Computer Science by gza74461


More Info
									                                Computer Science Department

A. Department Overview:
The mission of the Department of Computer Science at Utah State University is to maintain a program of excellence
in teaching, research, and service. At the undergraduate level, students are given the opportunity to obtain a well-
founded understanding of the principles and theories of the science of computing. The curriculum includes a
University Studies program that gives students the social, ethical, and liberal education needed to be positive
contributors to society as a whole. Students receiving a bachelor's degree in computer science are ready to enter the
work force as productive computer scientists or continue their education at the graduate level. Their foundation in
computer science is such that they can be life-long learners in their chosen field. At the graduate level, students
receive both quality and technically current instruction, and leading edge research opportunities. In addition to
responsibilities for program excellence and professional development, faculty members are committed to service
through continuing education programs and research that contributes to their field. At the department level, students,
faculty, and the program itself is continually assessed to assure that the mission and outcome objectives are being

Computer Science degrees were first offered at USU in the late 1960’s. At that time, the department was part of the
Department of Applied Statistics. Shortly thereafter, the name of the department was changed to the Department of
Applied Statistics and Computer Science. In 1982, these departments were separated into the Department of Applied
Statistics and the Department of Computer Science. Also at this time, the Computer Science Department was
granted permission to offer a Plan B MS degree along with its BS/CS. In 1986, the department received permission
to award a Plan A MS degree. Since the start of the MS/CS program, Computer Science has had the highest MS
enrollment in the College of Science.

In 2000, the department was granted permission to begin offering the PhD/CS. However, at the time, it was felt that
one additional faculty position was needed. Therefore, it was not until the addition of faculty under the Governor’s
Computer Science and Engineering Initiative (2002) that the PhD was actually begun. The department now has 17
full time tenured (8) or tenure-track faculty (9), 2 full time lecturers, and one open faculty position.

In 1998, the department sought and received CSAB accreditation for its three undergraduate option, Science,
Digital, and Information Systems. In 2001, the department was again accredited (same three options), only this time
as CSAB had become part of ABET, the accreditation was under ABET. This last Fall 2006, the ABET accrediting
team recommended accreditation of the current three options and the new Bioinformatics option. Also, during 2006,
the first two Computer Science PhD’s were granted.

Like most computer science programs, the department has seen its up’s and down’s in terms of enrollment. In the
early 1980’s there were over 400 undergraduate majors. In the early 2000’s, following the crash and
inaccurate but damaging predictions about the impacts of out-sourcing, the department again saw a decline. While
enrollment is down somewhat, with 337 current majors, the department is still the second largest department in the

The department, while now large enough to offer courses in multiple areas of computer science, focused its graduate
and research emphases in Artificial Intelligence, Bioinformatics, Parallel and Distributed Systems, and Software
Systems. External funding for research in these areas is increasing. The department’s goal in terms of external
funding is $3M-$4M within six years. This year’s growth is on target for $1M in external funding.

Currently, the major challenge that the department faces is a lack of space. As the graduate program grows, there is
simply no more space available to house graduate students. Hopefully, space can be found, because without it, the
department will not be able to reach its goal for PhD enrollment (~40), or for external funding. There have been
discussions about moving the department into a new building on the Quad; however, it appears now that the
department is no longer being considered for such a move.
As an ABET accredited program, it goes without saying that the department continually assesses its programs,
especially at the undergraduate level. Each degree has a specific set of learning outcomes and these outcomes are
measured throughout the year by multiple tools. The specific learning objectives for the various degree options can
be found at:

The specific assessment tools are as listed below. Data from these tools are available from the department’s web
page -

1. Advanced Standing

        Advanced standing is a requirement that all undergraduates must meet in order to take upper division
        classes.   A     copy     of   the    Advanced    Standing     application form      is   given    at While there have been slight changes in
        the requirement over the years, it has been in effect for over two decades. The advanced standing
        requirement serves as one of the major assessment and quality management tools of the program. It has
        four components, a coursework requirement; a GPA (Grade Point Average) requirement; a repeat limit
        requirement; and an examination requirement.

2. Advanced Standing Exams

        While the Advanced Standing Exams (ASE’s) are part of the overall Advanced Standing Requirement,
        their importance to undergraduate assessment is such that they are described here as an individual element
        of overall assessment. All students must pass the three exams comprising the ASE. These exams assess a
        student’s understanding of the material presented in the core computer science courses of their first two
        years in the program. In order to enroll in junior level classes (above 3000-level), all three exams must be
        passed, along with all other requirements for Advanced Standing. The three exams cover the areas of
        algorithms and data structures, computer organization, and software engineering. One of the assessment
        improvements made this last year was to automate the exams and deliver them using inetTest. InetTest is a
        USU developed assessment tool. It not only automates the process of test delivery and grading, but also
        allows for a detailed examination of performance in specific test areas.

3. Alumni Newsletter (feedback)

        Since 2004, the department has mailed a newsletter to its alumni on a regular basis (twice yearly). Included
        with this newsletter is a request for information about their lives since graduation. While such information
        is anecdotal, it does represent one more data point for assessment purposes. In general, the responses have
        been positive about the program and the preparation students are being given for their careers.

4. Alumni Survey

        In 2000 and 2005, alumni from the department were surveyed. In the 2000 survey, the questions were fairly
        general. In the 2005 survey, a more detailed survey form was developed and sent. In general, both surveys
        indicate satisfaction with the program and the preparation received by students for their careers.

5. Capstone Class

        Based on an assessment of the projects developed by students in various programming classes in relation to
        the stated undergraduate outcomes (2004-5), it was decided to initiate a capstone course for all computer
        science majors. This course will be offered for the first time in Fall, 2006. The major goal of the capstone
        class is assessment, and thus there are no specific outcome goals for the course.

        The course is a one credit class requiring each student to develop a significant software product. In this
        class, the student’s project and/or presentation is expected to exhibit most of the following technical and
        communication skills.
        Technical skills which should be exhibited in a capstone project
       Programming skills (from CS 1700 & 1720: persistent stores, classes, objects, etc.)
       Use of data structures (from CS 2200: trees, queues, hashing, etc.)
       Software engineering principles (CS 2370: planning, analysis, design, user interface, implement, testing,
       Machine architecture (CS 2550 & 2650: assembly language, data representations)
       Operating system / network knowledge (CS 3100: concurrency, scheduling, memory management,
        interrupt servicing, communications, etc.)
       Programming language concepts (CS 4700: parsing, language representation, finite automata, etc.)

        Communication skills which should be exhibited in a capstone project
       Written communication via the following kinds of documents:
            1. User guide
            2. Project Plan
            3. Requirements Definition
            4. System Design Document
            5. Implementation Documentation
            6. Testing Plan and Results
       Oral presentation

6. College of Science Exit Survey

        Each year the College of science surveys all graduating seniors. During the summer, the surveys are given
        to the departments including a tabulation of the results. The purpose of the survey is to allow students to
        assess their program. Since six departments with differing goals are involved, the individual responses are
        not tailored to any single department’s outcomes. However, the information is valuable in that it gives the
        department an overall image of students’ impressions of the program and how it compares to others in the
        College and University. The result for the College of Science Exit Survey for each of the last four years can
        be viewed on the Web at Included with the exit survey are several
        questions requiring a written response. These responses are also reviewed at each year’s department retreat.

7. Course Examinations and Homeworks

        To a large extent, the content of an examination is the responsibility of the instructor. The department does
        not give common exams, although in the introductory classes (CS1400, 1410,2420), when there are
        multiple sections, common assignments are given. Examinations and homework assignments represent an
        important assessment tool for all courses. Examples of exams and homework assignments for all computer
        Science courses will be part of the department display available to the review team during their visit. These
        items are central to each instructor’s self-assessment of their course. They also have a significant impact on
        the grade students receive in a class and thus impact advanced standing. Faculty course self-assessment
        results are significantly influenced by the performance of students on exams and homework.

8. Department Faculty Meetings

        A very important assessment tool is the discussions that take place during monthly faculty meetings and at
        the yearly department retreat. In fact, while the data may come from other sources, all issues concerning the
        program are discussed during these meetings and it is in these meetings that most decisions are made. The
        template agenda for all such meetings is the same. During the on-site visit, copies of department meeting
        minutes will be available for review.

9. Department Head Exit Survey

        Each year the department head interviews most of the graduating seniors. For 2005-6, the process was
        made a requirement, and thus essentially all of the graduating seniors are being interviewed. The main
        purpose of the survey is to give students the opportunity to self-assess in terms of the department’s
         expected outcomes. Additionally there are questions on issues such as the quality of advising, plans for the
         future, and interests in other courses. There has been other data collected in previous years. The
         modifications to the survey during these last two years make summarization with previous years
         problematic, and so they have not been included.

10. Faculty Course Self-Assessments

         While faculty have always performed an informal self-assessment of their courses, this process was not
         formalized until Fall 2005. It is now required that all faculty assess every class every semester. The
         assessment is done in terms of the goals or learning outcomes for each class. This material is (will be)
         reviewed each year at the Fall department retreat.

11. Industrial Advisory Board

         Three times in the last six years the department has invited industry representatives to campus. In general,
         these are graduates of our program and/or industry recruiters. During these meetings, discussions are held
         about our program, the curriculum, graduate goals, etc. Industrial advisory board meetings were held
         regularly in 1998-2000. Since then, because of cost restrictions, they have been held less frequently.

12. Minimum Grade Requirements for Graduation in Computer Science

         As noted in the Advanced Standing document, in addition to meeting the GPA requirements for Advanced
         Standing, there are also grade requirements for graduation. Any course required in the major; this includes
         required mathematics, science, economics, ethics, etc. classes; must be taken for a grade, and the minimum
         grade is C-. The other GPA requirement is that there may be no more than one CS5000-level class on a
         student’s transcript with a grade below C-. If a student has two such classes (grades below C-) then they
         must retake one of the classes and receive a grade of at least C- in order to graduate.

13. Starting Salary Survey

         In addition to alumni survey information, the department also acquires data on graduate starting salaries.
         The responsibility for collecting this data rests with the department adviser. Unfortunately, the responses to
         questions concerning starting salaries are often times limited.

In general, the department’s assessment of its graduates and the programs offered is that the best are able to compete
with the best from other schools. The department has the nucleus of an outstanding dedicated faculty and excellent
majors. Obviously, there are always opportunities for improvement. Some of those opportunities can only be
addressed with additional resources and/or space. Specific challenges and recommendations for improvement will
be presented in the following sections.

B. Undergraduate and Graduate Programs:
1. Degrees Offered:

The USU Computer Science department offers degrees at the Bachelors, Masters, and PhD level. At the
undergraduate level, there are 5 options:

         Transcript:         Computer Science – Emphasis – Science
         Diploma:            Bachelor of Science – Computer Science

         Transcript:         Computer Science – Emphasis – Digital Systems
         Diploma:            Bachelor of Science – Computer Science

         Transcript:         Computer Science – Emphasis – Information Systems
         Diploma:            Bachelor of Science – Computer Science
           Transcript:     Computer Science – Emphasis – Bioinformatics
           Diploma:        Bachelor of Science – Computer Science

           Transcript:     Computer Science – Emphasis – Information Technology
           Diploma:        Bachelor of Science – Computer Science

The first three options have been ABET accredited for nine years. The Bioinformatics option will be accredited
beginning July, 2007. The fifth option is not currently ABET accredited. The department will seek accreditation for
this option in the not too distant future.

At the graduate level a Master of Science (MS) degree is offered under three options:
      Plan A – Thesis 6 credits, 24 credits of course work
      Plan B – Report 2 credits, 32 credits of course work
      Plan C – 37 credits of course work

The distribution of majors in these three plans varies from year to year, with the largest single group now being Plan

A Master of Computer Science (MCS) is another graduate degree offered in the department. This degree requires the
same total course work credits as the PhD, but does not require a dissertation. To date, there have been no students
opting for this degree. In some ways, this degree is offered for those who are unable to complete the PhD.

The PhD degree is similar in general characteristics to most such PhD’s. Students are required to complete 63 credits
of course work and 27 credits of dissertation. In order to formally begin one’s research, a student must pass a set of
written examinations and an oral examination The department, as of
Spring semester, 2007, has 19 PhD students. We are hoping to ~double this number over the next three years.

2. Data:
                                                        COLLEGE OF SCIENCE
                                                  DEPARTMENT OF COMPUTER SCIENCE

Undergraduate Headcount                                       2002        2003      2004    2005    2006

                      Computer Science                          53          72        73     225     258
                      Interdisciplinary Studies                                                3
                      Liberal Arts and Sciences                                                1
                      Science Undeclared                                                      24
                      PreComputer Science                      267         216       199
Total Undergraduate                                            320         288       272     253     258

Graduate Headcount
                      Computer Science                         139         146       124      82      88
                      Master of Computer Sciences                1           1         2       1
                      Toxicology                                                               1
                      Computer Science Masters                  10          21        20
Total Graduate                                                 150         168       146      84      88

TOTAL MAJORS                                                   470         456       418     337     346

                      % Full-time                            73.8%       72.9%     72.4%   72.7%   72.5%
                      % Female                               10.0%        8.0%      6.6%   13.4%    7.4%
                      % Minority                              4.4%        3.5%      3.7%    4.3%    5.8%
                      % International                         8.8%        8.0%      8.1%    7.5%    5.8%
                      % Full-time                            50.7%       22.0%     35.6%   44.0%   55.7%
                      % Female                               22.0%       17.9%     18.5%   20.2%   19.3%
                % Minority                    2.0%      1.8%      1.4%      0.0%      1.1%
                % International              78.7%     73.2%     71.2%     69.0%     61.4%

STUDENT CREDIT HOURS (FALL SEMESTER)          2002      2003      2004      2005      2006

               1000                           1962      1768      1261       942       959
               2000                            574       557       466       324       312
               3000                            377       369       362       233       216
               4000                            253       158       219       207        58
               5000                           1039      1013       783       763       705
               6000                            379       556       404       229       252
               7000                             80       155       139       158       162
TOTAL STUDENT CREDIT HOURS                    4664      4576      3634      2856      2664

DEGREES (ACADEMIC YEAR)                     2001-02   2002-03   2003-04   2004-05   2005-06

                Bachelor                        35        46        38        41        42
                Post Bachelor
                Masters                         23        31        48        63        58
                Post Masters (Specialist)
                Doctoral                                                                 1
TOTAL DEGREES                                   58        77        86       104       101

                                              2000      2001      2002      2003      2004
FIRST-YEAR RETENTION RATE (FALL COHORT)      79.4%     72.0%     73.1%     62.5%     50.0%

                                              1995      1996      1997      1998      1999
SIX-YEAR GRADUATION RATE (FALL COHORT)       40.0%     50.0%     44.4%     25.9%     48.0%
3. Analysis and Assessment:

The two areas of greatest change over the last five years have been enrollment and student credit hours
generated. The undergraduate enrollment decrease mirrors a national trend. In fact, some schools have seen
undergraduate enrollment decreases as much as 70%. The fact that computer science’s decrease is ~19%
from 2002 to 2005, speaks well of the program. At the graduate level, the large drop is due partly to visa
issues over which the department has no control, and due to a move to give emphasis to the PhD program.
Currently there are 19 students enrolled the CS/PhD program. While we do not have data for Fall 2006, it
does appear that the MS enrollment in the program is at least stable. With the emphasis on the PhD, most of
the department’s financial aid and research assistantship money is now going to the PhD program. That is
likely another reason for the decline in MS enrollment.

4. Challenges and Recommendations:

With the demographics of the State of Utah, it is not likely that significant growth in the undergraduate
program’s enrollment can occur without increasing the diversity in the program. Currently, only about 20%
of the undergraduates in the program are women. The number of minorities in the program is only about
1%. Thus, a major challenge to the department is to increase diversity at the undergraduate level. The
department has begun to build better associations with local high schools, and is also beginning an
association with a local K-8 charter school. It is also working in conjunction with other departments in the
College to build better outreach programs.

It has long been the goal of the College to develop a WISE (Women in Science and Engineering) program.
The budget shortages of late have prevented the hiring of a WISE director. It is hoped that in the near
future, funds will become available.

At the graduate level, external funding, and additional laboratory space are the most critical needs. All
faculty in the department realize that the acquisition of external funding carries significant weight in their
yearly evaluations. The issue of laboratory space is much more problematic, i.e. its solution is largely out of
the department’s hands. Simply stated, a new building or new space is needed.

C. Faculty:
1. Data
                                                COLLEGE OF SCIENCE
                                          DEPARTMENT OF COMPUTER SCIENCE

FULL-TIME FACULTY                                               2002       2003    2004    2005   2006
                Headcount                                         15         17      17      19
                % Female                                       26.7%   23.5%      23.5%   15.8%
                % Minority                                      6.7%   11.8%      11.8%   15.8%

        Rank                                                    2002       2003    2004    2005   2006
                       Professor                                   3          3       2       3
                       Associate Professor                         8          8       8       7
                       Assistant Professor                         2          4       4       7
                       Lecturer                                    2         2        3       2

        PERCENT OF FACULTY WITH TERMINAL                        2002    2003       2004    2005   2006
        DEGREES*                                               86.7%   88.2%      82.4%   89.5%

* Analysis based on full-time instructional faculty.
2. Research/creative activity productivity:

Since 2001, with the addition of new untenured faculty, and the retirement of several faculty members whose
emphasis was teaching, the creative activity in the department has increased significantly. In 2001, the number of
publications/faculty member/year was <1. For 2006 it was ~2. Over time, we expect this number to increase. During
FY 2005-6, the total external funds received were ~$800K. At month 6 of FY2006-7 the total of external grants was
~$650K. The goal for FY2010-11 is $2M. We believe that this goal will be met.

3. Extension Service productivity:

Since the 1970’s the department has offered course work at various extension (Distance) sites. In 1990, a distance-
based MS/CS was offered at Hill Air Force Base (Ogden). In 1998, this program was implemented as a state-wide
satellite-based MS degree. In 2000, a BS/CS at selected distance sites was begun. At present, an average of five
MS/CS degrees per year are awarded through this program. At the BS level, <1/year BS/CS degrees are awarded.
With possible expansion of the program to Salt Lake Community College, Snow College, and College of Eastern
Utah, we expect the number of degrees awarded at both levels will increase. We also expect the increasing need for
CS graduates will positively impact the number of majors at the distance sites. Furthermore, there is a likelihood that
some degrees will be offered internationally. This also will increase the number of distance graduates.

4. Analysis and Assessment:

The current size (including the one open position) of the department is sufficient to meet the needs of the
undergraduate and graduate programs. Certainly, additional faculty would improve the total dollars generated
externally, but teaching needs are being met. The Distance program has the potential to increase significantly in size.
Such an increase will likely require the hiring of additional faculty sited at the branch campuses.

5. Challenges and Recommendations:

As noted earlier, the major challenge for faculty is the need for additional space, especially laboratory space. At
present there is simply no additional space. This is forcing the department in some instances to divide current space
among competing needs, giving some to all, but an adequate amount to none. Simply stated, the department needs
additional space.

D. Support Services:
1. Data:

The department currently has four full time staff personnel. In the main office, there is an administrative assistant
(Tracie Pace), and an accounting assistant (Genie Hansen). The department also has a full time computer technician
(Robert Wood), and a Computer and Information Literacy (CIL) lab manager (Robert Barton). In addition to the
E&G funding for the CIL manager, a $30 fee is assessed to each new USU student to cover the remaining costs of
implementing the CIL general education requirement. The department head has 50% of their time allocated for
administration and an associate department head receives one month of salary for administration. The department
also manages 3 public access computer labs (~100 systems). The funding for these labs comes through the student
computer fee. The current budget is $90K/year. The department also has an operating budget of $64K and a TA
budget of $180K.

2. Analysis and assessment:

The recent hiring of an accounting assistant has helped significantly with budgeting oversight needs. However, the
greatest needs of the department in terms of staff or support levels are additional operating and TA funds. There are
approximately 175 computers owned by the department. The cost of maintaining and replacing these systems on a
timely basis exceeds the department’s operating budget. In order to supplement its operating budget, the department
has been forced to place additional fees on several of its classes, and it has not been able to replace equipment as
frequently as desired.
The lack of adequate TA funds has meant that the department has few true teaching assistants. In most cases lab
instructors, graders, and tutor/recitation leaders are being hired on an hourly basis at a relatively low salary. In fact,
if the proposed Federal minimum wage increase is implemented, the department will have to raise these wages.
Without adequate TA funds, the department is often unable to attract graduate students of the quality it would desire.
US nationals are extremely difficult to attract since the competition for them is so keen.

3. Challenges and recommendations:

The simplest solution to solve the challenges of inadequate operating and TA funds is more funding from the State.
While some increase may occur, any increase is likely to be inadequate. Thus, other sources of funding are needed.
For TA funds, the most likely new source will be research grants. This will not directly address the need for more
TA funds, but it will address the need to attract graduate students of the highest quality. The department portion of
the overhead funds coming from grants monies would allow for some help in the hiring of TA’s. Finally, there is the
possibility that the offering of graduate programs abroad will result in an increase in funding to the department.
While somewhat tenuous, the current funding model would increase discretionary funding to the department, and
thus enable it to increase is TA stipends.

To top