# Chapter _ 5 Arithmetic Circuits by pengxiuhui

VIEWS: 20 PAGES: 50

• pg 1
```									Chapter # 5: Arithmetic Circuits

No. 5-1
Chapter Overview

• Binary Number Representation
Sign & Magnitude, Ones Complement, Twos Complement

• Binary Addition
Full Adder Revisited

• ALU Design

• BCD Circuits

• Combinational Multiplier Circuit

• Design Case Study: 8 Bit Multiplier

No. 5-3
Number Systems
Representation of Negative Numbers

Representation of positive numbers same in most systems

Major differences are in how negative numbers are represented

Three major schemes:
sign and magnitude
ones complement
twos complement

Assumptions:
we'll assume a 4 bit machine word
16 different values can be represented
roughly half are positive, half are negative

No. 5-4
Number Systems
Sign and Magnitude Representation

-7         +0
-6        11 11   00 00      +1
11 10             00 01
-5                                          +2       +
11 01                       00 10
-4     11 00                            00 11     +3   0 10 0 = + 4

-3     10 11                            01 00     +4   1 10 0 = - 4
10 10                        01 01
-2                                             +5       -
10 01                   01 10
-1        10 00   01 11           +6
-0        +7

High order bit is sign: 0 = positive (or zero), 1 = negative

Three low order bits is the magnitude: 0 (000) thru 7 (111)
n-1
Number range for n bits = +/-2     -1

Two representations for 0

No. 5-5
Number Systems
Ones Complement

-0         +0
-1        11 11   00 00      +1
11 10             00 01
-2                                          +2       +
11 01                       00 10
-3     11 00                            00 11     +3   0 10 0 = + 4

-4     10 11                            01 00     +4   1 01 1 = - 4
10 10                        01 01
-5                                             +5       -
10 01                   01 10
-6        10 00   01 11           +6
-7        +7

Subtraction implemented by addition & 1's complement

Still two representations of 0! This causes some problems

Some complexities in addition

No. 5-6
Number Representations
Twos Complement

-1         +0
-2        11 11   00 00      +1
11 10             00 01
-3                                          +2       +
like 1's comp              11 01                       00 10
except shifted   -4    11 00                             00 11     +3   0 10 0 = + 4
one position
clockwise        -5    10 11                             01 00     +4   1 10 0 = - 4
10 10                        01 01
-6                                              +5       -
10 01                   01 10
-7        10 00   01 11           +6
-8        +7

Only one representation for 0

One more negative number than positive number

No. 5-7
Number Systems
Sign and Magnitude

Cumbersome addition/subtraction

Must compare magnitudes to determine sign of result

Ones Complement

N is positive number, then N is its negative 1's complement
n
N = (2 - 1) - N                2 4 = 10000

-1   = 00001
Example: 1's complement of 7
1111

-7   =   0111

Shortcut method:                              1000   = -7 in 1's comp.

simply compute bit wise complement

0111 -> 1000
No. 5-8
Number Systems
Twos Complement Numbers

n
N* = 2 - N
4
2 = 10000

Example: Twos complement of 7       sub 7 =       0111

1001 = repr. of -7

4
Example: Twos complement of -7            2 = 10000

sub -7 =        1001

0111 = repr. of 7

Shortcut method:
Twos complement = bitwise complement + 1

0111 -> 1000 + 1 -> 1001 (representation of -7)

1001 -> 0110 + 1 -> 0111 (representation of 7)
No. 5-9
Number Representations
Addition and Subtraction of Numbers
Sign and Magnitude

4   0100      -4    1100
result sign bit is the
same as the operands'     +3    0011   + (-3)   1011
sign
7   0111      -7    1111

when signs differ,          4   0100      -4    1100
operation is subtract,
sign of result depends    -3    1011     +3     0011
on sign of number with
the larger magnitude        1   0001      -1    1001

No. 5-10
Number Systems
Addition and Subtraction of Numbers
Ones Complement Calculations

4    0100           -4       1011
+3      0011        + (-3)      1100
7    0111           -7      10111
End around carry          1

1000

4     0100          -4     1011
-3       1100         +3      0011
1    10000          -1     1110
End around carry        1

0001

No. 5-11
Number Systems
Addition and Subtraction of Binary Numbers
Ones Complement Calculations

Why does end-around carry work?
n
Its equivalent to subtracting 2 and adding 1
n                   n
M - N = M + N = M + (2 - 1 - N) = (M - N) + 2 - 1        (M > N)
n            n
-M + (-N) = M + N = (2 - M - 1) + (2 - N - 1)                     n-1
M+N<2
n    n
= 2 + [2 - 1 - (M + N)] - 1
after end around carry:
n
= 2 - 1 - (M + N)

this is the correct form for representing -(M + N) in 1's comp!

No. 5-12
Number Systems
Addition and Subtraction of Binary Numbers
Twos Complement Calculations

4    0100         -4     1100
+3     0011      + (-3)    1101
7    0111         -7    11001
If carry-in to the high
order bit =
carry-out then ignore
carry

if carry-in differs from         4     0100        -4    1100
carry-out then overflow
-3     1101       +3     0011
1    10001        -1    1111

Simpler addition scheme makes twos complement the most common
choice for integer number systems within digital systems

No. 5-13
Number Systems
Addition and Subtraction of Binary Numbers
Twos Complement Calculations
Why can the carry-out be ignored?

-M + N when N > M:
n           n
M* + N = (2 - M) + N = 2 + (N - M)
n
Ignoring carry-out is just like subtracting 2

-M + -N where N + M < = 2 n-1
n         n
-M + (-N) = M* + N* = (2 - M) + (2 - N)
n             n
= 2 - (M + N) + 2

After ignoring the carry, this is just the right twos compl.
representation for -(M + N)!

No. 5-14
Number Systems
Overflow Conditions
Add two positive numbers to get a negative number

or two negative numbers to get a positive number

-1             +0                                          -1             +0
-2            1111   0000           +1                     -2            1111   0000           +1
1110                 0001                                  1110                 0001
-3                                              +2         -3
1101                                                       1101                                     +2
0010                                                       0010
-4                                                         -4
1100                               0011    +3              1100                               0011     +3
-5        1011                                             -5        1011
0100    +4                                                 0100     +4
1010                                                       1010
-6                                      0101               -6                                      0101
1001
+5                                                         +5
0110                                1001                   0110
-7               1000     0111           +6                -7               1000                    +6
0111
-8                   +7                                    -8                   +7

5 + 3 = -8                -7 - 2 = +7

No. 5-15
Number Systems
Overflow Conditions
0111                               1000
5          0101                   -7          1001
3           0011                  -2           1100
-8           1000                   7         10111
Overflow                           Overflow

0000                               1111
5          0101                   -3          1101
2           0010                  -5           1011
7           0111                  -8         11000
No overflow                        No overflow

Overflow when carry-in to the high-order bit does not equal carry out

No. 5-16
Networks for Binary Addition
Half Adder

With twos complement numbers, addition is sufficient

Ai 0       1           Ai 0
Ai Bi Sum Carr y                                          1
Bi                     Bi
0 0    0   0          0 0         1          0   0        0
0 1    1   0
1 0    1   0                 1    0
1                      1      0     1
1 1    0   1

Sum = Ai Bi + Ai Bi          Carr y = Ai Bi
= Ai + Bi

Ai
Sum

Bi                            Half-adder Schematic
Carry

No. 5-17
Networks for Binary Addition
Full Adder

A3 B3         A2 B2         A1 B1         A0 B0

Cascaded Multi-bit
Adder                    +             +             +             +

S3   C3       S2   C2       S1   C1       S0

usually interested in adding more than two bits

this motivates the need for the full adder

No. 5-18
Networks for Binary Addition
Full Adder

A   B   CI   S   CO        AB
0   0   0    0    0      CI 00 01 11 10
0   0   1    1    0
0   0   1   0   1
0   1   0    1    0     S
0   1   1    0    1         1   1   0   1   0
1   0   0    1    0
1   0   1    0    1
1   1   0    0    1        AB
1   1   1    1    1      CI 00 01 11 10
0   0   0   1   0
CO
1   0   1   1   1

S = CI xor A xor B

CO = B CI + A CI + A B = CI (A + B) + A B

No. 5-19
Networks for Binary Addition
Full Adder/Half Adder

Standard Approach: 6 Gates
A
A
B
B
CI                                CO
S
CI
A
B

Alternative Implementation: 5 Gates

A                       A+B                    A + B + CI
Half      S
Half  S                S
Adde r A B                 Adde rCO CI (A + B)
B              CO

CI
+      CO

A B + CI (A xor B) = A B + B CI + A CI

No. 5-20
Networks for Binary Addition
Adder/Subtractor
A 3 B 3 B3         A 2 B2 B2          A 1 B1 B1          A 0 B 0 B0

0 1 Sel            0 1 Sel            0 1 Sel            0 1 Sel

A        B         A        B         A        B         A        B

CO +      CI       CO +      CI       CO +      CI       CO +      CI       Add/Subtract

S                  S                  S                  S

S3                 S2                 S1                 S0

Ov erflow

A - B = A + (-B) = A + B + 1

No. 5-21
Networks for Binary Addition
Carry Lookahead Circuits
Critical delay: the propagation of carry from low to high order stages

@0    A        @1             @N+1
late         @0    B
arriving       @N CI                                        CO
signal
@0    A                                     @N+2   two gate delays
@0    B
@1                  to compute CO

C0

A0             S0 @2
0
B0             C1 @2
4 stage
adder                    A1                S1 @3
1
B1                C2 @4

A2               S2 @5
2
B2                   C3 @6

A3                S3 @7
3                  final sum and
B3                C4 @8
carry
No. 5-22
Networks for Binary Addition
Carry Lookahead Circuits
Critical delay: the propagation of carry from low to high order stages

1111 + 0001
worst case
addition

T0: Inputs to the adder are valid
2 delays to compute sum
T2: Stage 0 carry out (C1)
but last carry not ready
T4: Stage 1 carry out (C2)           until 6 delays later
T6: Stage 2 carry out (C3)

T8: Stage 3 carry out (C4)
No. 5-23
Networks for Binary Addition
Carry Lookahead Logic

Carry Generate Gi = Ai Bi          must generate carry when A = B = 1

Carry Propagate Pi = Ai xor Bi     carry-in will equal carry-out here

Sum and Carry can be reexpressed in terms of generate/propagate:

Si = Ai xor Bi xor Ci = Pi xor Ci

Ci+1 = Ai Bi + Ai Ci + Bi Ci

= Ai Bi + Ci (Ai + Bi)

= Ai Bi + Ci (Ai xor Bi)

= Gi + Ci Pi

No. 5-24
Networks for Binary Addition
Carry Lookahead Logic

Reexpress the carry logic as follows:

C1 = G0 + P0 C0

C2 = G1 + P1 C1 = G1 + P1 G0 + P1 P0 C0

C3 = G2 + P2 C2 = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C0

C4 = G3 + P3 C3 = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0 + P3 P2 P1 P0 C0

Each of the carry equations can be implemented in a two-level logic
network

Variables are the adder inputs and carry in to stage 0!

No. 5-25
Networks for Binary Addition
Carry Lookahead Implementation

Ai
Pi @ 1 ga te d el ay
Bi                                                    Adder with Propagate and
Si @ 2 ga te d el ays      Generate Outputs
Ci

Gi @ 1 ga te d ela y
Increasingly complex logic

C0                       C0                                  C0
P0                  C1   P0                                  P0
P1                                  P1
G0
P2                                  P2
P3
G0
P1                                  G0
C0
P2                                  P1
P0
P2
P1
G1                             C3   P3
G0                       P2
C2                                       G1
P1
P2
G2                                  P3
G1                                                                                  C4
G2
P3

G3
No. 5-26
Networks for Binary Addition
Carry Lookahead Logic
Cascaded Carry Lookahead    C0

Carry lookahead      A0            S0 @2
logic generates      B0
individual carries
C 1 @3

sums computed        A1            S1 @4
much faster          B1

C 2 @3

A2            S2 @4
B2

C 3 @3

A3            S3 @4

B3

C4 @3

No. 5-27
Networks for Binary Addition
Carry Lookahead Logic
Cascaded Carry Lookahead

4          4              4            4             4          4                 4               4

C1 6 A [15-12] B[15-12] C1 2     A [11-8] B[11-8] C
8
A [7-4]   B[7-4]   C4        A [3-0]    B[3-0]         C0
4-bit Adder                 4-bit Adder                4-bit Adder                   4-bit Adder
P G                         P G                         P G                           P G             @0
4    @8                  4    @8                     4   @7                       4    @4
S[15-12]                 S[11-8]                   S[7-4]                      S[3-0]
@2 @3        @5          @2 @3         @5             @2 @3        @4               @2 @3

P3   G3      C3             P2       G2   C2          P1 G1        C1                 P0        G0
C1 6                                                                                                                C0
C4                                     Look ahead Carry U nit                                          C0
@5                                                                                                                  @0
P3-0         G3-0
@3     @5

4 bit adders with internal carry lookahead

second level carry lookahead unit, extends lookahead to 16 bits

Group Propagate P = P3 P2 P1 P0
Group Generate G = G3 + G2P3 + G1P3P2 + G0P3P2P1

No. 5-28
Networks for Binary Addition
Carry Select Adder
Redundant hardware to make carry calculation go faster

C8                              0
4-Bit Adder                  Adder
[7:4]                     Low

C4
C8                              1
4-Bit Adder                  Adder
[7:4]                     High

1 0 1 0 1 0         1 0                                       C0
4¥                                    C4           4-Bit Adder
2:1 Mux                                                 [3:0]

C8              S7    S6    S5     S4               S3     S2    S1     S0

compute the high order sums in parallel

one addition assumes carry in = 0

the other assumes carry in = 1

No. 5-29
Arithmetic Logic Unit Design
Sample ALU bit slice

M = 0, Logica l Bitw ise Operations
S1 S0            Function             Comme nt
0 0               Fi = Ai            Input Ai trans fe rred to output
0 1            Fi = not Ai           Comple ment of Ai transferred to output
1 0           Fi = Ai xor Bi         Compute XOR of Ai, Bi
1 1          Fi = Ai xnor Bi         Compute XNOR of Ai, Bi

M = 1, C0 = 0 , Arithme tic Ope ra tions
0 0                 F=A                Input A pas sed to output
0 1               F = not A            Comple ment of A pass ed to output
1 0             F = A plus B           Sum of A and B
1 1         F = (not A) plus B         Sum of B and c ompleme nt of A

M = 1, C0 = 1 , Arithme tic Ope ra tions
0   0          F = A plus 1          Increment A
0   1       F = (not A) plus 1       Tw os comple ment of A
1   0      F = A plus B plus 1       Increment sum of A and B
1   1   F = (not A) plus B plus 1    B minus A

Logical and Arithmetic Operations

Not all operations appear useful, but "fall out" of internal logic

No. 5-30
Arithmetic Logic Unit Design
M   S1   S0   Ci   Ai   Bi   Fi   Ci+1
Sample ALU                              0   0     0   X    0    X    0     X
X    1    X    1     X
0    1    X    0    X    1     X
Traditional Design Approach                         X    1    X    0     X
1    0    X    0    0    0     X
X    0    1    1     X
Truth Table & Espresso                            X    1    0    1     X
X    1    1    0     X
1    1    X    0    0    1     X
.i 6                                    X    0    1    0     X
.o 2                                    X    1    0    0     X
.ilb m   s1 s0 ci ai bi
23 product terms!   .ob fi   co
X    1    1    1     X
1   0    0    0    0    X    0     X
.p 23                                   0    1    X    1     X
111101   10                   0    1    0    0    X    1     X
110111   10
0    1    X    0     X
Equivalent to      1-0100   10
1    0    0    0    0    0     0
1-1110   10
25 gates         10010-   10                             0    0    1    1     0
10111-   10                             0    1    0    1     0
-10001   10                             0    1    1    0     1
010-01   10                   1    1    0    0    0    1     0
-11011   10                             0    0    1    0     1
011-11   10                             0    1    0    0     0
--1000   10                             0    1    1    1     0
0-1-00   10               1   0    0    1    0    X    1     0
--0010   10                             1    1    X    0     1
0-0-10   10                   0    1    1    0    X    0     1
-0100-   10                             1    1    X    1     0
001-0-   10                   1    0    1    0    0    1     0
-0001-   10                             1    0    1    0     1
000-1-   10
1    1    0    0     1
-1-1-1   01
--1-01   01                             1    1    1    1     1
--0-11   01                   1    1    1    0    0    0     1
--110-   01                             1    0    1    1     1
--011-   01                             1    1    0    1     0
.e                                      1    1    1    0     1
No. 5-31
Arithmetic Logic Unit Design
Sample ALU
Multilevel Implementation
.model alu.espresso
.inputs m s1 s0 ci ai bi
.outputs fi co
.names m ci co [30] [33] [35] fi
110--- 1
-1-11- 1
--01-1 1
--00-0 1                   \S1
M
.names m ci [30] [33] co             [35]      Ci                        Ci
\Bi
-1-1 1                                       [33]                      \Co
Ci
--11 1                      M                [30]
Co     [30]
111- 1                      S1       [33]    [33]                     [33]
Fi
Bi                                         \Co
.names s0 ai [30]                              M
[30]
Ci
01 1                                         [30]                     [35]
S0                                        \Co
10 1                        Ai
[30]
\[3 0]
.names m s1 bi [33]                                                 \[3 5]
111 1
.names s1 bi [35]
0- 1
-0 1
.end                                                12 Gates

No. 5-32
Arithmetic Logic Unit Design
Sample ALU
Clever Multi-level Logic Implementation

S1 Bi          S0    Ai             M         S1 = 0 blocks Bi
Ci   Happens when operations involve Ai
only
A1         X1                  A2
Same is true for Ci when M = 0

Addition happens when M = 1

Bi, Ci to Xor gates X2, X3
X2
S0 = 0, X1 passes A

S0 = 1, X1 passes A
A3          A4
Arithmetic Mode:
Or gate inputs are Ai Ci and
Bi (Ai xor Ci)
O1                   X3
Logic Mode:
Ci +1                             Fi               Cascaded XORs form output from
8 Gates (but 3 are XOR)                             Ai and Bi
No. 5-33
Arithmetic Logic Unit Design
74181 TTL ALU

Se le ction       M=1                          M = 0, Arithmetic Func tions
S3    S2 S1 S0     Logic Function    Cn = 0                         Cn = 1
0     0 0 0        F = not A         F = A minus 1                  F=A
0     0 0 1        F = A nand B      F = A B minus 1                F=AB
0     0 1 0        F = (not A) + B   F = A (not B) minus 1          F = A (not B)
0     0 1 1        F=1               F = minus 1                    F = ze ro
0     1 0 0        F = A nor B       F = A plus (A + not B)         F = A plus (A + not B) plus 1
0     1 0 1        F = not B         F = A B plus (A + not B)       F = A B plus (A + not B) plus 1
0     1 1 0        F = A xnor B      F = A minus B minus 1          F = (A + not B) plus 1
0     1 1 1        F = A + not B     F = A + not B                  F = A minus B
1     0 0 0        F = (not A) B     F = A plus (A + B)             F = (A + not B) plus 1
1     0 0 1        F = A xor B       F = A plus B                   F = A plus (A + B) plus 1
1     0 1 0        F=B               F = A (not B) plus (A + B)     F = A (not B) plus (A + B) plus 1
1     0 1 1        F=A+B             F = (A + B)                    F = (A + B) plus 1
1     1 0 0        F=0               F=A                            F = A plus A plus 1
1     1 0 1        F = A (not B)     F = A B plus A                 F = AB plus A plus 1
1     1 1 0        F=AB              F= A (not B) plus A            F = A (not B) plus A plus 1
1     1 1 1        F=A               F=A                            F = A plus 1

No. 5-34
Arithmetic Logic Unit Design
74181 TTL ALU

Note that the sense of the carry in and out are
OPPOSITE from the input bits

19
21
A3
A2           F3   13
6
182
23        181          11             P3
A1           F2             15
2   A0           F1   10             P2           7
18                     9          2           P
B3           F0                  P1           10
20   B2                           4           G
22               A=B 14               P0
B1                           5
Cn +4 16              G3
1   B0
14        Cn +z 9
G 17               G2
7 Cn
P 15           1        Cn +y 11
G1
8 M
3        Cn +x 12
G0
S3 S2 S1 S0
3 4 5 6                    13 Cn

Fortunately, carry lookahead generator
maintains the correct sense of the signals

No. 5-35
Arithmetic Logic Unit Design
16-bit ALU with Carry Lookahead
19 A3
21 A2 181 F3        13
23 A1       F2      11
2 A0       F1      10
18 B3       F0      9
20 B2      A=B     14
22 B1              16
1 B0     Cn+4           C16
7 Cn        G      17
8M          P      15
S3S2S1S0
3 4 5 6
19   A3
21   A2   181 F3 13
23   A1       F2 11
2   A0       F1 10
18   B3       F0 9
20   B2      A=B 14
22   B1
1   B0     Cn+4 16
7   Cn        G 17
8   M         P 15             182
6 P3
S3S2S1S0             15 P2        7
3 4 5 6              2 P1   P    10
4 P0   G
19 A3                       5 G3        9
21 A2               13     14 G2 Cn+z
23 A1     181 F3
F2    11      1 G1 Cn+y   11
12
2 A0         F1    10      3 G0 Cn+x
18 B3         F0    9      13 Cn
20 B2              14
22 B1        A=B
1 B0       Cn+4   16
7 Cn          G    17
8M            P    15

S3 S2S1S0
3 4 5 6
19   A3
21   A2             13
23   A1
181 F3
F2    11
2   A0       F1    10
18   B3       F0    9
20   B2            14
22   B1      A=B
1   B0     Cn+4   16
C0                  G    17
7   Cn        P    15
8   M
S3S2S1S0
3 4 5 6

No. 5-36
BCD Addition
BCD Number Representation
Decimal digits 0 thru 9 represented as 0000 thru 1001 in binary

Addition:

5 = 0101                     5 = 0101
Problem
3 = 0011                     8 = 1000             when digit
sum exceeds 9
1000 = 8                  1101 = 13!

Solution: add 6 (0110) if sum exceeds 9!

5 = 0101                        9 = 1001

8 = 1000                        7 = 0111

1101                         1 0000 = 16 in binary

6 = 0110                        6 = 0110

1 0011 = 1 3 in BCD             1 0110 = 1 6 in BCD

No. 5-37
BCD Addition
Adder Design

A3       B3     A2        B2     A1        B1     A0        B0

CO FA      CI   CO FA       CI   CO FA       CI   CO FA       CI   Cin

S               S                S                S

A1         11XX

A2         1X1X

CO FA       CI   CO FA       CI   0

S                S

Cout               S3              S2               S1               S0

Add 0110 to sum whenever it exceeds 1001 (11XX or 1X1X)

No. 5-38
Combinational Multiplier
Basic Concept

multiplicand           1101 (13)
product of 2 4-bit numbers
multiplier           * 1011 (11)          is an 8-bit number
1101
1101
Partial products              0000
1101

10001111     (143)

No. 5-39
Combinational Multiplier
Partial Product Accumulation

A3      A2      A1      A0

B3      B2      B1      B0

A3 B0   A2 B0   A1 B0   A0 B0

A3 B1    A2 B1   A1 B1   A0 B1

A3 B2     A2 B2    A1 B2   A0 B2

A3 B3     A2 B3     A1 B3    A0 B3

S7        S6       S5           S4    S3      S2     S1       S0

No. 5-40
Combinational Multiplier
Partial Product Accumulation

A 3 B3 A 3 B2 A 2 B3 A 3 B1 A 2 B2 A 1 B3 A 3 B0 A 2 B1 A 1 B2 A 0 B3 A 2 B0 A 1 B 1 A 0 B 2 A 0 B 1 A 1 B0 A 0 B0

FA                         HA                     HA           HA

FA               FA                       FA                       FA

FA           FA               HA                    FA

S7   S6           S5               S4                    S3                               S2                S1         S0

Note use of parallel carry-outs to form higher order sums

12 Adders, if full adders, this is 6 gates each = 72 gates

16 gates form the partial products

total = 88 gates!

No. 5-41
Combinational Multiplier
Another Representation of the Circuit

Sum In          X         Cin       Building block: full adder + and
Y
FA
A B
CO CI
S

Cout    Sum O ut

A3             A2            A1            A0
B0
A3 B0         A2 B0         A1 B0         A0 B0
C             C             C             C
S             S             S             S
B1
A3 B1         A2 B1         A1 B1         A0 B1
C             C             C             C
S             S             S             S
B2
A3 B2         A2 B2         A1 B2         A0 B2
C             C             C             C
S                S             S             S
B3
A3 B3           A2 B3         A1 B3         A0 B3
C
S               S             S             S
P7            P6              P5            P4            P3            P2            P1            P0

4 x 4 array of building blocks
No. 5-42
Case Study: 8 x 8 Multiplier
TTL Multipliers

A0
A1
A2
A3
B0
B1
B2
B3

14                     13                                14                     13
4 7 6 5 15 1 2 3                                         4 7 6 5 15 1 2 3
G    A A A A B B B B G                                   G    A A A A B B B B G
2   A    3 2 1 0 3 2 1 0 B                         2         A    3 2 1 0 3 2 1 0 B
8                                                  8
4           Y Y Y Y                                5                 Y Y Y Y
7 6 5 4                                                  3 2 1 0
9 10 11 12                                               9 10 11 12

Y6        Y4        Y2        Y0
Y7        Y5        Y3        Y1

Two chip implementation of 4 x 4 multipler

No. 5-43
Case Study: 8 x 8 Multiplier
Problem Decomposition
How to implement 8 x 8 multiply in terms of 4 x 4 multiplies?
A7-4   A3-0

*   B7-4   B3-0

8 bit products                   A3-0 * B3-0    = PP0

A7-4 * B3-0               = PP1

A3-0 * B7-4                = PP2

A7-4 * B7-4                         = PP3

P15-12    P11-8       P7-4   P3-0

P3-0 = PP0 3-0

P7-4 = PP0 7-4 + PP1     + PP2     + Carry-in
3-0        3-0
P11-8 = PP1 7-4 + PP2 7-4 + PP3 3-0 + Carry-in

P15-12 = PP3 7-4                       + Carry-in

No. 5-44
Case Study: 8 x 8 Multiplier
Calculation of Partial Products

A6        A4        B6        B4     A2 A0  B6 B4         A6 A4 B2 B0             A2        A0        B2        B0
A7        A5        B7        B5        A3  A1 B7 B5         A7 A5 B3 B1          A3        A1        B3        B1

4 x 4 Multiplier                    4 x 4 Multiplier     4 x 4 Multiplier         4 x 4 Multiplier
74 284 /2 85                        74 284 /2 85         74 284 /2 85             74 284 /2 85

PP3                 PP3                PP2         PP2      PP1       PP1         PP0                PP0
7-4              3-0                7-4      3-0      7-4       3-0               7-4          3-0

Use 4 74284/285 pairs to create the 4 partial products

No. 5-45
Case Study: 8 x 8 Multiplier
Three-At-A-Time Adder
Clever use of the Carry Inputs

Sum A[3-0], B[3-0], C[3-0]:

A3 B3             A2 B2               A1 B1         A0 B0

FA      C3        FA        C2       FA     C1     FA      C0

FA                 FA              FA     0

S3                 S2              S1           S0

Two Level Full Adder Circuit

Note: Carry lookahead schemes also possible!

No. 5-46
Case Study: 8 x 8 Multiplier
Three-At-A-Time Adder with TTL Components

C3 B3 A3 C2 B2 A2 C1 B1 A1 C0 B0 A0

Cn B A Cn B A         Cn B A Cn B A                  Full Adders
74 183 74 183         74 183 74 183               (2 per package)
Cn+1 S Cn+1 S         Cn+1 S Cn+1 S

+

B3 A3   B2 A2   B1 A1    B0 A0
G                                         Standard ALU configured as 4-bit
P          74 181           Cn
cascaded adder
Cn+4                                       (with internal carry lookahead)
F3     F2      F1       F0

S      S        S          S
3      2        1          0

Note the off-set in the outputs
No. 5-47
Case Study: 8 x 8 Multiplier
Accumulation of Partial Products

PP1       PP3                  PP1          PP3                       PP0       PP2                PP0           PP2
7      2                          5     0                             7     2                          5      0
PP2                PP2               PP2             PP2              PP1                PP1              PP1             PP1
7               2                 5              4                    3              2                 1                  0
PP3         PP3         PP3       PP3       PP3                        PP1 PP3                          PP1       PP2                       PP0 PP2                              PP0
7           6           5         4         3                       6    1                              4         3                      6    1                                  4
Cn B A Cn B A                         Cn B A Cn B A                   Cn B A Cn B A                      Cn B A Cn B A
74183   74183                         74183   74183                   74183   74183                      74183   74183
Cn +1 S Cn +1 S                       Cn +1 S Cn +1 S                 Cn +1 S Cn +1 S                    Cn +1 S Cn +1 S

+

B3 A3    B2 A2       B1 A1       B0 A0                 B3 A3           B2 A2       B1 A1        B0 A0                        B3 A3           B2 A2      B1 A1       B0 A0
G                                                      G                                                                     G
P           74181                   Cn                 P                        74181                   Cn                   P                     74181                     Cn
Cn +4                                                  Cn +4                                                                 Cn +4
F3       F2         F1          F0                     F3                F2           F1          F0                         F3                F2        F1            F0

P           P           P                     P                 P            P           P                          P                           P             P                  P
15         14           13                    12                11          10           9                          8                P                        5
7            6                             4

Just a case of cascaded three-at-a-time adders!

No. 5-48
Case Study: 8 x 8 Multiplier
The Complete System
A7 -0                                                                                               B7 -0

8                                                                                                   8

Pa rtia l Product Calc ulation
4 x 74 284 , 742 85
4                 4              4               4                4                4                 4                     4
PP3           PP3               PP2            PP2             PP1              PP1              PP0               PP0
7-4           3-0               7-4            3-0             7-4              3-0              7-4               3-0

4        4        4                              4       4            4

2 x 74 183                                     2 x 74 183
0       PP3 PP3 PP3 PP3                                                                                                                  +
7   6   5   4

G                                            G                                           G
P        74 181        Cn                    P           74 181        Cn                P             74 181              Cn
Cn+4                                         Cn+4                                        Cn+4

P     P        P                       P        P      P       P                     P        P        P           P        P        P
15   14           13                   12       11     10      9                     8        7           6        5        4       3-0

G3 P3 G2 P2 G1 P1 G0 P0
74 182       Cn
+

Cn+z    Cn+y Cn+x

No. 5-49
Case Study: 8 x 8 Multiplier
Package Count and Performance
4 74284/74285 pairs = 8 packages
4 74183, 3 74181, 1 74182 = 8 packages
16 packages total

Partial product calculation (74284/285) = 40 ns typ, 60 ns max

Intermediate sums (74183) = 15 ns average, 33 ns max

Second stage sums w/carry lookahead

74LS181: carry G and P = 20 ns typ, 30 ns max

74182: second level carries = 13 ns typ, 22 ns max

74LS181: formations of sums = 15 ns typ, 26 ns max

103 ns typ, 171 ns max

No. 5-50
Chapter Review
We have covered:
 Binary Number Representation
positive numbers the same
difference is in how negative numbers are represented
twos complement easiest to handle:
one representation for zero, slightly
complicated complementation, simple addition

 Binary Networks for Additions
basic HA, FA
carry lookahead logic

 ALU Design
specification and implementation

 BCD Adders
Simple extension of binary adders

 Multipliers
4 x 4 multiplier: partial product accumulation
extension to 8 x 8 case

No. 5-51

```
To top