Docstoc

Tich phan trong de thi Dai hoc

Document Sample
Tich phan trong de thi Dai hoc Powered By Docstoc
					Chuyªn ®Ò TÝch ph©n §Ò tuyÓn sinh míi
 /4

1. 3. 5. 7. 9.


0

1  2sin 2 x dx 1  sin 2 x

(§HBO3)

2. 4. 6. 8. 10. 12. 14. 16. 18. 20. 22.

x
0

2

2

 x dx

(§HBO3)

x  1  x  1 dx 1

2

(§H AO4) (§HDO4) (§HBO5) (§HAO6) (§HBO6)


1  /2

e

1  3 ln x . ln x dx x sin 2 x  sin x dx 1  3cos x
sin x

(§HBO4) (§HBO5)

 ln( x
2  /2

3

2

 x)dx


0 0


0 0

sin 2 x cos x dx 1  cos x sin 2 x cos x  4sin x
2 2

 /2

 (e
1 0

 cos x) cos x dx (§HDO5)
2x

 /2



dx

 ( x  2)e
 /2
0

dx

(§HDO6) (C§SPVP 02)

dx 11.  x e  2e  x  3 ln 3
 /2

ln 5

 sin x sin 2 x sin 3x dx
5

13. 15. 17. 19. 21. 23. 25. 27. 29. 31. 33. 35. 37.

 cos 2 x(sin
0

 /2
4

x  cos4 x)dx (C§SPHT 02) dx
(C§SP NT02) (C§KTTV03) (C§HV04) (CSM1 04)

 cos
0

xdx

(C§SPHT 02) (C§KTKTHD02 ) (C§DD 04) (C§SP HP04) (C§SP HN04)

 1 x
2

3

x
8

7

 2x
2

4

x
1 e

e

2

ln 2 x dx

x
0

3

3

1  x dx

x3 1  x ln xdx 1

 x3 1  x dx
1

9

x
1

3

2

 2 x  1 dx
dx

 ( x  1)e dx
2 x 0

1


0

3

x5  2x3 x 1
2

 /3  /4




tgx cos x 1  cos 2 x

dx

(C§SP BN04) (C§SP BP 04) (C§SP HN 04) (C§GT 04) (C§GT 04) (C§ KTKT 04) (C§LK 04) (C§ A04)

 x 1  24.    dx x2 1
2 2

(C§SP NB04) (C§SP KT 04) (C§SP HN 04) (C§GT 04)

x sin x  1  cos2 x dx 0

26. 28.

 1 e
0

1

dx

x

 /4


0

xtg 2 x dx


2

1 x dx x

3

 ( x  2  x  2 )dx
4

5

30. 32. 34. 36. 38.

x 2e x  ( x  2) 2 dx 0

1


2 0

2dx x5 4

 (4 x
0

1

2

 2 x  1)e 2 x dx (C§GT 04)
(C§ KTKT CN04) C§HC 04) (C§TB 04)



1 1
0

x
5

4

x 1

dx

x
0

2

2

4  x 2 dx
1  x dx

2

xdx 2 x  2 x
2

 2x

dx  5x  2

1 2

x

0



ln(1  x) dx x2 1

Biªn so¹n néi dung: ThÇy NguyÔn Cao C-êng - 0904.15.16.50

1

Chuyªn ®Ò TÝch ph©n
 /2

39. 41. 43. 45. 47. 49. 51. 53.


0

sin 2 x dx cos x  1
1  x 2 .x 3 dx

 /2

(C§KTKT 04) (C§ §N 04) (C§TCKT 04) (C§ A05) (C§GT 05) (C§KTKT 05)

40. 42. 44. 46. 48. 50. 52. 54.

 1  3cos x dx
0

sin x

(C§CN 04) (C§LT 04) (C§ YT NA04)

0  /2



3


0

sin x dx 2004 sin x  cos2004 x

2004

0  /2

 (x  1)

1

xdx

2


0

4sin 3 x dx 1  cos x

3 2  x x  3 dx 0

1

x
0

1

5

1  x 2 dx
x 3  1x 3 .dx

1  /2

3
e
0 0

3

x 3 dx (C§ XD 05) x 1  x  3
3x

sin 5 x dx

(C§KTKT 05) (C§TH 05) (C§CT 05)


0

3

 /4



1  2sin 2 x dx 1  sin 2 x

1 7/3

x

0

2

dx  2x  4

(C§SP HCM05) (C§SP VL 05)
x 2



ln x dx x2 1

e


0

3

x 1 dx 3x  1
sin xdx

 /2


0

cos 3x dx sin x  1 x sin 2 xdx sin 2 x cos 2 x
x .cos x dx

(C§BT 05)

 /2

55.


0

 /3

sin 2 x  2 cos x cos 2

(C§SP ST 05) (C§ VL 05) (C§SPHN 05) (C§SP VP 05) (C§ §N05) (C§ YTTH 05)

56.


0

(C§SP ST 05) (C§CN 05) (C§TC 05) (C§SP KT05)

57.

 x ln x dx
1
2

e

2 /4

58.
1


0

x3  2x2  4x  9 59.  dx x2  4 0
61. 63. 65. 67.

60. 62. 64. 66. 68. 70. 72. 74. 76.

 (x  1)
0

xdx

3

dx  x 1  ln 2 x 1
 /4

e

 /2




0

dx (sin x  cos x) cos x
2

 x e
0

0 1

4sin 3 x dx 1  cos x
2x

 3 x  1 dx (C§SP QN05)
dx



ln 2

5 x  x e dx 0


0

1

x2  x
3

( x  1) 2

(C§SP QB 05) (C§CN 06) (C§NL 06)

 /4

 (1  tgx tg 2 )sin xdx
0

x

ln(1  x) 69.  dx x2 1
2

(C§SP QN 05) (C§CKLK 06)

 x ln(1  x
0

1

2

)dx

x
0

1

x 2  1 dx

71. 73. 75.

 1 x
0 3 0  /4

1

xdx
2

 /2

(C§HP 06)
2

 
0

sin x  cos x dx 1  sin 2 x /4

(C§ YT 06)

 x ln( x
0

 5)dx

 /2

(C§TCKT 06) (§HNV 06)


0

cos 2 x dx(C§SP HD06) (sin x  cos x  3)3 cos 2 x
(C§ §D 06)

 ( x  1) cos x dx

 /4

 1  2sin 2 x dx

Biªn so¹n néi dung: ThÇy NguyÔn Cao C-êng - 0904.15.16.50

2

Chuyªn ®Ò TÝch ph©n
ln 2

77. 79. 81. 83. 85. 87. 89. 91. 93. 95.



e

2x

 /2

0  /2


0

ex  2 cos x dx 7  5sin x  cos 2 x
x 3 dx x 1  x  3 x3 1 ).ln x dx x

dx

(C§SP QB06) (C§SP TN06) (C§QT KD 06) (C§ BT 06)

78. 80. 82. 84. 86. 88. 90. 92. 94. 96. 98. 100. 102.



0  /4

4sin 4 x dx 1  cos x x dx cos 2 x
3

(C§SP QN 06) (C§SP TV06) (C§SP TG06) (C§BK 06)


0

1 e


1
1

3

3

x
1

9

1  x dx
2  x 3 dx
e x dx (e x  1) 3

(

x
ln 3

2

x3  x 2  1 dx 0


0

1  /4

 x (e
0

0

2x

 x  1)dx
3

n/2 6


0

1  cos3 x sin x cos5 x dx 1  x 2 dx
2

 1  cos 2 x dx
e
2
2x

x

x
0 1 0

1

3

ln 5



ln 2

e x 1

dx

3 x  x e dx 3

x 1  x . ln x.dx 1
e
ln 8

 xx
1

dx

3



2

e  1.e dx
x 2x


0

x sin x dx
2

ln 3

ln 2 x 97.  dx 1 x ln x  1
99. 101. 103.

6

e3

 /2

 (2 x  1) cos
0

x dx

dx  2x  1  4x  1 2
10

6

 /2

 ( x  1)sin 2x dx
0

dx  x  2 x 1 5

x
1

e

3  2 ln x dx 1  2 ln x
104.

 x .ln
3 1

e

2

xdx

(§H

D 07)

tg 4 x  cos 2 x dx 0

4

( §H A08 )

  sin  x   dx 4  105.  sin 2 x  2 1  sin x  cos x  0

(§H B08)

105.



ln x dx x3 1

2

( §H D08 )

Biªn so¹n néi dung: ThÇy NguyÔn Cao C-êng - 0904.15.16.50

3


				
DOCUMENT INFO
Shared By:
Categories:
Tags:
Stats:
views:4078
posted:2/6/2009
language:Vietnamese
pages:3