilt disease) (Phytophthora capsici)
       It is the most destructive of all diseases and occurs mainly during the south west
monsoon season. All parts of the vine are vulnerable to the disease and the expression of
symptoms depend upon the site or plant part infected and the extent of damage. Symptoms
_ One or more black spots appear on the leaves which have a characteristic fine fibre like
projections at the advancing margins which rapidly enlarge and cause defoliation.          The
tender leaves and succulent shoot tips of freshly emerging runner shoots trailing on the soil
turn black when infected. The disease spreads to the entire vine, from these infected runner
shoots and leaves, during intermittent showers due to rain splash. If the main stem at the
ground level or the collar is damaged, the entire vine wilts followed by shedding of leaves
and spikes with or without black spots. The branches break up at nodes and the entire vine
collapses within a month. If the damage is confined to the feeder roots, the expression of
symptoms is delayed till the cessation of rain and the vine starts showing declining
symptoms such as yellowing, wilting, defoliation and drying up of a part of the vine. This
may occur during October-November onwards. These vines may recover after the rains and
survive for more than two seasons till the root infection culminates in collar rot and death of
the vine.
       The disease can be controlled by adopting integrated disease management
       Phytosanitation removal and destruction of dead vines along with root system from
the garden is essential as this reduces the build up of inoculum (fungal population).
       Planting material must be collected from disease free gardens and the nursery
preferably raised in fumigated or solarized soil. Cultural practices Adequate drainage should
be provided to reduce water stagnation.Injury to the root system due to cultural practices
such as digging should be avoided.The freshly emerging runner shoots should not be
allowed to trail on the ground. They must either be tied back to the standard or pruned off.
The branches of support trees must be pruned at the onset of monsoon to avoid build up of
humidity and for better penetration of sunlight. Reduced humidity and presence of sunlight
reduces the intensity of leaf infection.
Chemical control
       Any of the following chemical control measures can be adopted. After the receipt of
a few monsoon showers (May-June), all the vines are to be drenched at a radius of 45-50
cm with copper oxychloride 0.2% @ 5-10 litres/vine. A foliar spray with Bordeaux mixture

1% is also to be given. Drenching and spraying are to be repeated once again during August
September. A third round of drenching may be given during October if the monsoon is
prolonged. After the receipt of a few monsoon showers, all the vines are to be drenched
with potassium phosphonate 0.3% @ 5-10 litres/vine. A foliar spray with potassium
phosphonate 0.3% is also to be given. A second drenching and spraying with potassium
posphonate 0.3% is to be repeated during August-September.If the monsoon is prolonged,
a third round of drenching may be given during October.
        After the receipt of a few monsoon showers, all the vines are to be drenched with
0.125% metalaxyl mancozeb @ 5-10 litres/vine. A foliar spray with metalaxyl mancozeb
0.125% may also be given.
        At the onset of monsoon (May-June), apply Trichoderma around the base of the vine
@ 50 g/vine (this quantity is recommended for a substrate containing Trichoderma @ 1010
cfu). A foliar spray with potassium phosphonate 0.3% or Bordeaux mixture 1% is also to be
given. A second application of Trichoderma and foliar spray of Bordeaux mixture 1% or
potassium phosphonate 0.3% are to be given during August-September.
Anthracnose (Pollu disease) (Colletotrichum gloeosporioides )
        It can be distinguished from the pollu (hollow berry) caused by the beetle by the
presence of characteristic cracks on the infected berries. The disease appears towards the
end of the monsoon. The affected berries show brown sunken patches during early stages
and their further development is affected. In later stages, the discolouration gradually
increases and the berries show the characteristic cross splitting. Finally, the berries turn
black and dry. The fungus also causes angular to irregular brownish lesions with a chlorotic
haloon the leaves.
        Spray Bordeaux mixture 1%.
Stunt disease (Cucumber mosaic virus and a Badnavirus )
        This disease is caused by viruses. The vines exhibit shortening of internodes to
varying degrees. The leaves become small and narrow with varying degrees of deformation
and appear leathery, puckered and crinkled. Chlorotic spots and streaks also appear on the
leaves occasionally. The yield of the affected vines decreases gradually. It spreads through
the use of infected stem cuttings and also transmitted through insects like aphids and mealy
        Use virus free healthy planting material regular inspection and removal of infected
plants and the removed plants may be burnt or buried deep in soil. Insects such as aphids

and mealy bugs on the plant or standards should be controlled with insecticide spray such
as Dimethoate or Monocrotophos @ 0.05%.



                                    (Chrysanthemums Spp.)
       Chrysanthemums are grown for their showy fragrant flowers. It is cultivated on a
limited area in our State and is mainly concentrated in the neighbouring areas of big cities
like Hyderabad, Visakhapatnam etc. This is also cultivated on a large scale in sandy tracts of
Coastal Andhra. A sizeable area is also developed near Tirupati in Chittoor district. The total
area under Chrysanthemum in Andhra Pradesh is about 2,449 hectares with estimated
annual production of 28,164 tonnes
Soil and Climate
       Soil should be well drained, sandy loam with PH of 6.5-7.0. It is highly sensitive to
waterlogged conditions. However it is grown even in sands in the Coastal areas. It is a short
day plant responds differently to their environments, underground or aerial. Depending on
the location planting date should be adjusted so that cultivars are exposed to long days
during vegetative phase and short days for flowering. It can be successfully grown up to an
altitude of 1200m from MSL.
Flower Types
       In chrysanthemum flowers are classified by the kind and arrangement of florets into
five broad groups 1) Singles, 2) Anemones, 3) Pompons, 4) Decorative, 5) Large flowered.
       All the cultivated types can be broadly classified into three groups.
1. The small flower type known as Nakshatra Chamanti or Kasturi Chamanthi
2. Medium flower types or Patnam Chamanti and
3. Large flower types which are mostly used for flower decorations and for cut flowers.
       Among these three types, there are variations in colour ranging between yellow to
red with different shades of admixture.
The following varieties are suitable for loose flowers in our state.
  Yellow                                               White
1. Basanthi                                   1.   Ratlam selection
2.Punjab Anuradha                             2.   IIHR-13
3.CO-1                                        3.   IIHR-6
4.Yellow Gold                                 4.   Baggi
5. Silper

       It is a cool season crop, main season for the crop is from June – July. The crop can
be started in Feb-March by planting the suckers.

Preparation of Land
       The land is ploughed 3 to 4 times in March-April and 25-30 t/ha of farmyard manure
applied in the last ploughing and the land is made into beds of convenient size. It is
suggested that 4 ft wide beds are made so that while picking there will not be trampling and
damage of plants. 60kg of P2O5/ha in the shape of Superphospate can also be incorporated
in the last ploughing.
       Chrysanthemum is propagated vegetatively either through suckers, cuttings and by
Micro propagation. This is usually raised from suckers after the harvest of main crop in
       After flowering, the stem is cut back just above the ground. This induces the
formation of side suckers which are separated from the mother plant and are planted in
sand bed. Well rooted suckers can be directly transplanted to field. The advantages of this
method are natural availability of suckers, their easy establishment and almost no mortality.
The main disadvantages are transmission of parental disease to progeny and lack of
uniformity and poor flower quality.
Terminal cuttings
       These cuttings are taken from a healthy stock plant, 5-7 cm length cuttings are
made by shearing basal leaves and cutting half of the open leaves. The cuttings are ipped in
2500 PPM Indole butyric acid or either in Seradex/Keradex (rooting hormone). These
cuttings are put in sand beds in semi shade conditions and watered immediately and
thereafter regularly.
       It can also be raised by planting a nursery. Nursery raised in 8-10 cents will be
sufficient for planting a hectare. The best time of planting is June-July. Some times, it is
planted in February-March also. Normally nursery would be planted for multiplication in
February-March. The slips should be planted at a spacing of 90cm either way after irrigating
the field. One hectare will require about one lakh slips. While separating slips for planting,
they should be lifted with care with their roots intact. A life irrigation should be given on the
third day. The well rooted suckers/cuttings are planted in beds at a spacing of 30 x 30 cm.
the soft wood cuttings of 58,080 are needed for planting in one acre.
Manures and Fertilizers
       This crop requires a high dose of organic manure which is applied as basal dressing
in the form of FYM and oil cakes. After well preparation of land 10-12 tons/acre of well

decomposed farm yard manure is incorporated into the soil. Apply 50 kg of nitrogen, 160kg
P20 and 80 kg K20 per acre as a basal dose. Top dress the crop with 50 kg Nitrogen /ac at
the time of first pinching. The entire Phosphate is to be applied as basal dose in the last
        One or two ratoon crops are also taken up after the harvest of the first crop. The
stems of the plants will be cut close to the ground and the crop is earthed up with a liberal
dose of FYM and superphosphate. The slips are then allowed to grow for the ratoon. This
crop may give less yield and the flowers size also may be reduced. It is also not economical
to take more than two ratoons.
Intercultivation and Irrigation
        The crop is to be irrigated twice a week in the first month and subsequently at
weekly intervals. Irrigation depends on soil and weather conditions. Weeding and hoeings‟s
generally done manually as and when required, normally 8-10 times. Besides control of
weeds, the soil is made loose, porous to provide aeration.
Horticultural Practices
          Staking is necessary to provide the support whether the plants are grown in pots
or in field.   There are only a few flowering varieties which neither require pinching nor
staking and hence known as „no stage no pinch‟ varieties.
        The objective of pinching is to encourage the side branches and it should be
repeated to encourage more number of branches depending upon the number of blooms to
be retained.
Spray Chrysanthemum
        These types produce numerous small to medium sized flowers. In such types two
pinchings are required to encourage lateral growth. First pinching is done at 4 weeks after
planting and second after 7 weeks of planting or approximately 100 days before full bloom.
        Disbudding is done to remove the side branches which arise from axillary buds, so
that the number of flowers is limited and blooms of better size are obtained. In standard
chrysanthemum regular disbudding is done to produce single flowers on single stems.
        Depending on the variety plants start yielding flowers after 3-4 months of
transplanting. Flowers can be plucked by hand picking at 4 days interval with or without

pedicel (stalk) for loose flowers purpose. The correct stage of harvesting depends upon the
cultivar, marketing and purpose etc.
Yield, packaging and Economics
         Flowering season varies from region to region. The harvesting of the crop
commences from December-January and lasts upto February-March depending upon the
age of the plant (i.e. planting time). The natural blooming season, for most of the regions
lasts from July to February with traditional cultivars and techniques. One can harvest the
flower around 15 times. Each picking would give about 40-50 thousand flowers per acre, i.e.
6 to 7.5 lakhs flowers weighing about 600-700 kg valued @ Rs. 10 to 15/- per kg giving a
gross income of Rs. 6,000/- to 7,000/- per acre annually. The yield ranges from 9 to 10
tonnes of loose flower per acre. The yield will be reduced by about one fourth of this in the
ratoon crop.
Plant Protection
Aphids (Macrosiphoniella sanborni)
         Greenish black nymphs and chocolate brown adults suck the cell sap from growing
shoots and lower surface of leaves. Damage results in loss of vigour, yellowing and
premature leaf fall and stunted growth. Honey dew secreted by aphids favours development
of sooty mould.
         Spraying of pongamia oil or neem oil 2% gives significant mortality of aphid. Spray
Dimethoate or Oxydemeton methyl at 0.05%.
Thrips (Microcephalothrips abdominalis, Frankiniella spp.)
         Slender white nymphs and black adults feed on tender leaves causing silvering,
mottling and distortion of leaves. Damaged flowers discoloured, withered and dried due to
         Spraying of Acephate or Cartap hydrochloride or Ethofenprox or Dimethoate at
0.05%, 2 to 3 days at 15 days interval. Drench the soil with chlorpyriphos 0.1% to control
Bud borer (Helicoverpa armigera)
         Round cream coloured eggs are deposited singly on bracts and petals of buds.
Larvae feed on growing flowers causing considerable flower loss.

        Sprays Endosulfan 0.07% or Methyl parathion 0.05% or Fenvalerate 0.01% at
appearance of eggs. Spraying of NPV of Helicoverpa @ 250 LE/ha also gives effective
Leaf folder (Hedylepta indicate)
        Pale white eggs are laid singly or in small groups on lower side of leaves. Green larva
with brown head folds leaves together and feeds on chlorophyll. Affected leaves become
skeletonized and dry. The larvae also damage flowers by feeding on petal.
        Cutting and buming of infected parts. Two or three sprays of Methyl parathion or
Quinolphos at 0.05% or Fenvalerate 0.01% give effective control of leaf folder.
Lesion nematode (Pratylenchus coffeae)
        Stunting of plants with premature yellowing and drying of leaves, reduced flower
size, dark lesions on roots.
        Apply neem cake 1t/ha or Carbofuran 2.5kg/ha.
Bud and leaf nematode (Aphelenchoides ritzemabosi)
        Interveinal discolouration of leaves and their death. The nematode spread up the
plant from base. Dead leaves do not drop.
        Hot water treatment of „stools‟ at 46OC for 5 minutes. Spray 0.02% Thionazin or
0.01% Methyl parathion to aerial parts.
Wilt (Fusarium oxysporum, f. chrysanthemi)
        The infected plants show chlorosis and necrosis starting from lower leaves. The
apical leaves show curving and necrosis. At the base of the plants above the soil surface
dark streaks are common.
        Drenching the soil with Thiophanate methyl or combination of Benlate + lime +
nitrate are effective.
Stem rot (Fusarium solani)
        The symptoms appear as leaf chlorosis, necrosis and decay and discolouration of pith
and the adjacent vascular region of the cortex. When flower buds are about to open, small
dark streaks are seen at the base of the stem. Root decay is noticed only in the advanced
stages of infection.

        Soil treatment with Thiophanate methyl or a combination of Benlate + Lime + nitrate
is effective.
Root rot (Pythium sp., Phytophthora sp.)
        Root rot is common in wet weather conditions. Under high soil moisture the affected
plants will suddenly.
        Besides fungicides like Captan, Mancozeb, Metalaxyl and Fosetyl-Al, soil solarization
is useful.
Powdery mildew (Oidium chrysanthemi)
        The symptoms appear as powdery coating on the leaves. This disfigures the leaves
and often results in defoliation.
        Use sulphur fungicides or Carbendazim.
Leaf spot and flower blight (Alternaria sp., Septoria chrysanthemella )
        The infection first appears on the lowermost leaves. The small dark brown spots with
yellow surroundings merge and in the advanced stages the entire foliage rots. When the
flowering starts the infection occurs on flower buds, which rot completely.
        Spraying of Mancozeb at 10-15 day intervals offer good control.

                                    (Crossandra infundibuliformis)
        Crossandra flowers are very popular for their bright colour, light-weight and keeping
quality. Deep orange coloured flowers are of great demand for garlands and hair
adornments. The total area under Crossandra in Andhra Pradesh is about 3,084 hectares
with estimated annual production of 9,868 tonnes
        Crossandra can be cultivated in a wide range of soils. Fertile, red loamy soils with pH
range of 6 to 7.5 and rich in organic matter are ideal for its cultivation.
        The common variety under cultivation is the one producing orange coloured flowers.
Varieties producing yellow flowers are also grown in some places, mostly in home gardens.
These are perennials and are propagated by cuttings or seed.
        Propagation is by seeds or stem cuttings.

Preparation of Land
        The land is ploughed 4-6 times, 25 t/ha of farmyard manure is applied in the last
ploughing and ridges are formed or beds and channesla re formed at convenlent size (60cm
apart). Seedlings are transplanted on the sides of the ridges (40 cm).
Seeds and Sowing
        Seeds are sown in June-July in raised beds. About 2 to 2 ½ kg of seeds will be
required per ha which will accommodate about 50,000 seedlings/acre at a spacing of 30 x
50 cm. Seeds are to treated with mancozeb or carbendazim @ 2g/Kg seed before sowing
them on the raised nursery beds. The seeds will loose their viability very soon and hence
only freshly extracted seedsshould be used. Care should be taken to protect the germinating
seedlings from cut worms by dusting Carbaryl 5% on the beds. The damping off disease can
be controlled by applying wettable ceresin (1g/l) to the seed beds. Vigorous growth of the
seedlings can be promoted by applying Ammonium sulphate solution (25g/10 lit of water) to
the seed beds twice a week. When the seedlings develop 3-4 leaves they are ready for
transplanting. The seedlings are transplanted at a spacing of 30-50cm. Before planting, it is
better to dip the roots of the seedlings in wet Ceresan solution to prevent the incidence of
wilt disease. The seedlings will be ready for transplanting with in 50-60 days after sowing.
In the case of triploid varieties like Delhi, cuttings are used. Cuttings should be transplanted
when sufficient roots are developed.
        The crop is top dressed 3-4 times with 25-20-45 kg/acre of N: P2O5 : K2O each
time, at 3,6,9 and 15 months after transplanting . Application of Zinc sulphate @ 5gm/lt 60
days after transplanting     increases the flower yield and also quality. The application of
fertilizers is to be necessarily followed by irrigation.
        Immediately after planting, the crop has to be irrigated twice a week and later
irrigation is to be provided at 7-10 days interval based on climate and soil conditions. Dried
flower stalks and branches are to be removed at regular intervals.
        Weeding once or twice may be done during the first two months.
Harvest and yield
        Crossandra flowers within two to three months after planting and continues to bear
flowers throughout the year with a lean production during rainy months. Flowers are to be
picked early in the morning by pulling the corolla out of the calyx. Flowers will be available
for picking for six months in a year. At each picking, an yield of 5 to 7 kg of flowers will be

obtained. After 6 months, about 500-700 kg of flowers per hectare/year will be obtained.
Harvesting of flowers is to be done on alternate days. The crop can be retained in the filed
for about 3 years. After that it has to be removed as it would not be economical to keep it.
Plant Protection
Brown Scale (Saissetia nigra), White scale (Orthezia insignis)
       Yellowish nymphs and dark brown adult scales are seen in large numbers under
leaves and on petioles and stem. Severe infestation results in stunted growth and leaves
turn yellow and drop. Honey dew secreted by Orthezia sp. favours development of sooty
mould which harms the plant growth.
       Removal and burning of infested portion of plants prevents further spread.
Application of Carbofuran granules at 1 kg a.i./ha and spraying of dimethoate @ 2ml/lt or
acephate @1gm/lt or Chlorpyriphos 0.05% at fortnightly intervals.
Mealy bugs
       Nymphs and adults suck the sap and weaken the plants.
       Spray dimethoate @ 2ml/lt or acephate @1gm/lt.
White files (Lipaleyrodes sp.)
       It occurs in large numbers on the undersurface of leaves. It is prevalent during
August-November and heavy infestation leads to chlorosis and development of sooty mould.
       Spray Dimethoate @ 2ml/lt or Acephate @1gm/lt or Phosalone 0.05% or Fenthion
0.05% at fortnightly interval repeated twice.
       They are serious pests in crossandra. The affected plants shows brown to black
colored spots and lesions on the roots. In severe conditions, plants are stunted in growth
and finally death occurs.
       They can be controlled by application of 4-5 quintals of neemcake per acre during
last ploughing. At the time of planting apply Furadan granules 2 8-10 Quintals per acre.
Lesion nematode (Pratylenchus delatrei), Root-knot nematode (Meloidogyne
incognita), Needle nematode (Longidorus africanus)
               Stunting of plants with pinkish to purple and yellow coloured leaves,
reduction in inflorescence and flower size, retardation of root growth with brown to black
spindle shaped lesions/galls, reduction in yield (22%).

         Apply neem cake 2 kg/m2 in nursery beds. Application of FYM and interplanting with
marigold or pangola grass are helpful. Soil application of Carbofuran 2.5 kg/ha or neem cake
Wilt (Fusarium solani)
         Wilt caused by Fusarium solani will result in yellowing of leaves and death of the
plants. The incidence of the disease is found      to be more in the presence of root lesion
         It can be controlled by application of phorate @ 1g per plant. Water logged
conditions are to be avoided.
Foot and Root rot (Phytophthora nicotianae)
         In young seedlings, symptoms appear as brown lesions on rootlets followed by
rotting of the entire rootlet. On the collar region peculiar brown rot can be seen. The leaves
show pink discolouration and drooping. In advanced stages of infection wilting of whole
plant can be noticed.
         Growing seedlings in raised beds drenched with Captan, application of neem-cake to
control nematode infestation, prophylactic application of Captaf as soil drench at the time of
planting in the main field and application of Fosetyl Al as soil drench 2-3 times at monthly
interval during mosoon season are effective.
Flower blight (Alternaria sp.)
         Drying up of flowers during winter months are symptoms. Young flowers fail to open
on infection.
         Spray Mancozeb at fortnightly interval.

                                        (Gladiolus spp.)
         Gladiolus is has gained a wide popularity because of its- glamorous beauty. The
Indian Institute of Horticulture Research, Bangalore has developed several hybrids like
Sapna, Apsara, Meera, Nazrana, Poonam, Shova etc. Gladiolus has got high commercial
value and it is a boon to the florists all over the world. The total area under Gladiolus in
Andhra Pradesh is about 12 hectares with estimated annual production of 30 tonnes

        Loamy to sandy loam soil is best suited for gladiolus cultivation. Water logging with
high salinity areas are to avoided. Clay soil is also not suitable for gladiolus cultivation.
Adding sand to make it porous can amend light clay soil. Soil pH of 6.5-7.0 is ideal.
        It can be grown in all climates, however, cooler climate is always preferable.
        Gladiolus is usually grown from its corms which are available with nurserymen and
gladiolus growers. 3-4 cm diameter corms are to be selected for planting which would start
yielding after 90 days of plantation. For commercial cultivation, it is always advisable to
propagate through corms. Corms usually have dormancy period of 70-90 days. So
immediately after uprooting, the corms should not be used for planting.
        The corms are planted at a spacing of 30 X 20cm. Before planting the scaly portion
of the corms are to be removed and they are dipped in mancozeb 2g or carbendazim 1g/lt
of solution.
        Land is prepared during sep-Oct and corms are planted up to Nov. Even December
planting is also recommended.
Manures and Fertilizers
        Basal dose of 8-10 tons/acre of FYM, 15-20Kg N, 30-35Kg P2O5 and 30-35 Kg K2O
are applied to the field. Later 30-35Kg N is to be applied two times as top dressing at 3 and
6 leaves stage.
        After 10 to 15 days of planting, the corms strikes out buds or shoots which come
above the ground level. Sword like foliage grows upwardly in one plane.            It is highly
essential to stake the plant when they are 15 cm high in order to provide shelter from wind
and biomass pressure. Otherwise, the plants as well as heavy spikes will grow crookedly.
Mulching and Stirring
        Gladiolus requires periodic stirring of soil for more aeration and percolation of soil
water to facilitate the growth of the plants as well as the flowers. Mulching with coconut
fiber, grass clippings, dust, dried leaves etc. adds to the growth of Gladiolus.

Crop rotation
          It is highly desirable to resort to crop rotation which acts as prophylaxis against pests
and diseases. Planting of marigold immediately after gladiolus helps in rebuilding the soil
and eradication of nematodes.
          Gladiolus takes 80 to 140 days to produce spikes depending upon the variety.
Usually gladiolus is harvested as blooming spikes which sell in the market. The spikes should
be cut with 30 inches stalk during evening hours and packed into bundles of 12 or dozen
and kept overnight in wet linen. Bundled spikes are transported to the market in bamboo
baskets with wet new papers or linen as lining.
          Once the spikes are cut out, the leaves begin to turn yellow. Gradually the water
supply is reduced till the leaves get dried naturally. After 3 - 4 weeks corms are lifted from
the ground along with cormels produced by corms and stored in cool and dry place .
Plant Protection
Cut worms(Agrotis segetum)
          Grown up clay coloured larvae cut the plants at ground level. Plants are vulnerable to
attack up to 3 leaf stage. Cut worms also damage underground corms and developing
          Plouging during summer exposes pupae to predators. Poison bait consisting of
carbaryl or malathion at 0.1% in wheat bran and molasses in the field controls the larvae.
Bulb mite (Rhizoglyphusechinopus)
           This slow moving mite is about 0.5 mm long, globular, and yellow-white with
brownish legs. Infested corms produce stunted plants with yellow and distorted leaves. Early
infestations are found around the basal plate of the old corm. Roots are destroyed first and
stems are attacked later. Corms can be completely destroyed by the combined action of the
mites and micro-organisms that invade the damaged tissue.
          Hot water treatment will kill the mites, but good sanitation is very important when
digging up, storing, or planting out corms.
          Several species of aphids attack gladiolus. All infest the foliage and also transmit
virus diseases. Aphids are slow moving and plump bodied insects. The colour varies with the
species and green yellow, pink, brown and black forms occur.

        Spraying contact insecticides like Rogor, Metacid, Malathion etc. along with systemic
insecticides like Thimet or Furadan.
Thrips (Taeniothrips simplex)
        Yellow coloured nymphs and black adults damage leaves and spikes by rasping
tissues and sucking the sap. Affected leaves and spikes develop silver streaks, turn brown,
get deformed and dry when attack is severe. Corms in storage are also attacked by thrips.
Infested corms are sticky, get shriveled and produce weak plants.
        Spray Acephate 0.1% 2-3 times at 10 days interval or spraying contact insecticides
like Rogor, Metacid, Malathion etc. along with systemic insecticides like Thimet or Furadan.
        Gladiolus is highly susceptible to fungal attacks by fungi like Stromatinia, Carvularia,
Fusarium etc..
Fusarium corm rot or wilt (Fusarium oxysporum, f.sp. gladioli)
        In worm soil, fusarium attacks the corms causing fusarium corm rot. The initial
symptom is yellowing of older leaves, whereas the inner leaves remain green. Spike develop
dark green colour and petals also develop dark colour. In advanced stages of infection, the
plants show wilting. Corms when cut open show brown spots or streaks usually at the base.
        In order to control the disease, it is advisable to destroy the infected corms from the
field and to spray systemic fungicide like Bavistin on the soil as well as on the plants in the
affected field. It is also suggested to treat the corms in a solution of Bavistin prior to
planting in the field.
Leaf and flower blight (Curvularia trifoli, C.eragrostidis)
        In warm and humid weather, oval brown spots appear on the young leaves and later
on spreads to stems and spikes which is caused by Curvularia fungus.
        Can be controlled by spraying mancozeb at weekly or 10 days interval.
Neck rot (Pseudomonas marginata, Stomatinia gladioli, Botrytis gladiodotum )
        Stromatinia causes neck rot stunting the growth of the plant and forming brown or
black spots on the corms. In cool and humid weather, the plant is attacked by Botrytis - yet
another fungus causing brown patches on upper side of the leaves which turns grey.
        Spray Bavistin or Captan.

Root-knot Nematodes (Meloidogyne spp.)
       Gladiolus is also attacked by root-knot nematode causing wilting of the plants.
Stunted growth, yellowing of leaves and heavy galling on roots.
       Use nematode free planting material. Hot water treatment of corms at 57.8OC for 30
minutes. Intercropping or crop rotation with marigold. Apply Furadan granules @ 8-10 q /
acre or Carbofuran/Phorate (1g/m2).

                                       (Jasminum sps.)
       Jasmine is one of the important flower crops grown on commercial scale in certain
selected areas of Andhra Pradesh. The main areas of production of these flowers in our
State are Hyderabad, Rangareddy, Guntur, Prakasam, Kurnool, Cuddapah, Ananthapur and
Chittoor districts. The flowers are highly fragrant and used for religious offerings in temples
and highly preferred by ladies for adorming their hair and also used for preparing garlands.
Loose flowers are also used for extraction of essential oil which is used in the preparation of
perfumes and scented water. The jasmine oil has great export potential in addition to its use
for medicinal purpose. The total area under Jasmine in Andhra Pradesh is about 4,880
hectares with estimated annual production of 24,400 tonnes
Soil and Climate
       Jasmine can be planted on a wide range of soils. Well-drained sandy loams and red
loams are ideal for its cultivation. In clayey soils, there is increased vegetative growth and
reduced flowering. They give good yield in low rainfall conditions. It is a tropical crop and
grows well in moderate humid conditions.
   There are trailing, climbing and erect growing species and cultivars. Three important
species and their varieties are given below:
Jasminum sambac
       It is common known as Arabian jasmine. It is the most common species in India. Its
flower buds are white with single or multi whorled petals, used for garland making, adorning
hair, worshipping, decoration and extraction of perfume.
       Jasminum sambac is usually accepted as commercial jasmine which is a shrub. There
are four types in Jasminum sambac.
   1. Single flowered Arabian jasmine. This is the most commercial type, which bears
       flowers profusely.

   2. Semi double type of jasmine called Dontara Malle.
   3. The fully double small flowered Arabian jasmine (Gundumalle).
   4. The large double or Tuscan type of jasmine (Boddu Malle) also called as the grand
        duke of Tuscany.
   Important varieties are
Jasminum grandiflorum
        It is a climbing type and is commonly called as “Sannajaji”. It is a large shrub in
striate branches having pinnate leaves, compound with 7-9 leaflets of equal sizes. Flowers
are white, often tinged with purple outside, axillary or terminal and 5 petalled. Large single
flowers are delightfully fragrant. Flowers are used in making garlands, decorative bunches or
veni. They are suitable for planting in shrubbery, arches and pergolas. Presently concrete is
extracted from its flowers. It flowers from March to September. Important varieties are
Co-1 Pitchi
Co-2 Pitchi
Jasminum auriculatum
        Commonly known as Juhi, Jui, Malle, Mokggu, Mullai, Adavi malle and Ambur
Malliage. It is a scandent shrub having shiny leaves with minute lateral leaflets. Leaves are
mostly simple, occasionally trifoliate. The plants produce numerous star shaped, white
scented blooms and are very good as loose flowers. The flowers are borne in pubescent
compound many flowered flax cymes. Black type of this species is grown in home gardens.
The flowers are commonly used for garlands, adorning hair, worship and decoration. It
bears flowers from spring to summer and in rainy season. Its high yielding varieties are.
Co-1 Mullai
Co-2 Mullai
Long Round
Short Point
Short Round

       Layering and cutting are the main propagation methods. Jasmine sambac is
propagated by cuttings and layers while Jasminum grandiflorum (Jathimalli) is propagated
by layers and by stem cuttings. Better rooting of cuttings can be obtained by planting in
coarse sand and also by using any of the rooting hormones like IBA (5000 ppm), IAA (1000
ppm) and NAA (5000 ppm). Simple and compound layering methods are followed during
June – July to October – November. Layers will be ready for planting within 90-120 days.
       After ploughing the land, pits of about 40 x 40 x 40 cm size are taken and filled with
topsoil and 15 kg well-rotten FYM.
Planting distance depends on the species and also on soil and environmental conditions.
           Species             Planting distance
       J.sambac                   1.2 x 1.2 m
       J.auriculatum              1.8 x 1.8 m
       J.grandiflorum             2.0 x 1.5 m
       Planting is usually done during June – August.
       Irrigation is most important for jasmines. Constant and adequate water supply
(irrigating twice a week) in light soils during peak flowering season (March –October) is
essential for high yield of flowers. After flowering is over, the water supply can be cut off.
Manures and Fertilizers
       The plants are usually manured once in every year with organic manures in January
before flush season commences at 10-12kg of FYM per plant. In some places tank silt and
horse manure are also applied to get high yields. The manures are usually applied after
pruning the bushes once in June-July and again December-January.
       The fertilizer recommendation also differs with the species grown.
J.sambac                90g N, 120g P2O5 and 240g K2O – four times at two months interval.
J.auriculatum           60g N, 120g P2O5 and 120g K2O
J.grandiflorum          100g N, 150g P2O5 and 100g K2O
       This has to be supplemented with organic manures like neem cake, groundnut oil
cake etc. at the rate of 100 g per plant per month.
       The pruning of jasmine is an important operation. With the approaching of winter the
bushes start to shed the leaves. To promote good flowering water is withheld to the bushes
in the 2nd fortnight of November which throws the plant to rest and shed the leaves. The

plants are defoliated. The bushes are trimmed back to half the height (45 cm from the
ground level) during mid December – January. Before pruning irrigation is to be with held
and all the dried and diseased twigs are to be removed. Jasminum auriculatum is generally
pruned during Jan- Feb months. After pruning, the leaves are also to be removed and
irrigated profusely so as to encourage vegetative growth on which flower buds are
developed during the season.
Weed control
        Manual weeding is effective but expensive. Use of weedicides like paraquat is also
        The layers will start flowering from 2nd year after planting and the commercial yields
commence from third year onwards. The Jasminum sambac varieties flower profusely in
summer and also in rainy season (i.e. March-August) while climbing types (Jatimalli) will
flower throughout the year, with peak flowering in June-July.
        Yield of flowers and jasmine oil vary according to the species and management
        Species                Flower Yield (t/ac)
        J.sambac                      1.0-2.0
        J.auriculatum                 1.8-3.6
        J.grandiflorum                1.8-4.0
        Since the jasmine flowers are highly perishable and will have to be disposed off in
the market within few hours after picking.
Plant Protection
        Jasmine is comparatively a hardly plant.
Bud and Shoot borer (Hendecasis duplifascialis)
      Caterpillar makes hole on the flower bud and feeds on the inner content. Larva
attacks 2 -3 buds .Petals are eaten by the larvae. Larva is greenish with pale body hairs and
black head. Adult - small white moth with black wavy lines on hind wings and abdomen.
        Spray 0.15 – 0.20% carbaryl or 0.06% Dimethoate (2ml/lit)
        Spray 0.15 – 0.20% carbaryl
Stick Bugs (Antestia cruciata )
        Adults and nymphs of this bug suck the sap from leaves, tender shoots and flower
buds, reducing the market value.

       Spray 0.05% Malathion
Thrips (Thrips orientalis)
       Nymphs and adults attack the flowers. Brown streaks are seen on flower petals.
       Spray 0.06% Dimethoate (2ml/lit)
Leaf blight (Cercospora jasminicola)
       Jasmine plants affected with leaf blight develop red-brown circular spots on their
upper surface. The infection spreads rapidly, especially during the rainy season. And as it
progresses, infected leaves curl and dry at the margins. In severe cases shoots, buds and
young branches dry out as well. Leaf blight severely reduces flower production, but is not
       Spray affected plants with bordeaux mixture to control the disease.Can be controlled
by spraying 0.2% mancozeb or 0.1% benomyl
Fusarium wilt (Fusarium oxysporium)
       Wilt slowly kills the root system of the jasmine, starving the plant of essential
nutrients. Uprooted jasmine plants with wilt show roots that are blackened in patches and
girdled with the white mycelia that cause the disease.
       Can be controlled with 1% Bordeaux mixture.
Rust (Uromyces hobsoni)
       Brown coloured pustules develop on the lower surface of the leaves and in severe
cases on stems and flowers.
       Spray 0.2% zineb or any Copper fungicide.

                            (Tagetes erecta and Tagetes patula)
       Marigold is one of the most important flowering annuals cultivated in India. It has
gained popularity on account of its easy culture and wide adaptability, wide attractive
colours, shape, size and good keeping quality.
       (African Marigold – Tagetes erecta)
       (French Marigold – Tagetes patula)

       Marigold requires mild climate for luxuriant growth and flowering. Depending on
environmental condition, planting of marigold is done in 3 three seasons‟ i.e rainy, summer
and winter. Planting of African marigold after 1st week of February and before 1st week of
July greatly affects the quality and yield of flowers. So staggered planting between 1 st week
of July to 1st week of February at monthly intervals assures supply of flowers to market over
an extended period from October to April, however maximum yield can be obtained from
September planted crop.
       It can be grown in a wide range of soils except water logged conditions. However, a
deep fertile soil having good water holding capacity, well drained, sandy loam soil rich in
organic matter is best suitable. Neither too acidic not too alkaline soils with p H 6.0 to 7.5 are
Selection of site
       A sunny location is ideal for marigold cultivation. Under shade, it produces more
vegetative growth and do not produce any flowers.
Pusa Narangi Gainda
Pusa Basanti Gainda
                  Season                Sowing time              Transplanting
            1. Rainy season        Middle of June            Middle of July
            2. Winter              Middle of August          Middle of September
            3. Summer season       First week of January     First week of February

       Highest yields are upturned when planted in September. Rainfall during rainy season
and high temperatures during summer will affected the flower quality.
       Marigold is generally propagated either by seed or by herbaceous cuttings.
By Seed
       Seed rate for marigold varies from 0.8 – 1 Kg per acre and takes about 5-7 days for
germination. Seeds can be sown on nursery beds in lines in shallow furrows. During
preparation of nursery beds 8-10 Kg of well decomposed farm yard manure per 1sq.m bed
is thoroughly mixed with the soil. The width of the seed bed should not be more than 1.2m
and height should be 15 cm. Before sowing of seeds a little amount of folidol dust is applied
to the nursery bed to avoid ant or termite infestation. During winter beds should be covered

with a layer of straw to accelerate germination process. However the straw should be
removed as soon as the seedlings are visible above the soil. Seeds germinate 5-7 days after
By herbaceous cuttings
       Varieties like Gaint African yellow, Gaint African orange do not set seed. Therefore
these are usually multiplied by herbaceous cuttings. Apical shoots of 10cm long are usually
used for vegetative propagation. Herbaceous cuttings each with one or two pair of leaves
are inserted in sand medium either in seed pan or nursery bed. Before putting the cuttings
in rooting medium the basal portion of the cuttings is treated with a hormone powder which
is marketed as seradix B-1, Rootex-1 to encourage profuse and early rooting. Shade should
be provided initially to the beds. Regular watering should be done to keep the bed in moist
conditions. With in 8-10 days, rooting is observed in the cuttings which are later used as
planting materials.
Transplanting of seedlings
       Land should be ploughed 2 to 3 times to bring the soil to a fine tilth. One month old
seedlings with 3-4 leaves are fit for transplanting. Watering of nursery bed one day prior to
uprooting will lessen the damage to root system. Uprooting of seedlings and transplanting
should be done in the evening hours for better establishment.
       Proper spacing between plants is required for better development of plants and for
higher flower yield. The following spacing is recommended for marigold.
1) African marigold
       60 X 30 cm or 45 X 30cm.
2) French marigold
       20 X 20cm or 20 X15cm
Manures and Fertilizers
       Incorporate 20 tonnes of Farm Yard Manure during the last ploughing. Apply 20-40
kg N, 80 kgs of P2O5 and 80 kgs of K2O per acre. Half of nitrogen, entire dose of phosphorus
and potash should be applied as basal dose, preferably one week after transplanting and
rest half nitrogen should be applied one month after the first application. Irrigate after
Intercultural operations
       In marigold control of weeds is an important operation. If the weeds are not
removed in time, a great loss would occur in terms of growth and productivity of marigold

particularly during rainy season. Hoeing and weeding should be done 3 to 4 times during the
crop period to make the soil loose and weed free.
        At all stages of vegetative growth (55-60 days) and during flower production
sufficient amount of moisture in soil is essential. Moisture stress at any stage affects normal
growth and flowering. In lighter soils more frequent irrigations are required than in heavy
soils. In sandy loam soil, weekly irrigation is necessary between September to March while
during summer months between April to June irrigation at 4-5 days intervals is required.
        In tall cultivars of African marigold, plants first grow upwards to their final height and
later on produce a terminal flower. After the formation of terminal flower bud, axillary
branches develop which also bear flower. However, if the apical portion of shoot is removed
early, large number of axillary shoots arise resulting in well shaped bushy plant bearing
more number of uniform sized flowers. Removal of apical portion of shoot is known as
pinching. It is observed that pinching at 40 days after transplanting enhances flower yield.
However, Giant double African yellow and orange do not require pinching as the plants are
bushy and branching type.
        Marigold flowers are plucked when they attain full size. Harvesting should be done
either in the morning or evening hours. Field should be irrigated before harvesting of flowers
so that the flowers keep well for longer period after harvest. Productivity of plants increases
considerably by regular plucking of flowers.
        Yield of flowers varies with type and variety. Normally 4-6 tonnes of flowers per acre
can be obtained. However, Giant African yellow when planted in September, may give 10
tonnes of flowers per acre.
               Seeds should be collected only from winter crop.
African marigold
        120-150 Kg /ac
French marigold
        400-500 Kg/ac.

         After harvest, flowers are packed in moist gunny bags or bamboo baskets covered
with moist cloth or polythene sheets and sent to market.
Plant Protection
Bud caterpillars (Helicoverpa armigera and Phycita sp.)
         Eggs are laid singly on young buds. Larvae feed on developing flowers by damaging
florets. Larvae of Phycita sp. feed on heads of buds and flowers.
         Collection and destruction of infested buds and flowers. Sprays of Endosulfan 0.07%
or Methyl Parathion 0.05%.
Aphids (Aphis gossypii)
         Aphids mainly infest lower surface of flowers and base of petals. Nymphs and adults
suck the sap from the flowers causing discoloration and withering.
         Spraying of Oxydemeton methyl 0.05% or Moncrotophos 0.05%.
         Thirps infest young leaves, buds and flowers and suck the sap. Affected leaves get
distorted, while petals of flowers turn brown and dirty.
         Two or three sprays of Oxydemeton methyl, Diemthoate 0.05%, at 10 days interval.
Wilt and Stem rot (Phytophthora cryptogea )
         The fungus attack roots and collar portions of the plants. In nurseries the infection
results in damping off and is aggravated by high soil moisture. In the field the infected
plants show wilting.
         Treat soil with Captaf, Mancozeb and Metalaxyl.
Collar and root rot (Pellicularia filamentosa, P.rolfsii, Pythium ultimum,
Scelrotinia slerotiarum)
         Rotting of root and collar portions is noticed resulting in wilting of the plant.
         Soil fumigation and planting healthy seedlings.
Leaf spot and blight (Alternaria sp., Septoria sp., Cerospora sp. )
         Brown circular and brownish grey spots appear.

        Spraying fungicides regularly.
Powdery mildew (Oidium sp. Leveillula taurica )
        The fungi cause powdery patches on leaves.
        Foliar application of sulphur compounds, Carbendazim, Triadimefon, Fenerimol,
Penconazole and Triforine.

                                           (Rosa sp.)
        Flowers are among the loveliest objects on this earth. Among them rose is the
queen. Rose is estimated to be more than thirty million years old and has figures in the
myths and legends, is the poetry and music. The rose has been used in rituals, as a motif in
architectural decoration, in beautiful designs in jewellery, pottery and embroidery.
        There are about 120 species of roses distributed in the North temperate and sub
tropical parts of both the hemispheres. As far as the garden roses of the world are
concerned, R.fortida, R.gallica, R.gigantea, R.moschata and R.wichuraiana have played an
important role. Cultivated roses can be grouped under two categories those in cultivation
before 1800 A.D. and those after 1800 A.D.
        The period after 1800 A.D. was notable because of the influence of perpetually
flowering types derived from R.Chinensis and R.gigantea from the far East, crossing with
new introductions gave rise to the important groups of the Noisettes and the Bourbons.
Further, complex crossing ultimately gave rise to the great groups of Tea roses and the
Hybrid perpetuals. The tea roses were prized for their continuous flowering habit while
Hybrid perpetuals included varieties of magnificent size and rich perfume.
        Rose usually dislikes humid climate, but can tolerate high temperature. At a
temperature below 10° C flowering is affected and blind shoots and bull heads are
developed. Rose plant should receive 8 hours exposure to sun rays. Shady area is not at all
suitable for rosary.
        Sandy-loam, red-loam, silty-loam soil are best suited for rose cultivation. The soil pH
of 6.0 to 7.5 is ideal for rose. Rose is very sensitive to saline soils as sodium carbonate
which is present in the saline soil is harmful to the plants. Soils rich in organic matter with
good water holding capacity are ideal for its cultivation.

        Hybrid teas, Floribundas and miniatures are the different types of roses. Mostly
Hybrid teas and Floribundas are grown in A.P. Among Hybrid Teas Gladiator, Raktima,
Grandgala, Aditya etc and among Floribundas Red front, Olympic gold, Mother Teresa etc
are suitable. For loose flowers mostly kakinada roses are suitable.
Hybrid Teas
        The outstanding event in the rose world was the origin of Hybrid Tea roses. The
Hybrid Tea roses are the crosses between Hybrid perpetuals and Tea roses. Later they were
crossed among themselves and also with some other types such as the „Permetianas‟, with
the result that the present day Hybrid Teas are quite a complex group. „Crimpson Glory‟, „Mc
Gredys Sunset‟, „Peace‟ and „Super Star‟ are some well known examples. Some of the Hybrid
Teas have „sported‟ to produce climbing forms, e.g. „Cripson Glory‟ climbing „Peace‟ and
climbing „Shot Silk‟.
Hybrid Perpetuals
        Obtained by crossing the existing roses in Europe such as damasks and the gallicas
with perpetually flowering introductions from China. These are characterized by tall growth,
large full flowers and by rich fragrance e.g. „General Jacqueminot‟. “Mrs.John Laing‟ and
„paul Neyron‟.
        The tea roses are not as hardy and resistant to cold as the Hybrid Perpetuals, e.g.
„Lady Hillingdon‟. „Molly Sharmancrawford‟ and „Mme Falcot‟.
        The floribundas started with a group called Hybrid Polyanthus, created by crossing
the Hybrid Teas and dwarf Polyanthus.
Dwarf Polyanthus
        They produce enormous clusters of small flowers and bloom for several months, e.g.
„Baby Faurex‟, „Cameo‟, „Chatillon Rose‟ and „Echo‟.
China Roses
        Also called Bengal or monthly roses, „common blush china‟, „Comtesse du cayla‟.
They are suitable for hedges and borders.
        These are popularly known as Baby roses and suitable for edges, e.g. „Baby Gold
Star‟, „Baby Masquerade‟, „Coralin‟ and „Pixie‟.

Land preparation
       Plough the land 4-5 times thoroughly during May followed by 15 days exposure to
sun rays. For rose cultivation, pits of size 45 cm X 45 cm X 30 cm are prepared for
plantation of rose plantlets. After exposing to sun rays for 15 days the pits are refilled with
soil-manure mixture in the following composition.
                                i. Soil                   40%
                                ii. Cow-dung              40%
                                iii.Leaf-mould            10%
                                iv.Oil-cake, Bone-meal    10%
                                v. Urea                   25 g
                                vi. SSP                   100 g
                                vii. MOP                  50 g

       0.75m from pit to pit & 0.75m from row to row in low density cultivation
accommodating about 7,000 plants per acre with plant density 1.729/m 2. In case of green
house culture, high density plantation will accommodate 28,000 plants per acre having plant
density 7/m2, (1 hectare= 2.471 acres).Standard roses are planted at a spacing of 90-
100cm. Plantlets are planted after a week of refilling the pits.
       The roses are planted in circular pits of about 60-90 cm across and 60-75 cm deep.
The pits are to be prepared atleast a month before the date of planting. The best time for
planting roses in the plants is during September or October. The planting materials are
planted in the prepared pits during evening hours. Before planting, 5 gram of Furadan 3G is
to be applied to the pit for controlling pests.
       Roses can be propagated by seeds, cuttings, layers and by budding. Seed
propagation is done in the production of new varieties. Budding is the best method for
commercial propagation.
Root Stocks
       R.multiflora, Briar and Edward roses are best suited. Multiflora is suited for hill
stations. Briar for medium and Edward for both.
       When a rose plant comes into flower small swellings are visible between the stem
and stalk of the leaf. Select the eyes which are plump and not started to elongate and grow.
Cut off the portions of the branch with the eyes selected is called as „bud wood‟. With a
budding knife remove a shield shaped piece of the bark and the eye. The Root stock should

be kept ready by cutting the branches and side shoots which are not required. Make a sharp
horizontal cut at a suitable height in the stock and then make a vertical „T‟ shaped cut in the
stem of the stock. The „eye‟ should point towards the top and is tied with fibre.
After care
         Stock sprouts should be frequently removed very often, off shoots or suckers from
the root-stock stem come up at the base of the plantlets or below the grafted point which, if
allows to grow by mistake, will retard the growth of the grafted part ultimately leading to its
death. The off-shoot of the root-stock part will be seven leaved and odd pinnate which is to
be pinched off as soon as it comes up. Such unwanted suckers should be removed by nail
pinching or by a sharp knife.
         Dust setting on the leaves should be washed by spraying water on the foliage.
         A basketful of FYM is sufficient for one year.
         A small quantity of iron sulphate may be applied @ 50-75 g/shrub by dissolving in
         Twice a week during October to March, Thrice a week during April to June. No
irrigation is required during the rainy season. Irrigations should not result in water logging.
         Mulching is an agro technique for conservation of soil moisture around the root zone
of the plants and to facilitate gradual supply of nutrients to the plants. It is particularly very
much important in arid and semi-arid zones where water becomes scarce during summer.
The technique is very simple - agro wastes like straw, dried leaves, grass clippings, rice husk
or other wastes like Saw dust, used tea, or leaf-mould are spread around the root of the
plants with a radius of 1 to 2 feet and 4 inches thickness. Now-a- days, black polyethylene
sheet is used as mulch which is proved to be more efficacious and easy to manage.
         It is a peculiarity with the rose that the old stem gradually stop giving healthy shoots
to bear good flowers. If old and week stems are pruned after wintering, healthy shoots
come up which bear good flowers. Therefore, wintering followed by pruning are the two
important operation under the general maintenance cares. Without periodic pruning of old
and week stems, at least once a year during October rose plant cannot yield qualitatively as
well as quantitatively.
         Pruning is done to produce best possible flowers and to maintain good shape and to
keep plant healthy by removing dead parts. Three to four months after planting the rose
plant is first pruned. Four branches placed in four directions are chosen and these are

pruned back to an outer bud leaving two to four buds on the stump. All other branches are
thinned out. If the plant has only one or two weak shoots they are to be cut back to two or
three buds. The first fortnight of October is usually considered to be the best time for
pruning. Some hybrid Teas requires severe pruning. In Tea roses strong shoots are pruned
to 2/3 of their length. Climbing roses needs no pruning. Pruning is to produce the required
number of new shoots because rose bears flowers terminally on current season wood. Too
many shoots on plants will reduce the size and quantity of flowering. Limiting the number of
flowers promotes flower size. Depending on the variety and severity of pruning roses takes
about 35 to 60 days from pruning to flowering.
Manures and Fertilizers
       The best time to add organic manure is at the time of pruning. FYM, leaf mould and
oil cakes are good sources of nitrogen. It is better to apply fertilizers in a mixture such as
„roxe mix‟. Rose Mix can be prepared as:
       Neem cake                       -      5 kg
       Bonemeal                        -      5 kg
       Ammophos                        -      2 kg
       Sulphate of Ammonia             -      1 kg
       Superphosphate                  -      2 kg
       Potassium Sulphate              -      1kg

       100g of this mixture can be used per plant. The chelated compounds of iron,
magnesium and manganese are available in the market under names like „Sequestrene Plus‟
which are helpful in bringing out the full colour of flowers. In general for each rose plant
urea 20-30g. superphosphate 30-50g, Potassium Sulphate 20-30g and Cakes ½ kg to 1 kg,
in two to three split doses is recommended.
       After initial planting in July- August rose starts blooming from october and plant will
yield on economic scale for 3 years.
Plucking Stage
       For commercial purpose, roses are plucked at the bud stage just prior to blooming
stage having a stalk of 9" to 12" long as per the preference of the market.
Time of Plucking
       Buds must be cut out from the plant by a sharp knife during the evening hours to
keep them fresh.

         Buds with long stalk are made to bundles of 100 as need may be and put in the
bamboo baskets which are kept floating on water so that the cut end touch the water.
Flowers are transported to market while covering the baskets with wet linen. .
Rose Products
         It is prepared by pounding together a mixture of rose petals and white sugar in
equal proportions. It acts as a tonic and laxative. Edward rose is mostly used for this
         Dried rose petals called Pankhuri are used during the hot weather for preparing cool
drinks. Roses are used for many purposes such as rose water, rose vinegar. Rose develop
fruits called „Hips‟ and they are good source of Vitamin „C‟.
Plant Protection
Aphids (Macrosiphum rosae)
         They occur in clusters on tender shoots, buds and flowers and sucks the plant sap
making the plant weak
         The affected flowers and buds should be lightly dusted in the mornings or evenings
with 9.2% Pyro dust or spray Nuvacron, Metacid etc. Nicotine sulphate solution is, however,
specific in controlling aphids.
Thrips (Rhipiphorothrips cruentatus and Scritothrips dorsalis)
         These are very minute insects which distort the leaves. In normal condition. these
insects effect the normal photosynthesis of plant. Curled leaves with brown marks and
deformed buds with burnt margins are the main symptoms of damage.
         Spray Metacid, Rogor or Acephate or Profenofos or Ethofenprox or Imidacloprid at
Jassids (Leaf hoppers)
         They suck the sap from the plant parts. The leaves lose their natural colour and
become dull whitish yellow and subsequently dry up and the damaged plants have a sickly
         Spray Methyl parathion 1.5ml/lt.

Ash Weevil (Myllocerus spp.)
        Eggs are laid in soil. Grubs feed on roots, grey coloured adults feed on leaves from
margins in a regular fashion and cause severe foliage damage.
        They cause damage to the rose leaves by cutting neat, circular or oval patches from
the leaf margin and are controlled by applying 5% Carbaryl.
Red Scale (Aonidiella aurantii)
        It is an insect which form small and round red or brown scales on the stem near the
base and then gradually spread upwardly. The insects live inside the scale and suck the sap
of the plant. It appears as reddish brown waxy scale like marks on tender shoots and stems
and the affected portions dry up.
        Dip a cotton swap in 0.1 Malatihon solution and rub the affected parts. If it is on
large scale, spraying of 0.1% Methyl parathion or Malathion or Rogor, Metasystox and
applying granular Furadan 3G to the soil should be done.
Red Spider Mites or Two spotted spider mite (Tetranychus urticae)
        Very minute insects or mites spin webs on the under side of leaves which can be
seen through a magnifying glass. Red mites infest only during dry months. The affected
leaves look dull as mite suck sap from leaves. It is difficult to eradicate red mites completely.
        Insecticidal spray with Dicofol, and dusting with Sulphur can control this pest.
Chaffer Beetle (Adoretus spp.)
        Rose chafer beetle cut away the leaves. In severe cases the plants reduced to a
mere skeleton.
        Spray 0.5% Malathion @ 2 ml/lit or 0.05% Methyl parathion @ 1 ml/lit or Endosulfan
0.07% @ 2ml/lit.
Mealy-bug (Planococcus citri)
        Bug with white woolly incrustation are found on the branches which suck sap from
young stem and leaves.
         Spray Malathion, Rogor, Metacid etc.
Leaf-rolling larva (Archips rosaceana )
        It is a larva of an insect that first feed on the young leaves and then roll the leaves
for its shelter

        Spray Malathion.
Leaf-miner (Stigmella anomalella)
        It affects the photosynthesis of the plant.
        Spray Malathion or Metasystox.
White ants (Termite) (Microtermes obesi)
        White ant which inhabitates beneath the soil is menace to rose plant. The attack
starts under dry soil conditions. They mainly feed on the roots and spread to stem and
damage bark in case of severe infestations. Affected plants wilt, dry and die consequently.
        Deep ploughing destroys termite colonies. Timely irrigation prevents pest buildup.
Drenching soil with Chlorphyriphos 0.05% or Endosulfan 0.07% ml or Malathion 0.1% or
soil may be mixed with 10% BHC or Aldrin berore planting.
Powdery (Sphaerotheca pannosa) and Downy Mildew (Pernospora sparsa)
        These are very common fungal diseases of rose. Foliage, young stems and stalk of
flower buds of rose are coated with powdery dust or downy masses causing leaves to fall,
young shoots to wilt and perish and preventing buds to bloom. The disease starts-with a
small white dot and then rapidly proliferate affecting the entire plant. High temperature
difference between day and night triggers the disease, according to some experts.
        Spray sulphur compound i.e. Thiovit 2g/lit or Bavistin 1g/lit of water at weekly
intervals during winter season against Powdery mildew.
        Spray Fosetyl-Al or Metalaxy MZ against Downy mildew.
Black Spot (Diplocarpon rosae)
        This is also very common in India and it can be distinguished by almost circular black
spots on the leaves causing severe defoliation and is a common fungal disease of rose.
Initially, brown or yellow spots appear on the lower leaves which then turn into black spots.
The affected leaves turn yellow and fall off. In severe cases leaves drop and growth ceases.
        Spray copper fungicide like Blitox, Dithane M-45 or Captan at the rate of 2g in 1 lit of
water or 1% Bordeaux mixture or by systemic fungicides like Bavistin, Calixin etc. at weekly

Rust (Phragmidium spp.)
       Yellowish to black swellings called pustules are produced on the leaves, petioles and
stem imparting a rusty appearance on shoots.
       Foliar spray with 1kg of „Ferbam‟ plus 1kg of wettable sulphur in 500 lit of water with
Sandovit as a spreader.
Die-Back (Diplodia rosarum, Colletotrichum sp. )
       This is the most dreaded disease of rose. The stems die back from top down wards
and gradually the whole plant. The disease, according to plant pathologists, is due to injury
to the roots by fungi or careless root pruning or poor drainage in the root zone or due to
shortage of essential food elements.
       The affected stem or branch is cut 2-3 inches below the effected part and a cap of
fresh cow-dung mixed with Copper Sulphate or Bordeaux paste alone is put over the cut
wound. Over watering, particularly in coastal areas, should be avoided. It is also advisable to
procure buddlings from reliable nurseries only.

                                    (Polyanthes tuberosa )
       The tuberose, a native to Mexico, belongs to the family Amaryllidaceae and is
commonly known as lily. It has long been cherished for aromatic oils extracted from its
fragrant white flowers. It is a popular cut flower, not only for use in arrangements, but also
for individual florets that can provide fragrance to bouquets. Besides oil extraction, the
flowers are also used in making garland. The flowers remain fresh for a long time and are
suitable for long distance transportation.
       The plant is tropical to semi-tropical. Basically, it needs warmth, sunshine, high
relative humidity, well-drained soil, and even moisture. The commercial cultivation of
tuberose is mainly confined to warm, humid areas with average temperature ranging
between 18 to 32 degrees C. The ideal temperature for plant growth ranges between 26
and 30 degrees C. The tuberose needs a long growing period in order to blossom in early to
late fall. The spike production, along with the quality flowers declines to a great extent
during December –January except in “double varieties” of tuberose.

       The plant can be successfully grown on a wide range of soils, even in soils affected
by acidity or alkalinity to some extent. The plant is very sensitive to water-logging which
damages the root system and affects the plant growth. Loam and sandy loam soil having pH
range of 6.5 to 7.5 with proper aeration and drainage are considered best for tuberose
cultivation. The soil should be rich in organic matter and retain sufficient moisture for proper
       Tuberose can be commercially grown throughout the year but highest yield is
obtained from July planted crop.
       Bulbs are planted at a spacing of 30-20 cm between the rows and 20-10cm between
the plants.
       Propagation of the plant can be done by means of bulbs. The bulbs of 2-3 cm wide
are suitable for propagation. Planting of fresh bulbs produce less number of flowers hence,
bulbs should always be kept in store for a month or more to ensure better production of
flowers. Larger bulbs result in early flowering and higher yields. The bulbs should be planted
4-5 cm deep in beds and soil moisture should be maintained after planting of bulbs before
monsoon starts.
Varieties suitable to Andhra Pradesh:
Singles (‘Single’ with one row of corolla segments)
Hyderabad single
Calcutta Single
Semi double (‘Semi double’ with two to three rows of segments)
Hyderabad double
Calcutta Double
Manures and Fertilizers
       During preparation of the soil, a basal application of farm yard manure (FYM) at the
rate of 8 to 10 tones per acre should be done to ensure better growth and flowering. A
fertiliser dose of 80 Kg N, 80 Kg P and 80 Kg K is recommended. Entire dose of P and K and

1/3 dose of N should be applied as basal dose and remaining N should be applied at 60 and
90 days after planting as top dressing.
       Weeding is carried out after a fortnight, especially in the initial stage of the bulb
sprouting and the growth of plants. Hand weeding is eco-friendly but expensive. For
chemical control, Atrazine can be applied.
       Soil moisture is an important factor affecting the growth, flowering and bulb yield of
tuberose. Field should be irrigated after planting the bulbs and further irrigation should be
avoided until the sprouting of bulbs. The crop should be irrigated at weekly interval in the
absence of rainfall. However, irrigation should be avoided at the maturity stage of bulbs
during December-January.
       Tuberose is harvested by cutting off the spikes from the base for decoration or the
individual flower is picked from the spike for making garlands. The flower spike should be
cut off and placed immediately in cold water.
Flower yield
       Flower yield varies with variety, plant density and bulb size at planting time and crop
management. In singles , the loose flower yields is nearly 20-25qunitals/acre and in doubles
the spike yield is 1.0-1.2 lakhs per acre.
       Loose flowers are packed in bamboo baskets, covered by cloth. The spikes are
graded as per length of the spike, length of the flowering zone and quality of individual
Harvesting of bulbs
       Harvesting of tuberose bulbs at the proper stage of maturity is important for storage
of bulbs and their growth.
Yield of bulbs
       The bulbs reach maturity when the flowering is over and the plant growth ceases. At
this stage, the old leaves become dry, plant growth ceases and bulbs are almost dried.
About 40 quintal of bulbs can be harvested from one acre of land.
Plant Protection

       Thrips feed on leaves, flower stalk and flowers. They suck sap from these parts and
ultimately damage the whole plant. Some times they are associated with a contagious
disease known as bunchy top where the inflorescence is malformed.
       Thrips can be managed by spraying endosulfan twice at 10 days interval or by
spraying dimethoate @ 2ml/lt.
Stem rot or Basal rot (Sclerotium rolfsii)
       The soil borne diseases can be identified with symptoms like appearance of
prominent coarse mycelial masses on the leaf surface at or near the soil level. Infected
leaves loose green colour due to rotting, which extends to the whole leaf and detaches the
affected leaves from the plant.
       The infected plants should be burnt immediately to check further infection.
Drenching with Copper oxychloride @ 2gm/lt or 1% Bordeaux mixture will reduce the
Flower and bud rot or Flower blight (Botrytis elliptica)
       It is also a bacterial disease. The disease appears mainly on young flower buds and
results in dry rotting with brown scorched necrotic discolouration of peduncles. In the
advanced stage, buds become shrivel and dry.
Destroy or burn the infected plant debris to check further infection and spray carbendazim
@ 1gm/lt.



        Aromatic plants possess volatile oils which have essence, gum, exudates, oleoresin in
one or more parts such as roots, wood, bark, foliage, flower and fruit. These are extensively
used in perfumes, food flavouring, cosmetics and soaps. Some of them have antibacterial
and germicidal properties.

                                  (Cymbopogon flexuosus)
        Lemon grass is also a perennial grass (3-4 years) and grows to a height of 3‟ to 4‟,
cultivated for essential oil distilled from freshly harvested foliage. The major constituent of
essential oil is citral (80-90%) which imparts lemon like aroma. The oil is used in soaps,
cosmetics, beverages and synthesis of α- and β ionones and vitamin A.
        Lemongrass can be grown on wide variety of soils ranging from loam to poor laterite.
It can also be grown on poor, marginal, waste and forest lands. It is hardy, drought
resistant plant.
        Warm tropical climate with high, well distributed rainfall (175-200cm) is good for
rainfed cultivation. Sub tropical areas need supporting irrigation. It ceases growth during
winter in North India.
Seeds and Sowing
        By seeds, 4 kg/ac seed are mixed with sand and sown in May-June in nursery beds.
        Lemongrass is propagated through slips which are planted during rainy season
(June-July). About 60 days old seedlings are transplanted in spacing of 60 x 45 cm. Slips
from old plants are planted on ridges or in a flat bed during July. The soil around the slips
after planting is pressed to avoid lodging of slips during irrigation.        Lemongrass can be
planted throughout the year with irrigation facility.         About 15,000 slips are required for
planting one acre.
        Herbage yield 100 to 120 q/ac, oil yield 80 to 90 kg/ac and citrol % is 80 to
82%. It is suitable for south Indian conditions.
        Herbage yield 100 to 112 q/ac, oil yield 90 to 100 kg/ac, citrol % is 80 to 82%. It is
suitable for south Indian to north Indian plails and hills.

After Cultivation
        2-3 weedings in initial stages are required. The crop is irrigated once in 10 days.
Manures and Fertilizers
        FYM @ 4 t, N @ 20 kg P2 O5 @ 20 kg and K2 O @ 15 kg per acre applied in the last
ploughing. After each harvest, apply N @ 20 kg per acre.
        The crop is irrigated immediately after planting at 2 to 3 days interval till about one
month and subsequent irrigations are given as and when required.
        The crop is harvested 10-15 cm above ground level. First harvest is taken 5-6
months after planting. Subsequent harvests are obtained at 2 ½ to 3 months after planting.
The crop is economical for 4-5 years. After each harvest, the dead and dried leaves are
removed to encourage growth of fresh tillers. Lemongrass flowers in winter season. The
flowering stalks are to be harvested and discarded from time to time, otherwise the crop
yield gets adversely affected.
        The oils recovery ranges from 0.7 – 1.0% on an average12-15 tonnes of herbage
and 60-90 kg oil yields can be obtained from lemon grass from one acre in a year.

                                 (Cymbopogon winterian US)
        Citronella is a perennial grass cultivated for essential oil derived from freshly
harvested foliage. The oil of citronella is used in soaps, cosmetic, deodorants and mosquito
repellent cream. It is a raw material for manufacturing aromatic chemicals like geraniol and
citronellal used in perfumes. Citronella is cultivated in Vishakapatnam and East Godavari
districts. The total area under Citronella in Andhra Pradesh is about 887 hectares with
estimated annual production of 177 tonnes. Its cultivation has been also taken in other
districts of Andhra Pradesh. It is a perennial aromatic grass, growing to a height of 2 ½ 3
½ ft.
        Loamy and sandy soils are best suited. It is grown as an irrigated crop. However in
areas with well distributed rainfall it can be grown as rainfed crop. Avoid clayey soils,
waterlogged areas or soils with pH above 8.5.

       It comes up in tropical to subtropical conditions where rainfall and atmospheric
humidity are high with warm days and plenty of sunshine. In areas with well distributed
rainfall throughout the year like high altitude areas it can be grown as rainfed crop.
Citronella can be cultivated throughout Andhra Pradesh as an irrigated crop.
       Java-2 is the high yielding varieties recommended for South india.
       Bio-13 is the high yielding varieties recommended for South india.
       Citronella is propagated through slips obtaining by splitting old and healthy plants.
       Although planting of citronella can be done anytime during the year, onset of
monsoon is the best time. It is planted preferably during July – August adopting a spacing
of 60 cm between the row and 45 cm within the rows. This can be planted either in ridges
or in flat beds. About 15,000 rooted slips are required for planting one acre.
After Cultivation
       2-3 weedings are needed during initial stages of crop growth. The crop requires
irrigation once in a week.
Manures and Fertilizers
       FYM @ 4 t, N @ 20 kg P2 O5 @ 20 kg and K2 O @ 15 kg per acre applied in the last
ploughing. After each harvest, apply N @ 20 kg per acre.
       The crop is irrigated immediately after planting at 2 to 3 days interval till about one
month and subsequent irrigations are given as and when required.
       Intercropping of Horse gram in citronella in the early stage of planting has been
proved beneficial in controlling of weeds as well as improving the soil condition. Research
findings revealed that sowing of horse gram one month after planting of slips is beneficial.
       The crop is harvested 10-15 cm above ground level. The first harvest is obtained
between 6-7 months after planting depending upon the soil and climate. The subsequent
harvests are taken at the interval of 2 ½ to 3 months. The crop is economical for 4-5 years.
After each harvest, the dead and dried leaves and tillers are removed to encourage growth

of fresh tillers. The flowering stalks should be removed from time to time and discarded,
other wise the crop yield is affected.
Citronella yields about 15 t/acre of herbage and 100 kg per acre of oil per year as irrigated
crop. The oil recovery ranges from 0.8 to 1.0%.
Plant Protection
Stematophora fuscibasilis
        The inner most leaves show crinkling and remain unfolded.
        To control and prevent attack of this pest, 0.2% monocrotophos is sprayed
immediately one month after planting and after each harvest. Apply Thimmet @ 3kg per
acre. The dead stubbles may be removed and destroyed.

                                   (Pelargonium graveolens)
        Geranium is a native of Cape Colomy (South Africa). It is a perennial, drought
resistant herbaceous plant. The chief constituents of essential oil of geranium are geraniol
and 1-citronellol. There are three types, Algerian and Bourbon and Egyptian types in India;
the Bourbon type is largely cultivated. Bourbon has 27.5% citronellol and 22.7% geraniol.
The geranium is cultivated for oil, which has a pleasing rose like odor and blends well with a
wide range of floral and oriental perfumes. It is used for scenting ointments, pharmaceutical
and tobacco products, in the manufacture of high grade soaps and cosmetic products.
        Requires well drained red sandy loams.       Soils with a pH more than 8.0 are not
        Requires warm winter winds. High humidity is not suitable. Areas with dry weather
like Telangana with good irrigation are preferred.
        Raised nursery beds are prepared during the month of September & October by
applying bavistin and blitox to the soil. Terminal cuttings about 10-15cm long are taken
from well grown, healthy plants. After removing all the leaves except two to three terminal
leaves, a slant cut is given at the bottom and is dipped in 2000 ppm solution of IBA and
0.1% bavistin and planted in the nursery bed. The cuttings are planted in such a way that
at least two nodes are inside the soil. The nursery beds are watered lightly immediately after

planting and every 3rd are 4th day. The cuttings root in 30-40 days and are ready for planting
in the main field.
       The cuttings strike roots within a month and are ready planting. The rooted cuttings
are planted at a spacing of 60 x 45 cm and irrigated immediately after planting. Thus 15,000
cuttings are required for planting one acre.      The rooted cuttings can be planted from
October to February. The unrooted cuttings are dipped in 2000 ppm solution of IBA and
0.1% of bavistin and planted in the main field directly during the last week of November to
first week of January. If planted during the other months, the establishment of the crop is
very poor.
       Geranium can be planted either in rainy season or in winter season.
       The field is irrigated immediately after planting. Irrigate the field frequently till the
establishment of cuttings. There after the crop is irrigated at weekly intervals, in the
absence of rains.
After Cultivation
       3-4 weedings are required to check weed growth. Water logging is deter mental to
the growth of Geranium and therefore good drainage should be provided.
Manures and Fertilizers
For Irrigated Crop
       40 kg N + 25 Kg P2O5 + 25 kg K2O/ac per year. P and K are to be given as basal and
N in 3-4 equal split doses.
For Rainfed Crop
       25 kg N + 16 Kg P2O5 + 16 kg K2O/ac per year. P and K are to be given as basal and
N in 3-4 equal split doses.
       The field is kept free of weeds for the first 2-3 months after planting and up to one
month after every harvest.
       First harvest is obtained 5-6 months after planting. The crop is harvested when the
lower leaves start yellowing and flowers appear here and there. The top 20-30 cm of plants
leaving few leaves on the plant and tender twigs are harvested using sharp sickle and
distilled immediately.Ffour harvests can be taken per year. Subsequent harvests are taken at
3 months intervals for 4-5 years. Giving jerks to the plant while harvesting should be
avoided. The crop should not be harvested from the ground level. The crop should be

sprayed with 0.1% bavistin or benomyl solution and irrigated immediately after each
        The oil recovery ranges from 0.11 to 0.15% on fresh weight basis. Herbage yield is
10-12 tons/ac and oil 25-30 kg per ac. per year. This crop is recommended for Telangana
region only in areas where the climate remains cool for most part of the year and summer
temperatures do not go beyond 30-40OC.
Plant Protection
Root rot and Wilt ( Rhizoctonia solani, Fusarium oxysporum redolens )
        The infected plants showed drooping of leaves particularly lower ones and the plant
collapses within 5-7 days, when uprooted a severe rotting of roots is observed. In advanced
stages stem basal portion also rots.
        The affected plants are uprooted and destroyed. Avoid waterlogging, drenching of
soil with chlorothalonil or mancozeb (0.3%) around the plant and pretreatment of cuttings
with 0.3% mancozeb.
Leaf blight (Colletotrichum gleosporioides, Alterneria alternata )
        The symptoms first appears on the margin of the leaf as brown necrosis spots
which later extend towards midrib leading to complete necrosis and rotting of leaves.
        The crop is sprayed with 0.3% zineb or 0.1% benomyl at 12-15 days interval.
Rot of stem cuttings (Rhizoctonia solani)
        The symptoms generally appear in the form of cholorosis of lower leaves and the
cuttings collapse with in 10-15 days.
        Dipping of cuttings in 0.3% Mancozeb and drenching the nursery beds with same

                                   (Cymbopogon martinii)
        Aromatic plants possess volatile oils which have essence, gum, exudates, oleoresin in
one or more parts such as roots, wood, bark, foliage, flower and fruit. These are extensively
used in perfumes, food flavouring, cosmetics and soaps. Some of them have antibacterial
and germicidal properties.

         Palmarosa is a tall (6-7‟) perennial (3-4 years) grass growing wild in dry open forest
of Andhra Pradesh. The flowering tops and foliage contains scented oil giving rose like smell
and is widely used in soaps, cosmetics and perfumes. The oil is rich in geraniol (75-90%).
The oil is used as a raw material for producing „gerancol‟ which is used in perfume industry.
         Loamy and sandy loams are the best although it can be cultivated on all kinds of
soils including soils with a pH upto 8.5.
         Excess winter and frost not suitable.
         Sown preferably during June – July.
         This variety was released by CIMAP, Lucknow. It contains higher geraniol (93.6%).
The variety has potential of 160 q/ac of herb yield and 100 kg/ac of oil yield.
         Commercially through seed by either direct sowing or nursery. The seeds are small
and light, therefore they are mixed with sand and sown in May-June in nursery beds. About
2 kg seed is kept immersed in water overnight and then mixed with sand sown in the
nursery beds in furrows 2-3 cm deep and row 20 cm apart. The nursery beds are irrigated
         The seedlings (15-20 cm height) will be ready for planting in 30-40 days in one-acre
area. 20-30 days old seedlings are transplanted in a spacing of 45 x 30 cm 5 kg of seed is
required for planting.
         The seedlings are irrigated every 3-4 days depending on rains, during the first month
of planting. There after, the crop is irrigated at 10 days intervals. When the crop is fully
grown, irrigations are given at 15-20 days intervals.
After Cultivation
         The crop required 2-3 weedings in the initial stages. Palmarosa is irrigated once in
10-15 days interval.
         The field is kept free of weeds for the first one month after planting and up to 15
days after each harvest.

Manures and Fertilizers
For Irrigated Crop
        40 kg N + 25 kg P2O5 + 25 K2O/ac/year. P and K are to be given basal and N in 3-4
equal split doses.
For Rainfed Crop
        25 kg N + 15 kg P2O5 + 15 K2O/ac/year. P and K are to be given basal and N in 3-4
equal split doses.
        The crop is harvested at flowering stage. First harvest is taken 3 to 3 ½ months
after planting. The crop is harvested 15-20 cm above ground at the time of flowering to
early seed formation stage and fresh herbage is distilled. Subsequent harvests are obtained
at 1 ½ to 2 months intervals depending upon the season for 5 -6 years.
        On an average palmarosa gives 15-20 tons herbage and 90-100 kg oil and per
ac/year (0.52% oil recovery). Rainfed crop gives 70 kg oil. The crop remains economical for
3-4 years and at least 2 crops per year can be obtained from rainfed and 4-5 harvests if
grown as irrigated crop.

                                        (Artemisia pallens)
        Davana is an annual erect branched herb grows upto 45-60cm tall. The leaves and
flowers emit a delicate, persistant fruity fragrance and are used in floral decorations. Davana
oil is used in preparation of high grade perfumes. The oil has been reported to possess
antimicrobial activity. The oil of davana contain hydrocarbons (20%), esters (65%) and
oxygenated compounds (15%). Esters are the major compounds responsible for the
characteristic smell of davana.
        Can be grown on various types of soils from sandy loam to medium black. However,
a fertile, well-drained, sandy loam soil is ideal.
        A few light showers with moderate winter conditions and no frost is conducive to the
good growth of the plant. It should be planted during the first week of November when the
crop is grown for the production of oil.
        October – February

Nursery raising
        Only the seed from previous season‟s crop should be used. About 600 g seed is
required to get the seedlings for one acre. The beds are prepared with 2 x1 m size. The
seeds are thoroughly mixed with sand @ 10 times the seed volume. Water is added so that
the sand is sufficiently wet. Then the mixture is tied in a cloth bag and kept for 48 hours.
There will be radicle emergence after 48 hours. The nursery beds are flooded with water
and then the seed + sand mixture is broadcasted all over evenly. When the seeds have
settled down, a fine layer of sand or FYM is spread over to cover the seed. After 2-3 days,
the seeds will germinate and establish in 7-8 days after which the beds are regularly
Land preparation
        The field is thoroughly ploughed, leveled and plots are laid out of convenient size.
About 5-6 t/ac FYM is incorporated during last ploughing. The plots are irrigated a day prior
to transplanting.
        In about 40 days the seedlings will be ready for planting.           The seedlings are
transplanted at a spacing of 15x7.5 cm close spacing results in higher herbage yield and
subsequently, higher oil-yield.
Manures and Fertilizers
        In addition to FYM, a fertilizer dose of 20 kg P 2 O 5 and 20 kg K2O per acre are also
applied as basal dose. Nitrogen is applied @ 50 kg/ac in 3 equal splits , 10 days after
transplanting and the subsequent two doses at 15 days interval thereafter.
        Immediately after transplanting, light irrigation is given. Regular irrigations are given
till the establishment up to 10-15 days and later on 7 days interval depending on the
weather conditions.
        About 2-3 weeding are taken up during the early period of growth.
        The crop starts flowering after 110-115 days of sowing which will be around 2 nd or
3rd week of February. They are harvested at about 50% flowering stage. This is usually at
the end of February or 1st week of March (100-120 days). The plants are cut from the base,
dried under shade for 2 days and then steam distilled. Some times second crop can be
taken 60-65 days after first harvest with good management.

        About 5-6 t/ac of fresh herbage. About 6 - 8 kg oil can be obtained per acre per
Plant protection
        No serious pests and diseases were observed except.
Damping off
        However, damping off observed in the nursery
        Seed treatment and drenching nursery beds with copper fungicide and allowing more
light and air in between the seedlings.



                                     (Withania somnifera)
       The roots are widely used in Ayurveda, Unani, Siddha and Allopathy systems of
medicine to cure a number of diseases. The roots are used for improving the general vigour
of the body.
       Sandy loam or light - red soils with good organic matter and drainage with
PH 7.5-8.0 are ideal.
       Suitable as late Kharif.   Can be grown as rainfed crop if the total rain fall is 650–
750 mm. Otherwise 2-3 irrigations during late winter will improve the root growth.
Jawahar Asgandha-20
       This variety was released from Jawaharlal Nehru Krishi Vishya vidyalaya, Regional
Agricultural Research Station, Mandsaur.
Other improved varieties - Rakshitha and Poshita
Local variety-Nagore
       July/August (main season) – October / November (yield will be only 1/2 to
1/3 in rabi compared to main crop.
Seed rate
       For broadcasting of seed 7-8 kg/acre mixed with five times of sand.
       25 – 30 cms between the rows or broadcasting
Manures and Fertilizers
       Mostly organic manures are used in the last ploughing @ 4 - 5 t/ac +
P & K @ 20 kg/acre each.
       Thinning is done at 25-30 days after sowing so as to maintain a population of 30,000
to 35,000/acre.

        Starts from January (160 to 170 days) and continues upto February. The maturity is
judged by indications of drying of the leaves and turning of the berries into yellow/ red
colour. Entire plant is uprooted and the aerial parts are separated at 2 cm above the crown.
The root is cut into pieces of 7-10 cm and dried.
        Dried roots 2.5 – 3.5 q/acre
        Seed 50 kg/acre
Plant protection
        No serious pest is noticed.
Damping off (Fusarium sp., Rhizoctonia sp., Pythium sp. )
        Affected seedlings first a slight yellowing patch just above the ground level, this
darkens with time and tissues soften and the whole seedling collapse to the ground. The
disease incidence is severe during the rainy season.
        Avoid water stagnation.
        Practice crop rotation.
        Seed treatment with Dithane M-45 @ 3 g/kg or Thiram 1.5g + Bavistin 1.5g/kg seed.
Treat seed with Trichoderma sp. @ 5g/kg of seed.

                                       (Cassia aungustifolia)
        Senna leaves and pod-shell contain the laxative principle (sennoside A & B) which
are extensively used as bulk laxative in medicine. Senna is a small branched shrub
remaining in fields for 5-7 months. It is a drought tolerant crop and can be grown either as
pure crop or mixed with other agricultural crops.
        Any type of soil but preferably red loams including coarse gravelly and alluvial loams.
Tolerates salinity. Performs well in heavy soils also. It can also be grown on poor and
marginal soils.
      Requires warm and dry weather year round. Sensitive to heavy rains.

        Best season is at the cessation of heavy rains i.e., end of August to middle of
                 Winter        - October – November
                Summer         - February – March
            Extended rains may affect the crop drying in rainfed crop.
        It is propagated by seed.
Seed rate
        25 kg/ha under rainfed and 15kg/ha under irrigated conditions.
        The seed should be soaked in water for 6-8 hours before sowing to get good
germination. The land is prepared to fine tilth and seeds are sown preferably at the end of
South West monsoon. Heavy rains during early stage of crop cause damping off and leaf
spot diseases. Water logging should be avoided. A spacing of 60 x 30 cm or 60 x 60 cm is
Manures and Fertilizers
        In addition to FYM @ 5 t/ac in the last ploughing, 20 kg each of N, P and K are also
recommended. Nitrogen is applied in 4 splits i.e., at field preparation, 30,90 (Ist picking)
and 150 days after sowing (2nd picking).
        Generally grown as rain fed. If necessary irrigation can be given at 15 – 20 days
        The first weeding-cum-hoeing is done at 25-30 days after sowing, second at
75-80 days and third 110 days after sowing.
        The crop flowers in two months after planting and the first flower flush is harvested
to encourage more branching. Stage of harvesting is judged by full grown, thick and bluish
coloured leaves. The first picking is taken at 90 to 100 days and second at 150 days after
sowing. It can be retained as perennial crop. The leaflets are spread on clean floor under
shade in thin layers and stirred frequently. In 7-10 days, the leaves dry which is indicated
by yellowish green colour. The pods are gathered in bunches and hung in ventilated rooms
for drying which is completed in 10-12 days.        Then the pods are beaten and seed is

separated. The produce is then graded, pressed and finally packed in Hessian bags under
        400-600 quintals of leaves and 600-800 quintals of pods/ac. The produce should
contain about 2.5% of active principle calculated as anthraoquinoes.
Plant Protection
Pod Borer (Catopsilia pyranthae)
        Spraying of Endosulphan 0.05% or Carbaryl 0.25% at an interval of 15 days.
Spray Neem oil @ 3ml/lit in the early stages.
Damping off (Rhizoctonia bataticola)
        Seedlings are attacked at ground level and they fall down.
        Avoid water stagnation.
        Soil drenching with Captan 3g/lit or Bavistin or Benomyl 1g/lit
Leaf Spot (Alternaria alternata )
        First appear as minute pale yellow spot on leaf blades and its margins. With the
advancement of the disease, leaf tips and margins die and the necrotic tissues increase in
size. In severe infection leaves start drying and drooping. Concentric rings are visible in
advanced leaf spots. The green colour of the leaves changes from pale green to brownish
yellow. In advanced stages the pods are also affected with brownish black spots.
        Use optimum plant population. Use disease free seed. Spray Mancozeb 2.5g or
Bavistin 1g/lit at 15 days interval.

                                   (Andrographis paniculata)
        The plant has been reported to posses antipyretic, antihepatotoxic, antihistamic,
analgesic, antibacterial, antiinflammatory, antifertility and immunosupressive proprties. The
three bitter principles deoxy andro grapholide, andrographolide and neo-andrographolide
are isolated from the whole plant and leaves, identified as diterpenes. The plant contains
0.5-0.9 per cent andrographolide an alkaloid      responsible for bitterness. The fresh and
dried leaves of kalmegh and the juice extracted from the herb are official drugs in

        It is a hardy plant and can be grown on a variety of soils. Red sandy loams with
good organic matter are best for the growth and yield.
        Comes up well both in tropical and sub-tropical climate. Can withstand a
temperature of 40-45oC.
        July – August. Best suited as rain fedcrop.
Seed rate
        150 to 200 g/acre
        For direct sowing, mix the seed with sand in ratio of 1:5 and sown on ridges or
        30 x 15 cm (direct sowing – 88000 plants/ac)
        30 x 15 cm or 20 x 15 cm (transplanted).
        A Population of 88,000 plants per acre at spacing of 30 x 15 cm was proved
beneficial in research findings at Herbal Garden Scheme, Rajendranagar.
Manures and Fertilizers
        FYM    @    4–5     t/acre   and    N:P:K     @   20:30:20    kg/acre   applied    in
the last ploughing. Nitrogen @ 15 kg/acre 30 days after transplanting or sowing.
        Two weedings are given early in the season i.e., 30 days and 60 days after
sowing. Later, weeding follow every harvest.
        The crop will be ready for harvesting in 90-120 days after sowing. The plants are
cut at base 10-15 cm above ground for regeneration. The second harvest is taken 60 days
after first harvest. Another harvest can also be taken after 60 days of second harvest or the
crop can be removed. After harvesting, the herbage is dried for 3-4 days under shade and
then stored.
        10 - 11 q/acre dry herb.
Plant protection
        No serious pests and diseases have been observed.

                                          (Aloe vera)
       The gel of Aloe vera possess various biological and physiological activities viz.,
healing ability of skin burns and cutaneous injuries, anti ulcer, inhibitory action against
some bacteria and fungi, inhibition of prostaglandin synthesis by anthraquinone type
compounds.      The pulp contains glycoside barbaloin, iso barbaloin and β barbaloin.     The
leaves also contain glucose, galactose, galacturanic acid, mannose, aloesin and volatile oils,
gum resin, emodine, chryphanic acid and traces of coumarin. The plant grows in a semi
wild stage throughout the drier parts of India.
       It is a hardy plant and grows on any kind of soil. Comes up well in sandy coastal to
loamy soils of the plains with a PH up to 8.5.
       It has wide adaptability and can be grown in warm, humid or dry climate with rainfall
ranging from 35-40 cm to 150-200 cm annually.
Land preparation
       Plough the land thoroughly. About 5 t/ac of FYM is added in the last ploughing.
Seed rate and planting
       About 15,000 root suckers/acre are required a spacing of 60 x 45 cm. Suckers of 15-
20 cm long and weighing 75 g are planted in such a way that 2/3 portion should be under
the ground.
       About 20 kg each of NPK/ac is recommended in addition to organic manures.
       Soon after planting, the land should be irrigated. Generally 4-5 irrigations are
sufficient per year particularly during the peak dry period.
       Two to three weedings are done per year.                Small suckers arising from the
base are removed and marketed or planted in the nursery.
       The plants are harvested at 10-12 months after planting. The plants can be removed
manually. The broken rhizome part left in the soil throws out new sprouts in spring for
raising the succeeding crop. An aloe plantation gives a commercial yield from the second
year up to the age of five years, after which it needs replanting.

        15 - 20 t/ac on fresh weight basis.
Plant protection
        No serious pests and diseases are observed.

                                           (Coleus forskohlii)
        It is one of the most potential medicinal crops of the future as its pharmacopeia
properties have been discovered only recently. It is under cultivation in parts of Rajasthan,
Maharashtra, Karnataka and Tamilnadu in large scale. Its tuberous roots are found to be
rich source of in alkaloid called forskolin. Forskolin has been reported to possess a large
number of biological properties such as anti-hypertensive, anti-glaucoma.                    It is also
important base for many drugs developed for asthma, congestive heart failures, weight
management and certain types of cancers.
        Well drained red loamy soils with marginal fertility also can be used
        Found in wild form on hills of Andhra Pradesh with heavy rainfall.                   It can be
successfully grown in the state as irrigated dry crop.
        It is a selection from Karnataka and reported to possess 0.5 per cent forskolin and
higher tuber yield.
        By herbaceous terminal cuttings. No need of rooting hormone. Cuttings will be
ready for planting in about 30 days or they can be planted directly in the field.
        Planting      is   done   during    July-August    at    a   spacing   of   60   x     30   cm
accommodating approximately 22000 plants/acre.
        First fortnight of October.
Manures and Fertilizers
        FYM @ 5t, NPK @ 20:25:20 kg /ac in the last ploughing. Nitrogen @ 20 kg /ac
should be applied 30 days after planting.

         Once in 3 – 4 days during the first 15 – 20 days and 10- 12 days there after, if there
is no rainfall during the period.
         Needs weeding at least once in 25 – 30 days during first two months. There after,
crop becomes bushy and weed competition will be less.
         The crop is ready for harvest 150 - 170 days after planting. Before harvesting,
irrigate the field, uproot the plants, separate the tuberous roots, washed and dried under
partial shade.
         600- 700 kg dry roots/acre
         300 – 400 kg/ acre
Plant protection
Root knot nematode
         It is caused by Meloidogyne incognita, Coleus is reported to be affected by root knot
nematode. It is most important disease of this crop. Nematode infected plants though
stunted, appear as luxuriant as the normal plants. The symptoms consists of stunting,
wilting of leaves and basal part of the stem turned brownish black.    The diseased roots are
totally damaged due to severe galling, tuber formation was reduced to nearly 65% in field
         Crop rotation with marigold, sorghum and maize would be beneficial to minimize the
loss of yield. Apply of 200 kg of neem cake/acre before planting. Application of carbofuron
granules @ 8 kg/acre under wet condition near the root zone reduce the incidence of
Fusarial wilt
         Dip the terminal cuttings in Carbendazim 0.1% solution before planting. Mix 5 kg of
tricoderma viridae in 250 kg of compost and apply around the roots at 20 days interval.

                                          SAFED MUSLI
                                    (Chlorophytum borivilianum)
       Its tubers are popularly known as safed musli. It finds wide application in Ayurvedic
medicine as general health tonic for improving vitality.
       Sandy and Loamy soils are preferable. Red and medium black soils without       water
stagnation are useful
       June – July
Land preparation
       Deep ploughing in April–May. FYM @ 15-20 loads/acre is mixed in last
ploughing.     Raised beds (1 ft height x 3.5 ft width) with drip irigation are
Seed rate
       Tubers weighing 5-6 gm are used. About 80,000 tubers are used per acre (400
       Healthy tubers are dipped in Bavistin 0.2% for 15-20 minutes before planting and
planted at 15 x 25 cm spacing during 2nd fortnight of June to the end of July.
Manures and Fertilizers
       Apart from FYM applied during field preparation, NPK can also be applied after
first rains @ 50 : 40 :40 kg per acre.
       Light irrigation should be given immediately after planting. Afterwards irrigate the
crop at weekly intervals. Sprinkler, flood or drip can be used.        There should not be
stagnation of water in the field.
       Two to Three weedings are required to keep the weed growth under check.
Pinching of inflorescence
       Pinching of inflorescence is advisable. Pinching promotes better plant growth and
root development.
       Harvesting is done during January – February either by digging or deep ploughing.
Tubers are cleaned and spread under the shade for a week. The longer and healthy fingers

(tubers) are detached from the tubers, whereas the smaller ones are used as planting
material for next season.
        Fresh tubers   -      20 to 30 quintals/acre
        Dry tubers     -      4 to 5 quintals/acre
Post harvest techniques
        The longer & healthy fingers are processed by peeling the skin with a stainless steel
knife and then they are kept in the sun for drying. Within 3-4 days, the fingers dry up.
These are packed in poly bags and marketed.
Plant protection
        In general, the pest problem is very less.           As a precautionary measure,
biopesticides   like   neem    oil,   garlic,   capsicum,   tobacco     decoction    etc.,   can
be sprayed.

                                        SWEET FLAG
                                       (Acorus calamus)
        The rhizomes of sweet flag are mainly used for improving the digestion and also for
gastric problems. The powdered rhizome and essential oil can be used as a safe insecticide.
It grows wild in marshy and semi aquatic places as a perennial aromatic herb with creeping
rhizome.   It produces an essential oil. The essential oil contains β-asarone (82%). β-
asarone acts on Central nervous system.
        Fairly moist soil, clayey loams and light alluvial soils.     It is cultivated almost in
Submerged conditions like wet land paddy.
        It is a hardy plant and grows in tropical and sub-tropical climate. The optimum
temperature range is 10-38oC and rainfall from 70-250 cm.
Planting season
        Best season is March-April.
Land preparation
        The field is prepared exactly as in case of wet paddy. FYM is also mixed
@ 8-10 t /acre during puddling.
Seed rate
        Approximately 40,000 rhizome pieces/acre.

        Sprouted rhizome pieces are used for planting at a spacing of 30x30 cm and a depth
of 5 cm. The rhizome pieces are pressed into the mud in such a manner that the plant in
the second row comes in between the two plants of first row and not opposite to facilitate
root growth.
Manures and Fertilizers
        In addition to the FYM, 80 kg N, 50 kg P2 O 5 and 25 kg K2O/acre are also applied.
Entire FYM, P   2   O5, K2O and 1/3 N are applied as basal dose. The remaining 2/3 N        is
applied in two equal splits during 3rd and 6th month after planting.
        The field is regularly irrigated. In the beginning, about 5 cm of water is left in the
field. Later, it is increased to 10 cm as the plant grows.
        In all, about 6 - 8 weedings are required. At each weeding, the plants are lightly
pressed down at the base.
Harvesting and processing
Time of harvesting
        8-10 months after planting when the leaves start turning yellow and dry.
Method of harvesting
        The field is allowed to dry partially so that sufficient moisture is there to make
necessary deep ploughing/digging.      The rhizome will spread up to 30-60 cm, therefore,
harvesting should be done carefully. If it is cultivated on large scale, harvesting can be
done by ploughing.
        The rhizomes are cut into short lengths of 5-7.5 cm and all the fibrous roots are
removed.     The pieces are then washed thoroughly and dried in sun.        After drying, the
rhizomes are graded into thick and thin cuttings. The dried material is rubbed to remove
leafy scales.
        The graded rhizome is packed in the bags separately and stored in the godown.
        The yield of dry rhizomes is about 3 to 4 t/acre
Plant protection
        The crop is generally free from pests and diseases.

                                          LONG PEPPER
                                           (Piper longum)
           The fruits and roots contain essential oil and alkaloids like piperine, piplartine and
are used for cough, bronchitis, asthma, muscular pains, dysentery, stomach disorders,
leprosy and tuberculosis.
             It is cultivated in parts of Assam, Tamil Nadu, Maharashtra and Andhra Pradesh
(Paderu tribal agency area of Visakhapatnam district). In Andhra Pradesh, it can be grown
as an irrigated crop in well drained, medium to heavy textured soils rich in organic matter.
        It flourishes well in rich, well drain, loamy soils.
        The plant requires hot, moist climate and elevation between 100 to 1000 meters for
its cultivation. It should be grown under partial shade with 20 to 25% shade intensity.
Varieties - Viswam
        Long pepper is propagated through seeds, suckers s cuttings or by layering of
mature branches at the beginning of the rainy season. The nursery can be raised during
March and April the cuttings are ready for planting in the main field by the end of may.
        Indian long pepper is propagated through stem cuttings or suckers. For rooting stem
cuttings, 30 cm long having at least 3 nodes are planted in the nursery in the month of
January – February. The field is prepared to good tilth by ploughing twice, harrowing and
planking. About 5 tonnes of farm yard manure, 16 kg P2 O5 20 kg of K and 15 kg of zinc
sulphate per acre are applied basally. Planting is done during rainy season. Using rooted
stem cuttings at a distance of 75 cm between the rows and 30 cm between the plants
(17000 – 18000 cuttings/acre). The crop is irrigated at 15-20 days intervals during non-rainy
Manures and Fertilizers
        Generally the crop is      fertilized with manures only. Application of 60 kg urea in 3
equal splits is suggested for good yields.
        The crop should be irrigated once a week if it is grown as a pure crop. In case the
crop is grown an intercrop with other crops the irrigation provided to the main crop is

        During 1st year of planting weeding is done when weed growth is noticed in the
beds. Once the crop grows it covers the inter spaces of the beds.
        When the crop is raised for spikes, it comes to bearing in the first year itself
(November-December). The spike yield per acre increases from about 800 kg in the first
year to about 1200 kg in the second and third years after which yield decline, therefore, the
crop is to be replanted. The spikes are harvested while still green and unripe, as they are
most pungent at this stage.
        When the crop is grown for roots, it can be harvested after 36 months, as they are
said to be of good quality. Periodically, the above ground part is removed to ensure better
quality roots. The roots are dug out, cleaned, cut into pieces of 2.5-5.0 cm, dried in shade
and stored.
        A three-year-old turmeric intercropped with Indian long pepper gives 300 - 400 kg
roots and a net profit up to Rs. 12,000 per acre may be obtained.
Plant Protection
        There are no pests or diseases on this crop.

                                         GLORY LILY
                                       (Gloriosa superba)
           Glory lily is a tall, weak-stemmed climbing perennial medicinal herb native to
India. It belongs to the family liliaceae. The seeds and rhizomes, which are poisonous,
contain alkaloids colchicine and superbine. Colchicine is widely used to treat gout,
rheumatism and for inducing polyploidy in plants.
           The plant grows wild in many parts of Andhra Pradesh. Glory lily can be grown as
an irrigated crop in Andhra Pradesh in well-drained red or black loamy soils having pH 6.0-
7.0. It is commercially grown in Periyar district of Tamil Nadu and India is a regular exporter
of seeds of glory lily.
        It can be successfully grown in red or black loamy soils with good drainage. A soil
pH range between 6.0 -7.0 has been found suitable to this crop.
        It is a tropical plant of warm and humid regions. In natural conditions it may grow
up to an elevation of 600 m from sea level. The annual rain fall of about 300 cm, well
distributed throughout the year ideally suitable for this crop.

        For commercial propagation underground „V‟ shaped tubers are used.              Tubers
weighing 50-60 g treated with 0.1% Carbandazim are used for planting on an average 800
kg to 1 tonne of tubers are required for planting in one acre. Tubers should be handled
carefully as they are brittle and liable to break easily.    The vigour of the vine and its
flowering and fruiting depends on the size of the tubers.          The dormant tubers start
sprouting from the month of May to August. Planting should be done during the months of
July and August. It may also be propagated by seeds however the plants raised from seeds
take nearly 3-4 years to flowering. About 5 tonnes of farmyard manure, 25 kg nitrogen, 20
kg P2O5 and 25 kg K2O/acre are applied at the time of planting. Remaining dose of 25 kg
nitrogen is applied in two equal doses in 30-60 days after planting.
        The crop can be propagated by seeds or V-shaped rhizomes. Rhizomes are generally
preferred.    Tubers weighing 50-60 g and treated with 0.1 % Carbendazim are used for
planting @ 800 kg/ acre.
        The land is ploughed, harrowed and planked to good tilth. The treated tubers are
planted 6-8 cm deep during rainy season in furrows spaced at 60 -45 cm.               Trellis or
supports are erected for the plant to climb on to the supports. The crop is irrigated
immediately after planting.
        At early stages, crop is irrigated once in 4-7 days, later at 15 days intervals. The
crop is kept weed free by 2 manual weedings. Short duration legumes can be grown as
Manures and Fertilizers
        Five tonnes of well rotten farm yard manure, 10 kg N, 20 kg P2 O5 and 25 kg K2O per
acre are applied at the time of planting. 30 kg urea is top dressed at the time of flowering.
        The crop flowers during August-September and mature pods can be seen in October-
November. The crop yields 80-100 kg seeds and 1.0-1.25 t of rhizomes per acre.
        The yield of seeds differs greatly, depending upon the vigour and age of the plant.
The yield during first year will be low, in the subsequent years it increases gradually. From a
well managed crop about 80-100 kg seeds and 60-72 kg of pericarp/ac can be obtained.

Plant Protection
Lily Caterpillar ( Polytela gloriosae)
         The lily caterpillar attack almost all parts of the plant.
         This pest can be affectively control by spraying metacid @0.2% at fortnight by
intervals or by spraying neem oil @ 4 ml/lit.
Green caterpillar (Plussia chaleites)
         This caterpillar attacks the leaves and flowers. It completely eats away the flowers
cause in severe damage to the crop.
         This pest can be affectively controledl by spraying metacid @0.2% at fortnight
intervals or by spraying Neem oil @ 4 ml/lit.
Leaf blight (Curvularia lunata)
       The effected leaf first turn light yellow and later small black spots are seen which
ultimately spread to the entire leaf and neighboring plants. The incidence is higher during
cloudy weather with high humidity.
         Spray 0.3% Mancozeb.
Tuber rot (Sclerotium spp.)
         This is soil born pathogen which effects the underground tubers and cause death of
the plant.    In the initial stages the infected tubers start becoming soft and the foliage
exhibits the yellow appearance and in advanced stages the whole tubers gets infected giving
the appearance of discolored mass and the plant dies off.
         Soil drenching with 0.2% Carbendazim.

                                         (Plantago ovata)
         It is an annual herb, a native of Persia. The husk is rosy white membranous covering
of the seed which constitutes the drug and is given as a safe laxative, particularly beneficial
in habitual constipation, chronic diarrhea and dysentery.
         The crop is traditionally grown in light sandy to sandy loam soils. It can be cultivated
in clay loam, medium black soils. However good rain is essential for its cultivation in heavy

        Isabgol is highly environmental sensitive crop.     It requires cool and dry climate.
Unseasonal rain or high dew deposition during crop maturity results in to total loss of seed
yield. The areas receive winter rains are unsuitable for cultivation of this crop.
        Last week of October to 2nd fort night of November is ideal time for sowing. Early
sowing increases vegetative growth resulting in lodging and high downy mildew disease
incidence. While late sowing reduces total growth period and increases risk of seed
shattering due to occurrence of pre monsoon rains during maturity period.
Gujarat Isabgol -1
        Dwarf and erect plant with dark green leaves and moderate tillers, early maturing
variety. It requires 110 to 115 days for maturity. Seed yield 4.0 q/ac.        This variety was
released by Anand Agricultural University (AAU), Anand, Gujarat.
Gujarat Isabgol-2
        Medium broad and pale green leaves. This variety is moderately resistant to downy
mildew.    Seed yield 4.0 q/ac. This variety was released by Anand Agricultural University,
Anand, Gujarat.
Jawahar Isabgol -4
        Leaves are narrow, dense, lathery, green and hairy. Seeds are boat shaped, hard
and light pink in colour. Seed husk is rosy white membrane like. Seed yield 5.0 q to 6.0
q/ac.   This variety was released by Jawaharlal Nehru Krishi Vishya Vidyalaya (JNKVV)
Mandasur, Madhya Pradesh.
Haryana Isabgol -5
        Profuse tillering, long and compact spikes and moderately resistant to downy mildew.
It is a selection from Gujarat Isabgol-2.     Seed yield 4.0 to 4.8 q/ac. This variety was
released by Haryana Agricultural University, (HAU), Hissar, Haryana.
        Long panicles, maturity period is 120 days. This variety was released by CIMAP,
Lucknow, Uttar Pradesh.
        The seeds are small and light are sown by broadcasting in early November to late
December at the rate of 2.8-3.2 kg/ac. Germination starts within 6-10 days.

After Cultivation
        The crop requires 1-2 hand weedings. A light irrigation is to be given immediately
after sowing. Second irrigation is given after 3 weeks and the third at the time of formation
of spike. The plant bears flowers in about 60 days and matures in about 120 days after
sowing. Three more irrigations are given between flowering and maturity.
Manures and Fertilizers
        6 cart loads of FYM/ac before final ploughing.
        10 kg P2O5 + 10 kg K2O/ac as basal and 20 kg N in 2-3 equal split doses.
        A light irrigation immediately after sowing is desirable to ensure good germination.
The crop requires 4-5 irrigations.   The last irrigation should coincide with the milking stage
of the maximum number of spikes.
        The first weeding generally done after 20-25 days of sowing. Two to three weedings
are required during the first two months of the crop.
        When mature spikes are pressed in between in fingers, the seeds come out
indicating the readiness of the crop for harvesting. The crop is harvested close to the
ground. Stacked for 1-2 days and trampled by bullocks, winnowed and the separated seed is
collected. The seeds are processed through a series of grinding mills to separate the husk.
        The seed yield is 4.0 q/ac and about 30% husk is recovered from the seed.
Plant Protection
        Aphids generally appear 60-75 days after sowing.
        Two sprayings of 0.2% dimethoate effectively control the pest.
Wilt (Fusarium sp.)
        Spraying of Copper oxychloride or Dithane M- 45 at 0.3% at 15-20 days interval or
when the weather turns favourable for the pathogen to spread.

Damping off (Pythium ultimum, Rhizoctonia solanii)
        Pre-treatment of seeds with metalaxil at 5.0 g per kg seeds protect the seeds from
damping off.

                                     (Catharanthus oseus)
                                  (Vinca rosea, Billa gamera)
        Periwinkle is an annual drought tolerant herbaceous plant. The leaves contain
anticancerous principles (Vincristine, Vinblastine etc.) and the roots contain antifibrillic and
hypotensive principles (ajmaleine, reseripine etc.). Periwinkle grows wildly as an ornamental
plant due to its attractive flowers, pink and white. Both the varieties are equally productive.
        Can be grown on all types of soils.
        It comes up in tropical and subtropical areas. It can be successfully grown up to an
elevation of 1300 m above sea level. A well distributed rain fall of 100 cm or more is ideal
for raising this crop on a commercial scale under rainfed conditions.
        Periwinkle can be produced throughout the year. However the best time for planting
is September–October.
        Seeds are sown by broadcasting at 1.0 kg/ac. during June-July. The crop can also be
transplanted and the seed rate is 200 g/ac. Seeds are sown in nursery beds of conventional
size with 5 cm spacing and 60 days old seedlings are transplanted during June-July at a
spacing 45 x 30 cm or 45 x 45 cm.
Manures and Fertilizers
        32 kg N + 16 kg P2O5 + 16 kg K2O/ha. P2O5, K2O and ½ N as basal and the
remaining N in two equal split doses at 3 and 6 months after planting.
Intercultivation and Irrigation
        2-3 weedings and 4-5 irrigations during non rainy months.
        3 leaf strips may be taken after 3-6 and 9 months after planting. Plants are pulled
out after 9 months and the roots are separated from rest of the plant. Leaves and roots (cut
into small pieces) are dried in shade for 4-7 days and stored in gunny bags.

        Yield 2-3 tonnes of leaves and 1 ton of roots under irrigated conditions. The yield is
40-50% under irrigated conditions. Roots ½” diameter and more, fetch more price. Gross
returns Rs.15,000. Net retuns Rs.10,000. Roots Rs.10/- kg leaves Rs.2/-kg.
Plant Protection
        The plant is very hardy and resistance to the attack of fungi and insects.



                                   DRY LAND HORTICULTURE
       Certain crops such as ber, custard apple, amla and mango require less water and can
be grown as rain fed crops. With supplemental irrigation pomegranate and mango can be
used for alternate land use systems. These orchards can be intercropped upto 3 years to
generate more biomass.
       It can be grown in all types of soil. Proper managing and irrigation during fruit
development checks the dropping of berries. Regular pruning is necessary. Spacing may be
kept as 6 to 9m.
       It can be grown even on slightly alkaline soils. Plants need light irrigation till they are
well established. Fruiting starts at the age of 8 years. The trees should be planted at a
spacing of 7.5 to 9 m.
       Though it is a dry land crop, it requires irrigations only in summer season from March
to May at an interval of 15 to 20 days for fruit retention and maturity. Mango requires
slightly deep soils with good drainage and pH at 6.5 to 7.6. It needs 10 m X 10 m spacing in
well deep soils and 9m X 9m in medium soils.
   Along with horticultural crops, plantations for timber and fibre can be developed on soils,
which are not suitable for grain crops. The trees include neem/leucaena and others in paired
rows. Stylosanthes hamata can be grown in the interspace.
Silvi pastural systems
   Involve lopping trees and grazing under storey grasses and bushes in forests and
plantations. This system is applicable to vast areas of cultivable wasteland.
Farm forestry system
       This system is an integration of field, forage crops and trees within a broader frame
work of proper resource management. Fuel and fodder forage yielding trees and planted on
fences, field boundaries, bunds and near the farm ponds as shelterbelts, windbreaks and
tree belts. These modify the environmental factors and increase the yield of crops besides
yielding fuel, fodder and fruits. Ecualyptus, tamarind, acacia, mango, neem, casuarinas and
ber are useful for this purpose.

                                     Package of Practices of some Timber Yielding Plants
                Pit size (lxbxh)
                                                                                           Irrigation interval
                       and             Nursery method        Planting                                             Harvesting age and
  Name                                                                      Spacing           and Manures
                  preparation             and time           Season                                               Yield (Cu ft./plant)
     1                  2                       3                 4               5                 6                       7
Teak            45x45x60cm.           Stumps/Tissueculture   June-       Initial-3x1.3m.   10-12 days interval,   At 20-30 years,
(Tectona        during summer         plants                 August      Final-3x5.2m.     N.P.K. 500:500:500     10-20
grandis)                              In Polythene bags,
Red Sander      45x45x60    cm.       In Polythene bags,     June-July   5x5 m.            0-12 days interval,    At 30-40 years,
(Pterocarpus    during summer         February-May                                         N.P.K. 500:500:500     10-15
Sandalwood/     45x45x60 cm.          In Polythene bags,     June-July   4x4 m.            20-30 days interval,   At 30 years,
Sri Gandham     during summer         February-May                                         N.P.K. 400:500:500     10
Tella Maddi     45x45x60    cm.       In Polythene bags,     June-July   6x6 m.            15-20 days interval,   At 40 years,
(Terminalia     during summer         March-may                                            N.P.K. 300:400:500     20-30
Jeetregi        30x30x45    cm.       In Polythene bags,     June-July   5x5 m.            15-20 days interval,   At 30-40 years,
(Rose wood)     during summer         February-May                                         N.P.K.400:400:400      20
Dirisena        30x30x45       cm.    IN Polythene bags,     June-July   6x6 m.            20-30 days interval,   At 25 years
(Albezzia       during     March-     January-May                                          N.P.K. 300:400:400
lebbeck)        April
Neem            30x30x45 cm.          In Polythene bags,     June-July   5x5 m.            20-30 days interval,   At 25-30 years,
(Azadaricta     during in April       February-May                                         N.P.K. 500:500:500     20
Nilagiri        30x30x45 cm.          In Polythene bags,     July-       4x4 m.            20-30 days interval,   At 20 years,
(Eucalyptus     During April          February-May           August                        N.P.K. 500:500:500     20
Subabul         30x30x45 cm.          In Polythene bags,     July-       4x4 m.            15-20 days interval,   At 20 years,
                During April          February-May           August                        N.P.K. 250:500:500     10-15
Yepi            30x30x45 cm.          In Polythene bags,     July-       5x5x m.           10-20 days interval,   At 25 years,
(Hardwickia     during April          February-May           August                        N.P.K.300:400:400      25
Tumma           30x30x45 cm.          In Polythene bags,     July-       6x6 m.            20-30 days interval,   At 30-40 years,
(Acacia         during April          February-May           August                        N.P.K. 300:400:400     30
Sarugudu        30x30x45x cm.         In Polythene bags,     June-July   4x4 m.            15-20 days interval,   At 30-40 years,
(Casuarina      During April          November-Dec                                         N.P.K. 300:500:500     25
Austrilian      45x45x60 cm.          In Polythene bags,     July-       4x4 m.            15-20 days interval,   At 15-20 years,
Tumma           during April          February-May           August                        N.P.K. 300:500:500     10
Sal (Shorea     30x30x45 cm.          In Polythene bags,     July-       5x5 m.            15-20 days interval,   At 20-30 years,
robusta)        during April          February-May           August                        N.P.K. 500:500:500     10-15
Silveroke       30x30x45 cm.          In Polythene bags,     July-       5x5 m.            10-15 days interval,   At 20-30 years,
(Greevillea     during April          February-May           August                        N.P.K. 500:500:500     10-15
Veduru          30x30x45 cm.          In Polythene bags,     July-       5x5 m.            10-15 days interval,   Every 3 years 12 poles
(Bamboo         during April          February-May           August                        N.P.K. 500:500:500
Simarouba       45x45x45 cm.          In Polythene bags,     July-       5x5 m.            0-15 days interval,    Till 10 years 1000-
                during April          February-May           August                        N.P.K. 500:500:500     2000 kl/ha. of oil
Vippa/Eippa     45x45x45 cm.          In Polythene bags,     July-       9x9 m.            10-15 days interval,   Till 10 years
(Bassia         durin April           February-May           August                        N.P.K. 500:500:500     15-20kg seeds/plant.
               Note: N- Nitrogen, P- Phosphorous, K- Potash

                               POST HARVEST EQUIPMENT
Drying of turmeric
       Drying of turmeric with the chilli dryer is advantageous in time and cost saving. The
result of the trials showed 65.47% of time saving and 7.8% of cost saving compared to
traditional method of sun drying. It took 58 hours to dry turmeric of 79.24% moisture
content to 12.5% level against 168 hours of time taken for the similar level of drying in open
yard drying.
Turmeric Grader
       The ANGRAU turmeric grader designed and developed by the centre can grade about
400 kg of Turmeric in an hour in to four fractions namely bulbs, fingers (3 cm length and
above), polishable Nali (2 to 3 cm length) and unpolishable Nali (less than 2 cm length) in a
single pass, thus eliminates tedious and laborious manual grading. This also facilitates better
quality and value addition to get higher remunerative price.
Turmeric Polisher
Hand operated turmeric polisher
       Hand operated ANGRAU turmeric polisher developed at this centre can be used for
both preliminary and secondary polishing, replacing traditional method of shuffling and
rubbing in gunny bags and use of wooden log attached palmyrah leaves in bullock treading
method. It has the capacity to polish 500 kg of turmeric rhizomes per hour compared to only
100-200 kg/hr in the farmer‟s traditional method.
Power operated turmeric polisher
       With suitable alterations and further attachments like 2 hp motor, V-belt and chain
drive mechanism and gear system, the hand operated turmeric polisher was converted into
power operated turmeric polisher. It can run at 30-32 rpm. With the attachment of gears
and V-belt. The power operated ANGRAU Turmeric polisher can polish about 600-700 kg of
turmeric in an hour with 98% polishing efficiency.
Low cost measuring device for determining colour intensity of agricultural
      Colour reflect meter designed and developed at this centre can be successfully used
to determine yellowness of turmeric (cur cumin content) and redness.
Chilli seed extractor
       This machine is used for extracting seed from dry chillies successfully. Dry chillies (of
11% moisture content) were cut into pieces by the extractor and are collected at the outlet.
Seed is separated from the pericarp by a built in separation mechanism. The machine can
extract seed in 4 quintals of pods in a day of 8 hours with 99% extraction efficiency. Thus, it

felicitates in elimination of not only physical drudgery but also scorching and pungency that
hinder the extraction in traditional manual extraction.
Chilli storage
       Chillies stored in amber coloured polythene bags were found to retain colour for
longer period of storage. Mechanically dried chillies showed higher colour value in chillies
during storage than that of open yard sun dried produce.
Curcumin content in stored turmeric varieties
       The curcumin content in stored turmeric varieties progressively decreased with
length of storage period. Among the varieties tested the decrease in curcumin content in
storage was higher with Mydukur followed by PCT-14 and TC-2.
Chemical treatment of copra to prevent fungal damage
       Mature coconut halves treated with solutions of 1% acetic acid, sodium bicarbonate
or sodium chloride protected the copra from spoilage due to fungal infection.
Suitability of storage containers for storage of tamarind
   Tamarind gained moisture when stored in mud pots and gunny bags with reduced total
acidity compared to the produce stored in polythene bag, tetra pack or glass bottle. The
acidity of the samples stored in tetra pack was highest followed by polythene bags, whereas
it was least in case of the samples stored in gunny bags followed by mud pots.
   None of the structures however could prevent discolouration of stored tamarind as it is
temperature dependent.
Mango Harvester
       Experiments using IIHR mango harvester gave a harvesting capacity of 170-200 kg
mangos/hr (500-550 fruits/hr). It was observed that farmers are using a dhoti which is
made locally using bamboo stick and net made of jute thread. The net is connected to the
curved frame. Local dhoti gave a capacity of about 300-350 fruits/hr. Percentage dropped
fruits while harvesting were found to be lower 8-10% compared to 20-25% in local dhoti
thereby reducing the damage to the fruits. However the IIHR mango harvester is somewhat
heavy and difficult to handle for harvesting fruits by standing on the tree particularly for old
and well branched trees. Two types of Mango harvesters which are useful to harvest fruits
from ground (for small trees/young gardens) and on the tree (for old and well branched
trees) as alternatives to local harvester have been designed, fabricated and tested with
Banginapalli variety. The light weight harvester when used on large, well branched tress
grave a harvesting capacity of 625-650 fruits per hour. The heavy weight model useful to
harvest fruits from ground gave a capacity of 600-615 fruits per hours. Local dhoti gave a
capacity of 300-350 fruits/hr.

Conversion of tobacco barns for chilli drying
       Ten to twelve quintals of ripe chillies can be loaded in the existing tobacco barns to
dry chillies. G.I. wire mesh trays of size 10.5 x 7.5 x 7.5 cm are suitable to hold chillies on
the existing tiers. Each tray can be loaded with 7 to 8 kg of ripe pods. Drying time required
to reduce moisture from 75 to 10% (w.b.) vary considerably depending upon whether the
chilli is hybrid with thick pericarp (eg. Wonder hot) or varieties with medium to thin pericarp
(eg. LCA 334). The former takes about 50 hours to dry whereas the latter type takes about
40 hours only. The temperatures ranging initially at 50 oC to a final value of about 55OC are
appropriate for drying chillies. The open yard sun drying takes 12 to 15 days in comparison
to barn drying method. The cost of barn drying is approximately Rs.1.50-2.00 per quintal of
dry chilli. The percentage discoloured pods can be reduced to about 3.5 to 4% in barn dried
produce in comparison to 9-10% in open yard sun drying. The barn drying method has the
advantages such as 1) quality product with good colour retention and free from external
contamination. 2) less number of discoloured pods (Talukaya) 3) Reduction in drying time 4)
Drying can be accomplished even during inclement weather particularly early in the chilli
season i.e., November to February to fetch remunerative price.
Drying of chillies in a poly house
       ANGRAU poly house solar dryer of size 12 x 7.8 x 2.1m has been developed to dry
about 20 quintals of ripe pods. The dryer essentially consists of an arch type poly house to
hold chillies on two different tiers made of wire mesh fixed to frame assembled by nuts and
bolts. The whole frame structure is connected by nuts and bolts. The whole frame structure
is covered with a UV stabilized 150 gsm cross laminated semi-transparent polyethylene
sheet with ventilators at bottom and top to facilitate movement of air. The drying time is 5
to 8 days to reduce moisture form 75% to 10% (wb) in comparison to 15 to 20 days
required to dry chilli in open yard sun drying depending upon weather and type of chilli., i.e.
thick pericarp hybrids or thin pericarp varieties. The dryer can be converted into nursery
house by replacing poly sheet cover using 50% shade net. About 70,000 chilli seedlings can
be raised in the house per batch. The poly house can also be used to raise green Coriander
during off season i.e. in May and June when the chilli drying is completed. The poly house
can be efficiently use for about to 10 months in a year in chilli growing region i.e. Drying of
chillies during December to April, Coriander leaf production in May to June, raising chilli
nursery during July to September.
Chemical treatment of copra to prevent fungal damage
       Mature coconut halves treated with solutions of 1% acetic acid, sodium bicarbonate
or sodium chloride protected the copra from spoilage due to fungal infection.

Suitability of storage containers for storage of tamarind
       Tamarind gained moisture when stored in mud pots and gunny bags with reduced
total acidity compared to the produce stored in polythene bag, tetra pack or glass bottle.
The acidity of the samples stored in tetra pack was highest followed by polythene bags,
whereas it was least in case of the samples stored in gunny bags followed by mud pots.
       None of the structures however could prevent discolouration of stored tamarind as it
is temperature dependent.

          Composition of Manures and Fertilizers
                                Percentage of nutrients
                               N      P2O5        K2O
Ammonium Sulphate            20.5       -           -
Ammonium Sulphate Nitrate    26.0       -           -
Ammonium Nitrate             33.5       -           -
Ammonium Phosphate           16.0    20.00          -
Calcium ammonium Nitrate     20.5       -           -
Nitrate of Soda              16.5       -           -
Urea                         46.5       -           -
Superphosphate-Single          -     18.00          -
Superphosphate-Double          -     35.00          -
Superphosphate-Triple          -     45.00          -
Ultraphos                      -      28.3          -
Rock Phosphate                 -      28.4          -
Muriate of Potash              -        -    58.00 or 60.00
Poultry Manure              1.2-1.5     -           -
Sheep Manure                0.8-1.6     -           -
Farmyard Manure               0.4      0.3         0.2
Compost                       0.5     0.25         0.5
Bone Meal                     3.5     21.0          -

                                                                                                                           GUIDE FOR MIXING FERTILIZERS

                                                                                                                                                            8. Superphosphate single or triple
                                                                         4. Calcium ammonium nitrate

                                                                                                                                                                                                 9. Ammonium phosphate
                                                3. Sulphate of ammonia

                                                                                                                                                                                                                                          11. Calcium carbonate
                                                                                                                           6. Calcium cyanamide
                        2. Sulphate of potash
1. Muriate of potash

                                                                                                       5. Sodium nitrate

                                                                                                                                                                                                                         10. Basic slag
                                                                                                                                                  7. Urea

                                                                                                                                                                                                                                                       1. Muriate of potash
                                                                                                                                                                                                                                                       2. Sulphate of potash
                                                                                                                                                                                                                                                       3. Sulphate of ammonia
                                                                                                                                                                                                                                                       4. Calcium ammonium nitrate
                                                                                                                                                                                                                                                       5. Sodium nitrate
                                                                                                                                                                                                                                                       6. Calcium cyanamide
                                                                                                                                                                                                                                                       7. Urea
                                                                                                                                                                                                                                                       8. Superphosphate single or triple
                                                                                                                                                                                                                                                       9. Ammonium phosphate
                                                                                                                                                                                                                                                       10. Basic slag
                                                                                                                                                                                                                                                       11. Calcium carbonate

                        Fertilizers which can be mixed
                        Fertilizers which may be mixed shortly before use
                        Fertilizers which can be mixed

                       Note: The crossing point of the required vertical column and horizontal column indicates
                                                the possibility of mixing or otherwise of the fertilizer.

     Chemical Fertilizer Combinations and Dosages Charts
Recommende                                    Percentage of N, P2O5, K2O
d dose of
Fertilizers     10%      11%      12%       14%      15%       16%         17%   18%    19%        20%
                 1         2        3         4        5         6          7     8       9         10
     5           50        46       42        36       33        31         29    28      26        25
    10          100        91       83        71       67        63         59    56      53        50
    15          150       136      125       107      100        94         88    83      79        75
    20          200       182      167       143      133       125        118   111     105       100
    30          300       273      250       214      200       188        176   167     158       150
    50          500       455      417       357      333       313        294   278     263       250
    60          600       545      500       429      400       375        353   333     316       300
    75          750       682      625       536      500       469        441   417     395       375
    100         1000      909      833       714      667       625        588   556     526       500

     Dose 22% 25% 26% 28% 32% 35% 36% 45% 46% 50% 60%
           11  12  13  14  15  16  17  18  19  20  21
       5   22  20  19  18  16  14  14  11  11  10   8
      10   45  40  38  36  31  29  28  22  22  20  17
      15   68  60  58  54  47  43  42  33  33  30  25
      20   91  80  77  71  63  57  56  44  43  40  33
      30   136 120 115 107 94  86  83  67  65  60  50
      50   227 200 192 179 156 143 139 111 109 100 83
      60   273 240 231 214 188 171 167 133 133 120 100
      75   314 300 288 268 234 214 206 167 163 150 125
      100  455 400 385 357 313 286 278 222 217 200 167

     Note: Usage of the chart to obtain the required dose of Fertilizer.
     Locate the recommended dose of fertilizer in the vertical column (N=30) and in the
     horizontal column locate the available percentage of the fertilizer (N in urea 46%) the
     crossing point of these two columns indicates the required dose of chemical fertilizer (65)

                                 Herbicides available in the Market

S.No.          Common Name                               Trade Names                       % of a.i.
  1.    2, 4-D Sodium Salt               Fernoxone, Weedamar, Greenoxone, Salix,        80 WP
                                         Agrodex, Agrodar, Agrdone-48, Combi,
                                         Erbitox, Tafacide, Weedmar
 2.     2, 4-D (sodium)                  Knockweed
                                         Fernaxon, Tapicide, Weedicide                  80 WP
 3.     2, 4-D Ethyl Ester               knock Weed Granules, Agrotex                   4 Granules
 4.     2, 4-D (dimethylamine)           Agrodar (32,96), Knockweed 72
 5.     2, 4-D (ellylester)              Agrodex G
                                         Knockweed                                      4G, 18EC, 36EC
  6.    2, 4-D (ethyester)               Agrodone                                       48 EC, 18 WP
  7.    2, 4-D (Na salt)                 Agrosodium
  8.    2, 4-DB                          Butoxone
  9.    2, 4-D (ammine)                  Fenoxurone WP
 10.    2, 4-D                           Key-D
 11.    2, 4-D (DMA)                     Tafade
 12.    2, 4-D (amine)                   Weedar
 13.    Acetachlor                       Zeneca-ICI
 14.    Amitrole                         Weedazol
 15.    Amitrole+ammonium                Weedazol-TL
 16.    Alachlor+atrazine                MON 29870
 17.    Azafenidin                       Evolus
 18.    AMS                              Ammate
 19.    Atrazine                         Atrataf, Solaro, Surya, Milizine, Dhanuzine,   50 WP
 20.    Acrolein                         Aqualin
 21.    Anilophos (Anilofos)             Aniloguard, Aerogin, Anilostar, Arilodhan,     30 EC
                                         Arozin, Sumo, Check, Ricil, Glyphotox,
                                         Weedonil,     Anildhan,   Anilotof,  Arozin,
                                         Taguard, Rice, Rico
 22.    Anilophos + 2,4-DEE              Shot One, Aniloguard plus                      45 EC (24:32)
 23.    Anilophos                        Basagram                                       40 EC
 24.    (Anilophos+Ethoxysulfuron)       Rice Guard                                     26 WP
 25.    Anilophos+trichlopyr             BGE
 26.    Alachlor                         Lasso, Cattch, Alltof                          50 EC
 27.    Benzoylprop-methyl               Suffex plus
 28.    Benthiocarb                      Saturn                                         10 G
 29.    Benusulfuron-methyl              Londax                                         60 DF
 30.    Bromoxynil                       Jaguar
 31.    Bromacil                         Hyvar-X
 32.    Bentazon+Blazer                  Galaxy
 33.    Bromoxynil                       Bromonil, Buctril
 34.    Bensulide                        Betasan
 35.    Bentazone                        Basagran
 36.    Butachlor                        Butanex

37.   Butachlor                 Bilchlor, Trapp                               50 EC
                                Dhanuchlor,     Machete,  Teer,   Milchlor,   5G
                                Delchlor, Weedkill, Arochlor, Hiltachlor,
                                Lambast, Nirmool, Starchlor, Rasayanchlor,
                                Butanex, Pillarset
38.   Butachlor+2, 4-DEE        Anuchlor+2, 4-DEE                             5+4 Granules
39.   (Butachlor+Propanil)      Butanil                                       28+28EC
40.   Basphyriback Sodium       Naminigold                                    10 EC
41.   Cinosulfuron              Setoff
42.   Cyclocydim                Sethoxydim
43.   Choroxuron                Norex, Tenoran
44.   Chlorsulfuron             Glean
45.   Chlortoluron              Dicuron
46.   Clopyralid + 2,4-D        Curtail
47.   Cinmethylin               Cinch
48.   Clodinafop with safener   CGA-184927
49.   Cyanazine                 Bladex
50.   Cimzine                   Taphazine, Hexazine                           50 WP
51.   Carfentrazone-ethyl       Affinity
52.   Cinanethylin              Agrgold
53.   Carfentrazone ethyl       Aim
54.   Chlorimuron-ethyl +       Alkombo
      metsulfuron + anilophos
55.   Chloramben                Amiben
56.   Cinmethylin + 2,4-DEE     Argold plus
57.   Chlorimuron-ethyl         Kloben, Classic                               25 WP
58.   Clomazone                 Command                                       50 EC
59.   Cyhalofop-butyl           Clincher                                      10 EC
60.   Clodinofop-propargyl      Topik                                         15 WP
61.   Dichlormate               Sirmate
62.   Dinoseb                   Premerge
63.   Difenoxuron               Mowdown
64.   Dichlofop-methyl          Heolon
65.   Dinoseb                   Dow Weed Millor
66.   Dithiopyr                 Dimension
67.   Dichlobenil               Casoron
68.   Diallate                  Avadex BW
69.   Difenzoquat               Avenge
70.   Dicamba                   Banvel-D
71.   Dalapon                   Dowpon, Hexapon, Tafapon, Radapon             85 WP
72.   DSMA                      Ansar-529D
73.   Dazomet                   Mylone
74.   Diclofop-methyl           Illoxan                                       28 EC
75.   Diuron                    Agromex, Karmax, Klass, True, Hexuron         80 WP
76.   Endothall                 Hydrothol
77.   Ethoxysulfuron            Sunrise                                       15 WDG
78.   Flchlorin                 Basaalin                                      45
79.   Flupropanate              Tetrapion
80.   Flamprop (methyl)         Suffix super

81.    Fluroxypur+2, 4 D               Starane plus
82.    Fluroxypyr                      Starane
83.    Fluordifen                      Preforan
84.    Flamprop-methyl                 Metaven
85.    Flupyrsulfuron-methyl           Lexus                                           50 DF
86.    Fluometuron                     Lanex
87.    Fosamine                        Krenite
88.    Fluometuron                     Cotoran
89.    Flamprop (IP salt)              Barnon
90.    Fluchloralin                    Basalin                                         45 EC, 48 EC
91.    Flufenacet                      FOE-5043
92.    Fenoxaprop-p-ethyl              Puma super, Power, Whip super                   10 EC
93.    Fenoxaprop-p-ethyl              Rice star
94.    Firajo Sulfuran Ethyl           Saadhi                                          10 WP
95.    Glufosinate aommonium           Basta, Liberty                                  15 SL
96.    Glufosinate ammonium            Liberty
97.    Glyphosate                      Glycel, Roundup, Roleout, Cleanup, Weedall,     41 EC
                                       Break, Weedoff, Comet, Glytof, Noweed,
                                       Sweep, Randip
98.    Glyphosate+2, 4-D (IPA salts)   Ready mix
99.    Haloxyfop-butyl                 Fusillade                                       12.5 EC
100.   Haloxyfop-butyl                 Verdict, Focus
101.   Haloxyfop                       Gallant
102.   Haloxyfop-methyl                Dowco-443
103.   Hexazinone                      Velpar
104.   Imazosulfuron                   Takeoff
105.   Imazaquin                       Image, Sector, Tone up
106.   Imazaquin+pendimethalin         Squadran
107.   Imazapyr                        Assault
108.   Imazamethabenz-methyl           Assert
109.   Imazethapyr                     Pursuit, Hammer, Pivot                          10 SL
110.   (Imazethapyr+pendimethalin)     Valour, Pursuit plus                            32 EC (2+32)
111.   Isopropagyl                     JV-485
112.   Isoproturon+ 2, 4-D             Isoguard plus
113.   Isoproturon                     Alon                                            50 WP
                                       Arelon, Rakshak, Dhanulon, Graminon,            75 W.P.
                                       Carelon, Ciluron, Delron, Dhar, Greniran,
                                       Haproturon, Isocin, Isoguard, Isohit, Isolon,
                                       Isoptoturon, Isotox, Jaiproturon, Kanak,
                                       Marklon, Milron, Monolon, Nocilon, Norlon,
                                       Pestolon, Phulon, Prow, Ronak, Shivron,
                                       Sonaron, Sulron, Vegfru Taurus, Tolkan,
                                       Totalon, Tritilon, Wonder, Bengran, Hytane,
                                       Isoguard, Parlan
114.   Lactofen                        Cobex
115.   Linuron                         Afalon, Lorox                                   50 WP
116.   Linuron+Chlorimuron-ethyl       Gemini, Lorox plus
117.   Lenacil                         Venzar
118.   MSMA                            Weedhoe-108
119.   Metham                          Vapam

120.   Methazole                        Probe
121.   Metribuzin+chlorimuron-ethyl     Preview
122.   Molinate                         Ordram, Valan
123.   Metoxuron                        Doxanex                                     80 WP
124.   Metobromuron                     Patoran
125.   Metsulfuron                      DMC, Escort, Gropper
126.   MAA                              Anstar
127.   Mesosulfuron + iodosulfuron      Atlantis
128.   Mesosulfuron-methyl              Mesox maxx
129.   MCPA                                                                         40 SL
                                                                                    40 AS
130.   Metribuzin                       Sencor, Tatametri Barrier, Lexone, Tata     71 WP
131.   Metsulfuron-methyl +             Almix                                       20 WP
132.   Methabenzthiazuron               Ambinil, Perch, Tribunil, Yield             70 WP
133.   Metolachlor                      Dual                                        500 EC, 720 EC
134.   Metsulfuron-methyl               Algrip, Allie, Ally, Brushoff               20 WP
135.   Mextoxuron                       Dosanex, Hilnex, Hexanor, Invest            80 WP
136.   Napropamide                      Devrinol
137.   Nitralin                         Planvin
138.   Nitrofen                         Tok E-25
139.   Oryzalin                         Surflan
140.   Oxyfluorfen                      Goal                                        23.5Ec, 0.35G
                                        Oxygold, Alto                               23.5 EC
141.   Oxadiargyl                       Top Star, Raft                              80 WP
142.   Oxadiargyl                       Raught                                      6 EC
143.   Oxadiazon                        Ronstar                                     25 EC
144.   Picloram                         Tordon
145.   Pebulate                         Tillam
146.   Pethoxamid                       Successor-600
147.   Propachlor                       Ramrod
148.   Pyrazosulfuron-ethyl             Rallis, Saathi                              10 WP
149.   Peperphos                        Avirosan-rilof
150.   Pyrazon                          Pyramin
151.   Prometryn                        Prometrex
152.   Propazine                        Milogard
153.   Pethoxamid                       Koban
154.   Paraquate (without surfactant)   Gramoxone-S
155.   Paraquat                         Gramoxone, Gramuron                         23.5 EC, 0.35G
156.   Paraquat                         Sweep
157.   Prometryn                        Gesagard
158.   Propaquizafop                    Falcon
159.   Propham                          Chemshoe
160.   Prynachlor                       Basamaize
161.   Pyrithioback Sodium              Hitweed, Theme                               10 EC
162.   Paraquat dichloride              Gramaxone, Uniquat, Milquat,       Paralock, 24 SL
163.   Pretilachlor                     Arrage, Refit, Eraze                        50 EC
164.   Pretilachlor                     Sofit, Refit, Petrobest, Preeth             30 EC

165.   Pretilachlor+2, 4-D           Ready mix
166.   (Pretilachlor+safener)        Sofit                                      50 EC
167.   Propanil                      Stam F-34, Hexanil                         34 EC
168.   Pendimithalin                 Stomp,    Pendistar,  Gadar,    Dhanutop, 30 EC
                                     Pendimil, Dost, Mop up, Pandia, Pendiherb,
                                     Pendigold, Prowl
169.   Pendimithalin                 Stomp                                      20 EC
170.   Quizalofop-ethyl              Targa Super                                5 EC
171.   Sethoxydim                    Poast
172.   Sunfonylurea                  Hoe-404
173.   Sirmate
174.   Simazine                      Sathi,    Gesatopso,   Hexazine,  Princep, 50 WP
175.   Sulfosulfuron                 Leader                                      75 WG
176.   Terbacil                      Sinbar
177.   Thiobencard (=ben thiocard)   Saturn                                      50 EC
178.   Triallate                     Avadex BW                                   50 EC
179.   Triflaralin                   Flora, Rampage, Tip Top, Traflan, Trinetra, 48 EC
                                     Trilex, Trofan, Krilin
180.   Triasulfuron                  Amber,
                                     Logran                                      20WG, 75WG
181.   Triclopyr                     Dowco-443
182.   Trilopyr+clopyralid           Redeem
183.   Trifloxysulfuron sodium       Enfield
184.   Tribenuron (methyl)           Express
185.   Thifensulfuron                Harmony
186.   Triclopyr                     Garlon
187.   Thiobencarp                   Saturn                                      10 G
188.   Thiazopyr                     Visor                                       2E

       Perennial weeds like Cyperus rotundus, cynodon dactylon etc. in orchards can be
controlled effectively by spraying glyphosate at 2.5 to 5.0 L ha-1 dissolved in 500 liters of
water. Falling of the spray fluid on young fruit plant foliage should be avoided Second spray
is required when there is regrowth of weed. (cost Rs.700/- to 1400 ha-1)


Kerosene Emulsion
       This is a contact insecticide useful against many sucking insects. Finely divide 500 g
of ordinary bar soap and dissolve it in 4.5 litres of water by boiling. Cool and add 9 litres of
Kerosene. The mixture is then violently agitated until the oil is completely emulsified. The
stock solution can be diluted with 15-20 times of water before spraying.
Tobacco Decoction
       This is very effective for controlling aphids infesting vegetable crops. Tobacco
decoction can be prepared by steeping 500 gm of tobacco in 4.5 litres of water for 24 hours.
Then 320 gm of ordinary sliced bar soap is dissolved separately in another vessel. The soap
solution is added to tobacco decoction and the stock solution is diluted 6-7 times.
Neem Seed Suspension
       This is very effective as a repellent against locusts and gross hoppers. The mature
dropped neem fruits should be collected and kernels obtained. The kernels should be ground
into a coarse powder. For obtaining 0.1% concentration 1 g of powdered neem seed is
required for a litre of water. The required quantity of the coarse powder should be put in a
small bag of muslin cloth and dipped in water contained in a bucked and squeezed till the
water becomes light brownish. This is to be sprayed on crops for protection.

               Insecticides – Their Common Names and Trade Names with Formulations
 S.   Common Name               Trade names with              Mode of Action        Control and dosage
No.                               Formulations
 1            2                         3                             4                          5
Oragnochlorine group
 1.  Chlordane                                           Non-systemic
                           Intox „8‟ DP 2.5 D; Intox 10 D;                         Filling in leaf axills
                           Intox „8‟ DP 50 WP            insecticide; Contact      against coconut
                                                         and stomach with          rhinoceros beetle.
                                                         some fumigant
 2.   Aldrin               Aldrex 30 EC; Aldrin 10 D     Non-systemic              Residual, highly
                                                         insecticide; Soil         persistant soil insecticide
 3.   Endosulfan           Hildan 35 EC; Thiodan 35 EC;  Non-systemic              All type of insects
                           Starsulphan 35 EC; Hexasulfan insecticide and           especially leaf eating
                           35 EC; Endocel 35 EC; acaricide; Contact                caterpillars
                           Megaendo; Endodhan; Endotaf and stomach                 2ml/l
                                                                                   insecticide. Relatively
                                                                                   safer to beneficial
                                                                                   insects and pollinators.
Carbamates group
 4.   Carbaryl             Hexavin 5 D and 10 D; Sevin 5     Stomach and           Leaf eating caterpillars,
                           D; Sevin 50 WP; Kilex carbaryl    contact with slight   Aphids, Thrips
                           50 WP; Kilex carbaryl 80 WP.      systemic action       400-600 g/acre
 5.   Carbosulfan          Marshal 25 EC                     Systemic, stomach     Seed treatment (pulses)
                                                             and contact           50-60 g/kg seed
 6.   Thiodicarb           Larwin 75 WP                      Stomach, contact      Jassids, Caterpillars and
                                                                                   250-300 g/acre
 7.   Methomyl             Lanet 40 SP; Dunet 40 SP          Systemic; Stomach     Caterpillars and pests on
                                                             and contact           vegetables
                                                                                   2 – 3 g/l
Carbamates group - Granules
 8.    Carbofuran 3% G  Carbofuran, Furan, Legent,           Systemic,   contact Sucking    pests           and
                        Hexafuran 3% G, Furadan 3%           and stomach         nematodes
                        G etc.                                                   10-12 kg/acre.
Joint formulation
 9.    Carbaryl and     Sevidol 8 G*
Organophosphorus group
 10. Methyl Parathion   Metacid 50 EC; Paramar M 50          Non-systemic;         Leaf eating caterpillars
                        EC; Parmet M 50 EC                   Contact and           1.5 ml/l
                                                             stomach; Rapid        Not to be used against
                                                             knock down action.    pests supporting wide
                                                                                   spectrum of natural
                                                                                   enemies. To be used
                                                                                   with extreme caution
11.   Methyl Parathion     Follidol 2 D; Metacid 2 D         Non-systemic;         Termites, Leaf eating
                                                             Contact and           caterpillars
                                                             stomach               10 kg/acre

12.   Fenitrothion         Folithion 50 EC; Sumithion 50 Non-systemic              Effective against
                           EC                            insecticide and           chewing and sucking
                                                         acaricide; Contact        pests
13.   Acephate             Starthene 75 WP; Tamaran Systemic; Contact              Sucking pests, Leaf
                           gold 75 WP; Asataf 75 WP;                               eating caterpillars
                           Ardin 75 WP; Megastar 75 WP;                            1.0-1.5 g/l
                           Turbido 75 WP; Lancer 75 WP;
                           Lucid 75 WP; Hilphate 75 WP;
                           Twinguard 75 WP; Deldin 75
                           WP; Archem 75 WP; Dhanraj
                           75 WP; Acephex 75 WP
14.   Malathion            Cythion 10% D; Malathion 50% Non-systemic;              Safe insecticide for
      (Mercaptothion)      EC;     Malamer   50%     EC; Contact, stomach          controlling vegetable
                           Malasandoz 50% DC; Cythion                              pests.
                           25 EC                                                   Leaf eating caterpillars,
                                                                                   200-400 ml/acre
15.   Dichlorovos (DDVP)   Nogos 76 EC; Nuvan 76 EC; Contact, stomach              Sucking pests,
                           Marvex super 76 EC; Vapona and fumigant.                caterpillars
                           76 EC; Divas 76 EC; Doom 76                             1ml/l
                           EC; Doomer 76 EC; Suchlor 76                            Residual toxicity lasts for
                           EC                                                      only 24 hours. Safer to
                                                                                   be applied on
16.   Quinalphos           Ekalux 5 D; Ekalux 5 G; Ekalux Contact and              Leaf eating caterpillars.
                           25 EC; Berucil; Flash; Smash; stomach.                  2.0-2.5 ml/l
                           Quick;     Choffer;    Selquin;                         Particularly effective
                           Hilquin; Megaquin; Quinlux;                             against mealy bugs and
                           Vajra; Queenguard; Chemlux                              scale insects.
                           Quinoltaf; Suquin
17.   Phosalone            Zolone 35 EC; Zolone 4 D        Broad spectrum          Thrips and Mites in
                                                           insecticide with        Chillies
                                                           contact and             400-500 ml/acre
                                                           stomach action. Also
                                                           has acaricidal action
18.   Fenthion             Lebaycid 50 EC                  Contact and             Used for effective
                                                           Stomach                 control of rice stem
                                                                                   borer, red palm weevil of
                                                                                   coconut etc.
19.   Dimethoate           Rogor 30 EC; Dimor 30 EC;      Systemic                 Sucking pests
                           Rogor 5 G; Kilex Dimethoate 30                          2ml/l
                           EC; Tara 909; Celgar; Novogar                           Effective against sucking
                                                                                   insects Long rersidual
                                                                                   action and contact
20.   Methyl – O-          Metasystox 25 EC                 Strongly systemic      Sucking pests
      demeton                                               effective against      2ml/l
                                                            sucking insects and
21.   Formothion           Anthio 25 EC                     Systemic and

22.   Monocrotophos     Nuvacron 36 SL; Monocil 36 SL;     Systemic, persistent,   Sucking pests, Red mites
                        Bilphos 36 SL; Crotocil 36 SL;     long residual action,   and white mites, Leaf
                        Croton 36 SL; Cadet 36 SL;         ovicidal action too,    eating caterpillars etc.,
                        Monophos 36 SL; Megamono           contact and             1.5 to 2.0ml/l
                        36 SL; Hilcron 36 SL; Phoskil 36   stomach
                        SL; Guardian 36 SL; Monochem
                        36 SL; Luphos 36 SL; Azordin
                        36 SL
23.   Profenophos       Curacron 50 EC: Baspro 50 EC:      Non-systemic            Sucking pests,
                        Kareena 50 EC: Celcron 50 EC:      insecticide and         caterpillars
                        Bolero 50 EC: Proven 50 EC:        acaricide; Contact      2ml/l
                        Profex 50 EC                       and Stomach
24.   Chlorpyriphos     Dursban 20 EC; Dermet 20 EC;       Contact, stomach        Leaf eating caterpillars
                        Radar 20 EC; Force 20 EC;          and fumigant            (2.5-3.0ml/l),
                        Suchlor 20 EC; Tricell 20 EC;                              Termites (4-5ml/l),
                        Tafaban 20 EC; Coroban 20 EC;
                        Fantan 20 EC; Classic 20 EC;
                        Hilban 20 EC; Megaban 20 EC;
                        Chloroguard 20 EC; Dhanvan
                        20 EC; Lentrek 20 EC
25.   Triazophos        Hostothian 40 EC; Vachan 40        Stomach, contact        Whitefly, Jassids
                        EC; Truzo 40 EC; Trizocel 40       and broadspecturm       2.0-2.5 ml/l
                        EC; Suthathian 40 EC
26.   Trichlorfon       Dipterex 50 EC                     Useful only against
                                                           chewing insects
27.   Thiometon         Ekatin 25 EC                       Systemic effective
                                                           against sap sucking
Organophosphorus group - Granules
 28. Phorate 10% G     Phoretax, Thimet 10% G,             Systemic,    contact Sucking pest of roots
                       Grenade, U.Met, Loofet              and fumigant         and nematodes.
                                                                                For soil and leaf axil
                                                                                application against the
                                                                                banana      bunchy   top
                                                                                vector       and      for
                                                                                controlling nematodes of
                                                                                5 – 6 kg/acre.
Neonicotinoid group
 29. Imidacloprid       Confidor 17.8 SL; Tatamida Systemic and                    Sucking pests
                        17.8 SL; Imidacel 17.8 SL; contact                         0.6ml/l
                        Imidex 17.8 SL; Admit 17.8 SL;
                        Atom 17.8 SL; Hexamida 17.8                                Seed treatment
                        SL; Courage 17.8 SL; Imidagold                             @ 5-7 g/kg seed
                        17.8 SL; Chemida 17.8 SL;
                        Maharaja 17.8 SL; Media 17.8
                        SL; Gouch 17.8 SL

30.   Acetamiprid          Pride 20 SC; Price 20 SC; Erban Systemic; Stomach     Jassids, Aphids
                           20 SC; Manik 20 SC; Permit 20 and contact             (20g/acre)
                           SC                                                    Thrips, whiteflies
31.   Thiamethoxam         Cruiser70 WS                Systemic and              Seed treatment @ 5g/kg
                                                       contact                   seed.
32.   Thiamethoxam         Actara 25 WG; Renova 25 WG; Systemic and              Sucking pests, 25-
                           Ananth 25 WG                contact                   30g/acre (0.1g/l)
Benzoyl Urea group
 33. Diflubenzuran         Dimlin 25 WP                     Stomach and    Jassids
                                                            contact        1g/l
 34. Nuvaluran            Remon 10 EC                       Stomach        Jassids and caterpillars
A fermentation product from the soil actinomycete Streptomyces avermitilis group
 35. Emamectin            Proclin 5 SG                 Stomach             Caterpillars, Jassids
      Benzoate                                                             90g/acre

Thiourea group
 36. Diafenthiuron         Pegasus 50 WP                    Broad spectrum and   25g/acre
                                                            multiple activity
Phenylpyrazole group
 37. Fipronil              Regent 5 SC                                    Sucking pests (Including
                                                            Stomach, contact
                                                            and systemic  Thrips)
                                                                          2.0-2.5 ml/l
A fermentation product from the soil actinomycete Saccharopolyspora spinosa group
 38. Spinosad             Tracer45% SC, Spinstar       Stomach, contact   Jassids and Thrips
Oxadiazine group
39.   Indoxscarb         Avant 14.5 EC; Daksha 14.5 Non-systemic;                Jassids
                         EC; Dava 14.5 EC           Stomach and                  200-250 ml/acre
Phenylpyrazole group - Granules
 40. Fipronil 0.3% G     Regent – G.R.              Systemic                     Leaf folders and sucking
                                                                                 7-10 kgs/acre
Nereistoxin group - Granules
41.   Cartap               Sasvex, Cimitar, Caldan, Padan   Systemic; Stomach Leaf folders
      Hydrochloride 4% G                                    and contact       6-8 kg/acre

 42. Cypermethrin     Belsip, Cald, Java, Ankush,           Stomach        and All types of caterpillars
     10%EC            Cympher,     Laser,      Silcard,     contact            and borers
                      Cypermar,              Megatrin,                         1ml/l
                      Cyperguard,   Bullet,     Ustad,
 43. Cypermethrin 25% Cybel, Cald, Java, Bisatrin,          Stomach        and All types of caterpillars
     EC               Cymbush, Trophy, Cyperkil,            contact            and borers
                      Megacyper, Cyperguard, Cyrex,                            0.5ml/l
                      Whitegold, Superkiller, Ralotrin

44.   Fenvalerate 20% EC  Fenval, Belfen, Phonocron,          Stomach        and All types of caterpillars
                          Fencel,      Tatafen,     Hilfen,   contact            and borers
                          Sumicidis, Lufen, Tremcard,                            0.6-1ml/l
 45. Alfametrin 10% EC    Sherepalpo,      Phars,    Jem,     Stomach        and All types of caterpillars
                          Legend, Alfaguard, Forward,         contact            1.0-1.5 ml/l
                          Guru, Alfadan, Farmex, Tata
                          Alfa, Axil
 46. Deltametrin2.8% EC Desis        Bytam,     Decaguard,    Stomach        and Borers
                          Deltex                              contact            4-10ml/10l
 47. Bita Cyputhrin 25% Buldak                                Stomach        and Borers
      EC                                                      contact            300ml/acre
 48. Lamida Cyhalothrin Kungfu, Reena, Judge                  Stomach        and Leaf holders and
      2.5% EC                                                 contact
 49. Lamida Cyhalothrin Carate                                Stomach        and Leaf holders, Borers
      5%                                                      contact            200-300ml/acre
 50. Fenpropathrin 30% Meyothrin                              Stomach        and Leaf eating caterpillars
      EC                                                      contact            300 ml/acre
Pyrethroid derivative group
 51. Ethofenfrax          Nukil 10 EC                         Quick knock down    Leaf folders, leaf
                                                              action              hoppers, plant hoppers
                                                                                  specially in rice
Sulphur group
 52. Sulphur 80% W.P.       Thiovit, Sulfex, Microsul, Sultaf, Contact            Mites  and        Powdery
                            Cumulus                                               mildew
53.   Sulphur 40% EC        Share                             Contact
Organochlorine group
54.   Dicofol 18.5% EC      Kelthane, Colonel,      Dicobel, Stomach         and Red mites and white
                            Hexakel, Hilfol                  contact             mites in chilles, citurs
                                                                                 3-5 ml/l
Sulfite group
55.   Propargite 57 EC      Simba, Oomite                                         Red mites
                                                                                  200 ml/acre
Organophosphorus group
 56. Ethion 50% EC     Phosmite, Tafithion, Dhanumit          Stomach, contact    Mites
                                                                                  200-300 ml/acre
 57. Aluminium              Celphos tablets,                  Fumigant            To be used with extreme
     Phosphide Tablets      Phosfume etc.                                         care.       Used      for
                                                                                  fumigating        rodent
                                                                                  burrows and also for
                                                                                  controlling   pests    of
                                                                                  stored grain and against
                                                                                  red palm weevil
58.   Aluminium             Quickphos                         Fumigant            Storage pests control
      Phosphide 56% EC

 59. Chloripyriphos 50% Nurel D 505, Cinrangi, Hamla, Stomach        and Leaf and Fruit eating
     + Cypermethrin 5% Terror                         contact            caterpillars

 60   Ethion   40%    + Calfs, Pagat, Spectrum       Stomach,     contact Leaf eating caterpillars
      Cypermetrhin 5%                                and systemic         and mites
                                                                          1.0-1.5 ml/l
61.   Profenophos     + Rocket                       Stomach         and Fruit borer and sucking
      Cypermethrin                                   contact              pests
                                                                          300-400 ml/acre
62.   Chloropyriphos 16% Ducard                      Systemic        and Sucking       pests     and
      + Alfamethrin 20%                              contact              nematodes
63.   Acephate 25% + Coronda                         Stomach,     contact Leaf eating caterpillars
      Fenvelarate                                    and systemic         300-400 ml/acre
64.   Triazophos       + Spark                       Stomach         and Whitefly, Leaf eating
      Deltamethrin                                   contact              caterpillars
                                                                          300-400 ml/acre

                             PREPARATION OF FUNGICIDES
Bordeaux mixture
       To prepare 1% Bordeaux mixture, dissolve 1kg of copper sulphate and 1 kg of lime
each separately in 50lt of water. Add the copper sulphate solution slowly to lime solution
with continuous stirring. High concentration of copper in the prepared mixture is injurious to
plants. To check the concentration of copper element in the prepared mixture, dip a blade or
a knife or a sickle in the solution. Red color on the blade indicates higher copper
concentration. To reduce the copper concentration in the mixture, slowly add lime to the
mixture and check for copper with blade. Use the freshly prepared mixture every time. Don‟t
use the stored mixture.
Bordeaux paste
       Dissolve 1kg copper sulphate and 1kg lime each separately in 5 lt of water. Add the
copper sulphate solution to lime solution with continuous stirring. Apply the paste to the
trunk and cut portions of stem. Prepare freshly the paste at the time of use. Don‟t use
stored paste.
Cheshunt mixture
       Powder finely 60g of copper sulphate and 330g of ammonium carbonate separately
and mix both the powders in a vessel. Close the lid of the vessel with polythene cover tightly
to prevent air circulation. After 24hr, add 1lt of water to 25g of powder. Mix this in 8lt of
water before spraying.
Neem cake
       To prepare 0.1% neem cake, soak 1g neem cake in 1lt of water till the water turns
brown color. Use this brown solution for spray.
Tobacco mixture
       Soak 500g of tobacco in 4.5lt of water for 24hr and filter the solution. Soak 320g of
carabolic soap in 1lt of water in a separate vessel. Add the soap solution to tobacco filtrate.
Dissolve 1lt of this mixture in 7lt of water and use for spraying.

              Fungicides – Their Common Names and Trade Names with Formulations
 S.     Common Name               Trade names with            Mode of Action       Control and dosage
No.                                 Formulations
 1            2                           3                          4                     5
Dithiocarbamate group
 1.   Mancozeb 75% WP       Dithane M 45, Indofil M 45,     Non-systemic;       All diseases
                            Belzeb,  Manzeb,   Manezeb,     Therapeutic     and 750-1000 g/acre
                            Uthane M 45, Hilden, Spic       eradicant           Seed treatment @ 2.5 –
                            Mancozeb                                            3.0 g/kg seed.
 2.   Propineb 70% WP       Antracol                        Non-systemic;       All Leaf spots
                                                            Therapeutic     and 2 g/l
Benzimidazole group
 3.  Carbendazim 50% Bavistin (50% WP), MEC (50% Systemic;                      Seed treatment @ 1.0-
     WP              WP), BAS-3460, Carbendazim Prophylactic                and 1.5 g/kg seed.
                     (50% WP), Derosar, Arrest, eradicant                       All diseases
                     Benguard, Benfen, Stin, Milstin,                           150-200 g/acre
                     Chemistin, Zoom, Dhanuswim                                 Not effective against
                                                                                phycomycetes     and

 4.   Benomyl 50% WP        Benlate 50 WP                   Systemic;        Leaf spots, Rusts, Collar
                                                            Prophylactic and rot etc.
                                                            eradicant        80-120 g/acre
                                                                             Should not be mixed
                                                                             pesticides alkaline in
 5.   Thiabendazole         Bengard, Mycozol, Arbotect,     Systemic;        Incompatible with a
                            TBZ (60 WP) etc.                Prophylactic and number       of      other
                                                            eradicant        pesticides.
 6.   Thiophanate           Topsin (50% WP),                Systemic;        Should not be mixed
                            Cercobin (50% WP)               Prophylactic and with Bordeaux mixture
                                                            eradicant        or      Lime      Sulphur.
                                                                             Compatible with most
                                                                             other           fungicides
                                                                             excepting          copper
 7.   Thiophanate Methyl    Topsin-M (70% WP), Roko         Same as that of Powdery mildew, Downy
                                                            Thiophanate.     mildew, Seedling rot
                                                                             250-500 g/acre
Triazole group
 8.   Hexaconazole     5% Cantaf,   Control,        Sitara, Systemic;             2ml/l
      EC                  Menege, Toper, Hexzol             Prophylactic    and
 9.   Tricyclozole    75% Beam,      Trooper,     Dhantim, Systemic;            0.6g/l
      WP                  Lottery, Sivic                    Prophylactic    and Seed treatment @ 2-
                                                            eradicant           4g/kg
10.   Propiconazole 25 EC   Tilt, Radar                     Systemic;           1ml/l
                                                            Prophylactic    and

11.   Difenconazole 25% Score                             Systemic;             Fruit rot in Chilles
      EC                                                  Prophylactic    and
12.   Bitertanol 25% WP    Baycor                         Systemic;           Powdery mildew, Leaf
                                                          Prophylactic    and spots
                                                          eradicant           200-400 g/acre
13.   Triadimefon     25% Bayletan                        Systemic;           Powdery mildew
      WP                                                  Prophylactic    and 150-250 ml/acre
Organophosphorus group
 14. Iprobenfos        Kitazin                         Systemic;                400 ml/acre
                                                       Prophylactic       and
15.   Ediphenophos         Hinosan (30 and 50% EC) and Non-systemic;            1 ml/l
                           2-2.5% dust.                Therapeutic        and
16.   Iprobenfos           Kitazin-P                   Systemic;              Compatible       with    most
                                                       Prophylactic       and commonly                 used
                                                       eradicant              pesticides
Basic copper group
 17. Copper oxychloride    Cupravit (73.5% COC),          Non-systemic;       All diseases (Leaf spots,
                           Blimix 4%, Blitox-50 (50% Therapeutic          and fungal diseases, collar
                           COC), Cupramar–50% , W.P. eradicant                rot,    root rot, citrus
                           (50% COC), Micop W-50 Micop                        canker)
                           D-6, Fytolon (88% COC),                            3 g/l
                           BLUE Copper-50, Chlorocop-56                       Not to be mixed with
                           (97%     COC),    Emulsicop-40                     TMTD.            Mercury
                           (70% COC), Oleocop-40 (70%                         compounds, lime sulphur
                           COC), Fycol BE, Fycol-8,                           and dithiocarbamates
                           Fycop-56, Indofilcop, Captor,
                           Hilcoper, Dhanucop
Inorganic copper group
 18. Copper    hydroxide Cocide, Ecide                Non-systemic;             All diseases 2g/l
      77% WP                                          Therapeutic         and
19.   Cuprous oxide        Fungimar (50% Cu), Perenox Non-systemic;           Incompatible with Lime
                           (50% Cu), Copper 4% dust Therapeutic           and sulphur. Compatible with
                           (4% C.O.), Copper Sandoz eradicant                 most other pesticides.
                           (50% Cu).
Elemental sulphur group
 20. Sulphur dust       Kolodust (53% sulphur) etc.     Non-systemic;         Should not be applied
                                                        Therapeutic       and when temperatures are
                                                        eradicant             high.
21.   Wettable sulphur     Microsul 80%, Vegfru vegsulf Non-systemic;         Same as that of sulphur
                           80% WDP, Thiovit, Cosan, Therapeutic           and dust. It is the safest on
                           Hexasul etc                  eradicant             tender            foliage.
                                                                              Compatible with may
                                                                              fungicide              and

Organic sulphur – Dithiocarbamates group
 22. Ziram 27% SL         Ziride (80 WDP), Hexazir (80% Non-systemic;         Seed treatment @ 3 g/l
                          WP), Cuman L (30% liquid),    Therapeutic       and Wilt, Canker, Mildews,
                          Zerlate (76%, 65% WP).        eradicant             Leaf spots, Rust and
                                                                              Fruit rot
                                                                              600-1000 ml/acre.
                                                                              Non-phytotoxic except to
                                                                              zinc, sensitive to crops
                                                                              such as tobacco and
                                                                              cucurbits.    Compatible
                                                                              with common fungicides
                                                                              and insecticides.
23.   Thiram               TMTD, Hexathir (75% WP),       Non-systemic;
                           Thride (75 D), Vegfru thiram   Therapeutic     and
                           (75% dry seed dress), Texsan   eradicant
                           (75), Thimer, Arasan (50%)
24.   Zineb 75% WP         Dithane Z-78, Hexathane (75%   Non-systemic;       Rust, Mildews, Fruit rot,
                           WP), Lonacol, Zineb (65),      Therapeutic     and Rhyzome rot
                           Zineb instantised (35%),       eradicant           600-800 g/acre
                           (Zineb 5 AQUA enmulsion),                          Zinc sensitive plants
                           Miltox (Zineb + COC)                               such as tobacoo and
                                                                              cucurbits are injured.
25.   Maneb                Dithane M-22, Manzate,     Non-systemic;
                           Dithane M-45, (Zinc+Maneb Therapeutic          and
                           75%), Fungicide dust (6% eradicant
                           Coordination    product or
Oxathiin derivative group
 26. Carboxin             Vitavax, Vitavax 200 (37.5% Systemic;               Best used as seed
                          Carboxin+37.5 Thiram        Prophylactic        and treatment against Loose
                                                      eradicant               smut of wheat
 27. Oxycarboxin          Plantvax                    Systemic;               Effective against rusts
                                                      Prophylactic        and
Morpholine group
 28. Tridemorph 80% EC Calixin (75% EC)               Systemic;               Powdery           mildew,
                                                      Prophylactic        and Sigatoka leaf spot on
                                                      eradicant               Banana, Rust etc.
                                                                              75-150 ml/acre
                                                                              Compatible           with
                                                                              common        fungicides,
                                                                              insecticides          and
                                                                              micronutrients. It should
                                                                              not be mixed with Urea.
                                                                              Calixin is phytotoxic at
                                                                              0.1% on barley foliage
Antifungal antibiotic group
 29. Aureofungin           Aureogungin,                   Systemic;             Tip burn in cereals.
                           Aureogungin-sol                Prophylactic    and

30.   Griseofluvin                                         Systemic;
                                                           Prophylactic    and
31.   Validamycin 3% L     Sheathmar, Rhyzocin             Systemic;             250 g/acre
                                                           Prophylactic    and
Tin group
 32. Fentin Hydroxide      Duter                           Non-systemic;       Compatible            with
                                                           Therapeutic     and wettable           powder
                                                           eradicant           formulations of other
                                                                               pesticides             but
                                                                               incompatible          with
                                                                               emulsiable formulations
                                                                               and oils. At higher rates
                                                                               of application apples,
                                                                               tomatoes, potatoes and
                                                                               wheat                show
33.   Triphenyltin acetate Brestan                         Non-systemic;       Compatible            with
      (TPTA)                                               Therapeutic     and wettable           powder
                                                           eradicant           formulaions. It is not
                                                                               compatible      with    oil
                                                                               containing formulations.
                                                                               Phytotoxic to various
                                                                               vines,     fruits     and
34.   Triphenyltin         Brestanol 45% WP                Non-systemic;
      Chloride (TPTC)                                      Therapeutic     and
Phthalimide group
 35. Captan 50% WP         Captan 50 W, Captan 75 W,       Non-systemic;       Seed treatment 2g/kg
                           Esso fungicide 406, Orthocide   Protective,         650-700 g/acre
                           406, (Captan 50% W.P.),         therapeutic     and Incompatible with all
                           Hexacap 50% WF, Hexacap         eradicant           alkaline materials. Lime
                           7.5% dust (7.5% Captan),                            sulphur and Bordeaux
                           Orthocide 7.5 dust (7.5%                            mixture. It is compatible
                           Captan), Orthocide 75-SL                            with      marry     other
                           (75% Captan for slurry)                             common fungicides and
Carboximide group
 36. Folpet                Pheltan                         Non-systemic;
                                                           Therapeutic     and
37.   Captafol             Difolatan (80% W.P.),           Non-systemic;
                           Difosan, Senspar, Sulfonimide   Protective,
                                                           therapeutic     and

Dinitrophenyl group
 38. Dinocap 48% EC      Karathane, Arathane, Capryl,   Non-systemic;       Chlorinospora leaf spot,
                         DNOPC, Mildex, Mildont and     Protective,         Powdery mildew and
                         Crotothane                     therapeutic     and mites
                                                        eradicant           85-125 ml/acre

                                                                              If    used    at   higher
                                                                              concentration or when
                                                                              the          atmospheric
                                                                              temperatures are above
                                                                              30O C it may damage the
                                                                              foliage.    It     causes
                                                                              aberrations in Vicia feba
Organochlorine group
 39. Quintozene          Brassicol, Terrachlor          Non-systemic;
                                                        Therapeutic     and
40.   Chlorothalonil 75% Kavach                         Non-systemic;       Powdery mildew, Rust,
      WP                                                Therapeutic     and Leaf Blotch and Collar
                                                        eradicant           rot
                                                                            300-500 g/acre
Benzene sulphonates group
 41. Dexan              Dexon                           Non-systemic;
                                                        Therapeutic     and
Sterol inhibitor group
 42. Miclobutanil    10% Sinthane                       Systemic;           Powdery     mildew   in
       WP                                               Prophylactic    and chilles, Fruit rot and
                                                        eradicant           Collar rot
                                                                            120-160 g/acre
 43. Metalaxyl 8% + Ridomil MZ, Matco 8.64, Master      Systemic;           Downy mildew, Fruit rot,
     mancozeb 64% WP                                    Prophylactic    and Rhyzome rot etc.
                                                        eradicant           600-1000 g/acre
44.   Carbendazim 12% Compaian, Saff, Sixer             Systemic;           All diseases
      + Mancozeb 63%                                    Prophylactic    and 400-600 g/acre
      WP                                                eradicant
45.   Cymaclinal 8% + Karjet M 8, Suggest               Systemic;           Mildews in Vine fruits
      Mancozeb 64% WP                                   Prophylactic    and and vegetables
                                                        eradicant           600-800 g/acre

                Waiting period (days) of Pesticides in vegetables
     Crop       Chillies   Bhendi      Brinajl    Tomato      Cabbage     Cauliflower
Carbaryl          5          2           1             2           3-4        5
Monocrotophos     23         23          -             5            -          -
Phosolone         6          7           5             3          7-10        10
Dimethiote        6           -          7              -           -         5
Cypermethrin      7          7           5             5          7-10        10
Quinalphos        7          15          -             5            5          -
Endosulfan         -         7           5              -         7-10       7-10
Malathion          -         2           2             4            5         5
Fenvelarate        -         7           7             10         10-14        -
Delta Methrin      -          -          2             2           3-4         -

                  Waiting period (days) of Pesticides in Fruits
                             Crop                Grape      Mango
                  Carbaryl                        5          7
                  Monocrotophos                   23          -
                  Phosolone                       6           -
                  Diemthiote                      6           -
                  Cypermethrin                    7          9
                  Quinalphos                      18         15
                  Fenvelarate                     6          10
                  Delta Methrin                    -         3
                  Dithane M-45                    5           -
                  Ridomyl                         10          -
                  Carbandazim                     1           -
                  Thiophanate Methyl              9           -
                  Dichlorovas                     5           -
                  Acephate                        10          -
                  Chlorophiriphos                 20          -

                         Methods to reduce the Pesticide residues
 Crop         Pesticide                      Method                       Reduction of
                                                                        pesticide residues
           Carbaryl           1. Cook for 15 minutes after washing             75%
                              with 2% salt solution
                              2. Washing with 2% salt solution                27.4%
                              3. Washing with water                           12.8%
           Fenvelarate        1. Washing with 2% Tamarind solution            46.7%
                              2. Washing with 2% salt solution                26.6%
Tomato                        3. Washing with water                           23.2%
           Monocrotophos      1. Cooking for 15 minutes after washing          32%
                              with 2% salt solution
           Phosolone          Cooking for 15 minutes after washing            63%
                              with 2% salt solution
           Quinalphos         Cooking for 15 minutes after washing            30%
                              with 2% salt solution
           Cypermethrin       1. Washing with 2% salt solution                 60%
                              2. Dipping in water for 10 minutes              28.4%
           Triazophos         1. Washing with 2% salt solution                32.6%
                              2. Dipping in water for 10 mintues              16.3%
           Acephate           1. Washing with 2% salt solution                58.9%
                              2. Dipping in water for 10 minutes              27.4%
           Carbaryl           Cooking for 15 minutes after washing             69%
                              with 2% salt solution
           Monocrotophos      Cooking for 15 minutes after washing            60%
                              with 2% salt solution
           Phosolone          Cooking for 15 minutes after washing            60%
                              with 2% salt solution
           Quinolphas         Cooking for 15 minutes after washing            29%
                              with 2% salt solution
           Quinolphas         Removing upper three leaves from the            100%
           Chloropyriphas     Removing upper three leaves from the            100%
           Monocrotophas      washing with water after keeping for 10         59.3%
                              minutes in the 2% salt solution
           Acephate           washing with water after keeping for 10         72.3%
                              minutes in the 2% salt solution
           Dichlorovas        washing with water after keeping for 10         67.5%
                              minutes in the 2% salt solution
           Chloropyriphas     washing with water after keeping for 10         51.8%
                              minutes in the 2% salt solution
           Quinolphas         washing with water after keeping for 10         75.6%
                              minutes in the 2% salt solution
           Teepalmethrin      washing with water after keeping for 10         58.2%
                              minutes in the 2% salt solution

                               LIST OF BANNED PESTICIDES
Benzene hexachloride (BHC)
Calcium cyanide
Copper acetoarsenite
Dibromochloropropane (DBCP)
Ethyl mercury chloride
Ethyl parathion
Nicotine sulphate*
Paraquate dimethyl sulphate
Pentachloro nitrobenzene (PCNB)
Pentachlorophenol (PCP)
Phenyl mercury acetate (PMA)*
Sodium methane arsonate (MSMA)
Methomyl 12.5% L**
Methomyl 24% Formulation
Phosphamidon 85% SL** (Banned in A.P.)
Ethion 50 EC (Banned in A.P.)
         * Manufactured in India for export only,
         ** Banned w.e.f. 25 March 2002.
         Source: Pesticides Handbook, 2001. SPS Publications

       Ready Reckoner for dissolving insecticides at desired strength
                                          Percentage of Active Ingredient of
     Desired Strength of
                                         Insecticides in Commercial Products
        Solution in %
                                      20    25    30      35    50    75     100
            0.010                    0.5   0.4 0.33 0.29 0.20 0.13 0.10
            0.020                    1.0   0.8 0.67 0.57 0.40 0.27 0.20
            0.050                    2.5   2.0 1.70 1.50 1.00 0.67 0.50
            0.075                    3.5   3.0 2.50 2.20 1.50 1.00 0.75
            0.1                      5.0   4.0 3.33 2.86 2.00 1.33 1.00
            0.2                      10.0 8.0 6.67 5.71 4.00 2.67 2.00
            0.5                      25.0 20.0 17.0 15.00 10.00 6.67 5.00
            1.0                      50.0 40.0 33.33 28.52 20.00 13.33 10.00

       Quantity of insecticides to be added in gram or in ml per litre of water


1. Thorough coverage of the plants is essential.
2. Under surface of the leaves must be covered with the insecticides.
3. Quantity of spray fluid for vegetables should not be less than 200 l/acre of 500 l/ha
   and for orchards 400 l/acre of 1000 l/ha.
4. A safe period of 10 to 15 days between spraying and harvesting is to be maintained
   whenever spraying is done during bearing, except in case of carbaryl, malathion and
5. Farmer must use a plastic measuring jar for diluting appropriate quantities of
   insecticides in water to get the required strength/concentration.

        Table – 1 Compatability chart of Chemical Fertilizers and Pesticides

                                 CHEMICAL FERTILIZERS
                         No.     1  2  3   4   5  6   7       8
                          1                C   C
                          2                    C
                          3                    C  C
                          4                    C
                          5                C   C
                          6                N N
                          7            C       C
                          8                    C
                          9                    C
                         10            C       C              C
                         11                C   C
                    P    12                    C
                    E    13                    C
                    S    14                    C
                         15                    C
                         16                       C
                         18              C       C
                    E    19      C   C           C   C
                    S    20                      C
                         21                      C
                         22                      C
                         23                      C
                         24                      C            C
                         25                      C
                         26                      C
                         27              C   C   C   C
                         28              C       C       N
                         29                          C
                         30              C       C       N
                         31                      C
                         32                      C
                         33                      C

             C = Can be mixed.
             N = Can not be mixed.

                                   Table No.1 Particulars
1. Acephate                    12. Endosulfan               23. Methyl Parathion
2. Aldicarb                    13. Fenitrothion             24. Monocrotophos
3. Carbaryl                    14. Fensulfothion            25. Phenthoate
4. Carbofuran                  15. Fenthion                 26. Fenamiphos
5. Carbosulfan                 16. Hexachlorohexane         27. Phorate
6. Chlorfenvinphos             17. Isofenphos               28. Phosphomidon
7. Chloropyriphos              18. Lindane                  29. Profenophos
8. Diazinon                    19. Malathion                30. Quinolphos
9. Dichlorovas                 20. Mefosulfone              31. Terbufos
10. Dimethoate                 21. Methamidophos            32. Telodrin
11. Disulphoton                22. Methyl-O-dematon         33. Triazophos

1. Borax                       4. Superphosphate            7. Triple Superphosphate
2. Ferrous Sulphate            5. Urea                      8. Diammoniumphosphate
3. Muriate of Potash           6. Zinc Sulphate

Source:          A guide on crop pests – A. Regupathy, S.Palanisamy, N. Chandra Mohan, K.
                 Gunathilagaraj (1997)

                          Table -2 Compatability chart of Pesticides, Fungicides and Biopesticides
                                                        FUNGICIDES                                             BIOPESTICIDES
                No.   1   2     3   4   5   6   7   8    9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24    25   26
                1                       C       C        C             C    C    C    C
                2         N         C   C       C                           C                                       C    C
                3         N                         C        C         C    C    C    C
                4               C                        C                                                                    C
                5               C   C   C       C                           C         C    C
                6               C       C                C   C         C    C    N
                7     N   N     N   C   N       C        C             C              C                        C
                8         N                                            C                                       C
                9               C   C   C       C        C             C    C         C                        C
                10    C   N     C           C   C   C    C   C         C    C    C                                            N

                11        N     C                   C                                 C
                12        N     C   C   C                C   C              C    C    C                        N
                13        N     C   C   C       C   C    C   C    C    C    C    C    C                        C
                14        N
                15        N     C   C   C                C             C    C         C              C         C                   C
                16        N     C                   C    C             C    C    C
                17        N                              C
                18    C   N     C                        C   C              C                                  C
                19        N     C   C   C                C   N                        N
                20        N     C   C   C                C   C              C         C
                21        N     C   C   C                C                  C
                22              C                        C
                23        N     C   C   N   C            C   C    C    C    C    C    C              C         C              C
                24        N     C                                                C    C                        C
                25        N                                  C
                26                                                                                                  C    C    C

                27                                                                                             C
                28                                                                                             C
                29                                                                                             C
                31              N           C            N                       N    N                   C
                32                      N

                              C = Can be mixed.
                              N = Can not be mixed.

                                   Table No.2 Particulars
1. Dicofol                     10. Malathion                19. Cypermethrin
2. Endosulfan                  11. Methamedophos            20. Deltamethrin
3. Lindane                     12. Methyl-o-Dematon         21. Fenvalerate
4. Acephate                    13. Monocrotophos            22. Fenpropathrin
5. Chloropyriphos              14. Phenthoate               23. Carbaryl
6. Dichlorovas                 15. Phosphamidon             24. Carbofuran
7. Dimethoate                  16. Phosalone                25. Carbosulfan
8. Fenetrothion                17. Profenophos
9. Fenthion                    18. Quinolphos
26. Bascillus turinginsis      29. Beveria besciana         31. Tricoderma spp.
27. Heliothis armigera N.P.V. 30. Verticillion lacani       32. Pseudomonas florescence
28. Spodoptera litura N.P.V.

1. Benomyl                     8. Dinocap                   14. Thiram
2. Bordeux mixture             9. Mancozeb                  15. Captan
3. Carbandazim                 10. Wettable Sulpher         16. Tridemorph
4. Captafol                    11. Thiophanate Methyl       17. Copper Sulphate
5. Copper Oxychloride          12. Ziram                    18. Oxycarboxin
6. Carboxin                    13. Zineb                    19. Metalaxyl
7. Edifenophos
20. Bascillus turinginsis      23. Beveria besciana         25. Tricoderma spp.
21. Heliothis armigera N.P.V. 24. Verticillion lacani       26. Pseudomonas florescence
22. Spodoptera litura N.P.V.


Mile                -   1760 yards or 1609.34 m. or 5280 feet
Meter               -   1.0936 yards or 39.37 inches
Yard                -   0.9144 m. or 91.44 cm.
Feet                -   0.3048 m. or 30.48 cm.
Inch                -   2.54 cm. or 25.4 mm.
Acre                -   4840 sprare yards or 43560 sprare feet
Acre                -   0.4047 ha.
Hectare (ha)        -   2.471 acres
Mile                -   1.609 km
Metric ton (MT)     -   1000 kgs or 2204.6 pounds
Pound (Lb.)         -   0.4536 kilos or 453.6 g.
Kilogram (kg.)      -   2.2046 pounds
Quintol (Q)         -   100 kgs
Gallon (G)          -   4.5361 l.
Liter               -   0.2200 gallon or 1000 ml
Ounce (oz.)         -   28.412 ml.
Teaspoon            -   5 ml.
Candy               -   500 pounds or 226.8 kgs
One Cart load (FYM) -   Half a ton
Lbs. per acre       -   1.12 kgs of heactare
Bale                -   170 kgs
Putti (paddy)       -   560-600 kgs (8 bags)
Bag                 -   70-75 kgs


Shared By:
Description: Package of Practices of the Important Horticultural Crops MANGO Ganoderma Extract