Third Grade - Download Now DOC

Document Sample
Third Grade - Download Now DOC Powered By Docstoc

          Grade 3
          Goal 2


           Debra Hall
        Danielle McCaslin

DRAFT       July 2008
I. Grade Level: 3

II. Unit Title: Soils

III. Unit Length: 9 Weeks

IV. Major Unit Goal/Learning Outcome:
The learner will be able to:
    identify how properties of soil influence the soils ability of hold water
    conduct investigations analyzing how soil type affects water
      absorption rates
    identify the properties of soil that support most plant growth
    list the basic parts of soil, humus, sand, and clay
    explain how composting recycles discarded plant and animal
    determine how heat aids in the decay of plant material in a compost

V. Objective Chart and RBT Tags
Unit Title: Soils                                        Number of Weeks: 9
Number Competency or Objective                                          RBT Tag
2.01       Observe and describe the properties of soil: color, texture, A4
           capacity to hold water.
2.02       Investigate and observe that different soils absorb water at C5
           different rates.
2.03       Determine ability of soil to support the growth of many      B5
           plants, including those important to our food supply.
2.04       Identify the basic components of soil: sand, clay, humus     A1
2.05       Determine how composting can be used to recycle              B2
           discarded plant and animal material.
2.06       Determine the relationship between heat and decaying         B2
           plant matter in a compost pile.

VI. ELD/EC: English Language Learners communicate information, ideas,
and concepts necessary for academic success in the content area of

DRAFT                            July 2008                              1
VII. Vocabulary:
       soil, organic, inorganic, humidity, weather, temperature, organisms,
      humus, decomposition, decomposes, vegetation, nutrients,
      absorption, compost, vermicompost, bacteria, microbes,
      thermophiles, topsoil, weathering, particles, eroded, cultivation, rocks,
      minerals, clay, silt, sediment, sieves, sand, gravel, pebbles, loams,
      percolation, red wigglers
 LEP’S need visual support for the new vocabulary.

VIII. Materials Needed:
See Appendix

IX. Big Ideas:
      Content Standard A: Science as Inquiry
                Abilities necessary to do scientific inquiry
                Understanding about scientific inquiry
      Content Standard D: Earth and Space Science
             Properties of earth materials
      Content Standard F: Science in Personal and Social Perspectives
             Types of resources
             Changes in environment

X. Unit Notes:
Teacher Notes:
    A book is a great lead in for a lesson.
    Experiments need to be set up ahead of time.
    Examples need to be tried by the teacher before doing it with the
    Examples of a finished product need to be put together ahead of
    Materials can be modified and changed as necessary.
    Be sure you have all rules in place before an experiment begins.
    This unit is designed to be interactive and fun.

Content Blast: Specific science content is included for Lessons 1-9.

Unit Overview: Human life on earth exists on a thin, fragile layer of topsoil
(apple skin activity). This layer takes years and years to form but is being

washed away or exhausted at an accelerating pace. Surprisingly complex,
topsoil is a mixture of organic and inorganic matter (compost and worm
habitat activities). Organic matter---things that were once alive---breaks
down over time with the help of living organisms (pumpkin, worm habitat
and compost activities). The rock cycle happens when rocks form, wear
away and fall to the ground as particles, some smaller than others (particle
size sorting and sieving activities). The type of soil, and whether or not it
can support life, depends on the type of rock from which it was derived as
well as the amount and type of organic matter in it. Some soil allows water
to percolate through it, but still holds onto enough water to fulfill the needs
of living organisms. Some soil holds no water at all---the water passes
directly through the large particles. Some soil has particles so small that no
water can pass through it (percolation test and other testing activities). The
difference in particle size can be seen in many ways (sediment testing) and
has a direct effect on the ability of soil to support life. The right combination
of organic and inorganic materials creates the best soil for plant growth.

         From Seed to Plant by Jan Kottke
         Pumpkin Jack by Will Hubbell
         Diary of a Worm by Doreen Cronin
         The Magic School Bus Meets the Rot Squad by Linda Beech
           post/ cover.html
      *Check with your media specialist or the local library for additional
      books on soils to be used as additional supplemental materials.

XI. Global Content
NC SCS Grade 3          21st Century Skills                  Activity
                         Communication Skills
       2.03          Conveying thought or                    Lesson 2
                     opinions effectively
       2.03          When presenting information,            Lesson 2
                     distinguishing between
                     relevant and irrelevant
     2.01, 2.02      Explaining a concept to                 Lesson 8

                 Interviewing others or being
                     Computer Knowledge
                 Using word-processing and
                 database programs
                 Developing visual aides for
                 Using a computer for
                 Learning new software
                      Employability Skills
 2.05, 2.06      Assuming responsibility for      Lesson 3
                 own learning
 2.05, 2.06      Persisting until job is         Lessons 1, 3
All Objectives   Working independently           All Lessons
                 Developing career
All Objectives   Responding to criticism or      All Lessons
                  Information-retrieval Skills
                 Searching for information via
                 the computer
                 Searching for print
                 Searching for information
                 using community members
                  Language Skills - Reading
All Objectives   Following written directions    All Lessons
All Objectives   Identifying cause and effect    All Lessons
All Objectives   Summarizing main points         All Lessons
                 after reading
All Objectives   Locating and choosing           All Lessons
                 appropriate reference
All Objectives   Reading for personal learning   All Lessons
                    Language Skill - Writing
All Objectives   Using language accurately        All Lessons
All Objectives   Organizing and relating ideas    All Lessons
                 when writing
All Objectives   Proofing and Editing             All Lessons
All Objectives   Synthesizing information from    All Lessons
                 several sources

All Objectives   Documenting sources              All Lessons
                 Developing an outline
                 Writing to persuade or justify
                 a position
                 Creating memos, letters,
                 other forms of
All Objectives   Taking initiative                All Lessons
All Objectives   Working on a team                All Lessons
All Objectives   Identifying key problems or      All Lessons
All Objectives   Evaluating results               All Lessons
All Objectives   Developing strategies to         All Lessons
                 address problems
                 Developing an action plan or

Lessons and Objectives:

Lesson One: Where Does the Pumpkin Go?      2.05
Lesson Two: Apple Earth                     2.03
Lesson Three: Compost and Vermicomposting   2.05, 2.06
Lesson Four: Sediment Testing               2.04
Lesson Five: Soil Layering                  2.01, 2.04
Lesson Six: Soil Sieves                     2.01
Lesson Seven: Soakin’ it Up!                2.02, 2.03
Lesson Eight: Squeezing Through             2.01, 2.02

Lesson One: Where Does the Pumpkin Go?
*This activity could be done at any point in the year using a food item
similar to a pumpkin. (Ex. watermelon, squash, cantaloupe)

     2.05 Determine how composting can be used to recycle discarded
     plant and animal material.

 LEP Language Objectives: The student will:
    tell what humus is and what a compost pile is made of.
    write a sentence or make and label an illustration about what is
      happening to the pumpkin at each stage.

ELDSCS (2003):
    Listen and respond to familiar simple questions with modeling and
    Understand and follow two-step and three-step directions with very
    little difficulty.

LEP Modifications: Begin the unit by starting a vocabulary list that will be used
throughout the lessons that follow. The list should be ongoing and include
images that will help students visualize unfamiliar words and concepts.
Reading a book prior to the lesson will help build background on the topic with
students. Books related to the topic include, From Seed to Plant by Jan Kottke
and Pumpkin Jack by Will Hubbell.

Essential Question: What happens to a pumpkin when it rots?

Time: two 45-minute periods for initial activity, observational visits to the
pumpkins, minimum weekly visits of 20-minute time periods to the
pumpkins for data collection, observations, and science notebooking

Content Blast: Soil is composed of organic and inorganic materials.
Organic materials come from things that were once living but are no longer
alive. The material breaks down into simpler compounds over time. The
rate of material break down depends on many factors: humidity, weather,
temperature, and organisms. Humus is the word used to describe the
organic matter incorporated into soil. states that humus is the:

“Nonliving, finely divided organic matter in soil, derived from microbial
decomposition of plant and animal substances. Ranging in color from
brown to black, it consists primarily of carbon but also contains nitrogen
and smaller amounts of phosphorus and sulfur. As it decomposes, its
components are changed into forms usable by plants. Humus is classified
according to how well it is incorporated into the mineral soil, the types of
organisms involved in its decomposition, and the vegetation from which it
is derived. It is valued by farmers and gardeners, because it provides
nutrients essential for plant growth, increases the soil's water absorption,
and improves soil workability.”1

The following activity will allow students to observe what is occurring in the
soil constantly.

     Per Group: (four or five students)                         Per Class:
          one small pumpkin                                       bathroom scale
          measuring tape                                          knife
          Scoop                                                   chart paper
          bowl for pulp and seeds                                 digital camera (optional)
          newspapers
          pencils                                              Per Student:
          crayons                                                 notebook
          paper                                                   pencil

Process Skills: Communicate, Predict, Infer, Classify, Measure, Observe

    Prior to starting the investigation, purchase (or ask for parent
     donations of) one small pumpkin per student group.
    Use a knife to open the top of each pumpkin so that students can
     scoop out the pulp and seeds.
    Lay newspaper over students’ work areas.
    Place a scoop and bowl on work areas.
    Locate an area outside of the school where pumpkins can be placed
     and easily observed.

  humus. (2007). In Encyclopædia Britannica. Retrieved January 8, 2007, from Encyclopædia Britannica Online:

    Create a table on chart paper such as the one below for students to
     record the results of their initial observations.

 Classroom Pumpkin Observation Chart:
                    Weight after
Group # Original      Seeds        Weight after              Height      Width
          Weight     Removed      Carving (opt.)              (cm)       (cm)

Engage: Ask the students, “What will a jack o’ lantern look like in the
spring if it was left on the doorstep since fall?” Accept all answers. (If the
class currently has a compost or vermicompost bin, students may
already have an idea that the pumpkin will break down over time.)

Explore: Distribute the pumpkins to the students. Ask the students what
properties can be observed and measured. Have students draw a picture
of their group pumpkin in their science notebook. (Encourage accurate
Instruct students to use the measuring tape to determine the pumpkin’s
height and width. Have students record their results in their science
Have each group weigh their pumpkin using the bathroom scale and record
the weight in the column marked “Original Weight on the classroom chart.
Ask students to estimate how much their pumpkin will weigh after all of the
seeds and pulp are removed. Have students record their estimates in their
science notebooks. Allow students to scoop out as much of the pumpkin
insides as possible and place it in the bowl. Have students weigh the
pumpkin again and record the results in “Weight after Seeds Removed”
column of the data table.

       Optional Step One: Carve the pumpkins. Have the students weigh
       the pumpkin again and record the results in “Weight after Carving”
       column in the data table.
       Review and discuss the completed chart with the class.

       Optional Step Two: Use a digital camera to take pictures of each
       pumpkin. Make copies so that each student has one for their
       notebooks. (If there is no access to a digital camera, have students
       draw a picture of the pumpkin.)
       Take each pumpkin outside and place it on the ground directly on the
       Have students return to observe their pumpkin weekly and draw a
       picture in their notebooks to show how the pumpkin looks each time
       they observe it. Use the data table below to record observations.
       Optional: Take a digital picture for a class chart at least once a week.

                                                         Height       Width
Date                   Observations
                                                          (cm)        (cm)

During the investigation, circulate and observe students’ work. Review
student notebooks after each visit to the pumpkin.

Explain: Discuss with students what is happening to the pumpkin and
why. Have students explain their understanding of decomposition (rotting).
Answer the questions, “What happened to the material that was there?”
and “Where did it go?”

Elaborate: Students can use the same process on another fruit or
vegetable to compare the decomposition data.

Evaluate: For a final assessment, have students draw a series of pictures
about their pumpkin with detailed comments about what’s happening at
each stage and explain.

LEP’S can label each picture, or write a sentence about their pumpkin

For a more involved investigation about plant decomposition, see the Bottle
Biology™ website for instructions on how to build a Decomposition

Additional Resources:
      Concept to Classroom: Lesson Plans
      Urban Ecology Waste Reduction Project
      Ecological & Environmental Learning Services
      Microbe Zoo

Lesson Two: Apple Earth

     2.03 Determine the ability of soil to support the growth of many
     plants including those important to our food supply.

 LEP Language Objective: The student:
    will name one way to protect topsoil, and tell or show which part of the
      earth can grow food.
    will answer questions about the ability of soil to support plant growth.

ELDSCS (2003):
    Understand and follow two-step and three-step directions with
    modeling and prompting.
    Use vocabulary effectively to participate in academic conversations
    with classmates.

LEP Modifications: Continue to build background knowledge with students.
Prior to lesson, show the globe to students. Explain to students the Earth is
made of land and water. Use pull-down map so students can see most of
the Earth is water (blue). In order to grow the food we need, we must grow it
on the land. Point out the blue sections of the globe is water and therefore
unable to grow food.

Essential Question: How might human activity affect the ability of the
earth’s layer of topsoil to support plant growth?

Time: one 45-minute period (optional elaborate activity: one 45-minute

Content Blast: Topsoil takes a very long time to form. Ten centimeters of
topsoil is the result of hundreds of years of weathering to break down the
parent rock into soil particles. All of our food ultimately depends on this
thin, fragile layer of soil. There’s not much of it and what exists is being
eroded away faster than it can be produced. This demonstration is a
dramatic illustration of how small a layer stands between living organisms
and the ability to stay alive.

  Per Pair of Students:
   one large apple
   one plastic knife
   one paper plate
   paper towels for clean up

Process Skills: Communicate, Predict, Infer, Classify, Measure, Observe

Engage: Provide each pair of students with the materials above. Instruct
students to look at their apple and pretend that it is our planet. Have them
observe the skin. Ask the students the following questions: What would
the skin of the apple represent? What about the seeds?

Explore: Have students place the apple on the paper plate and cut it into
fourths. Of the four parts of the apple earth, three of them are water and
the crust under the water can’t be used for food cultivation. Set the three
pieces aside. (1/4 of the apple remaining)
    The fourth piece of apple is the section of the earth that is dry land.
      All human life is restricted to this fourth of the earth. Students should
      cut the dry land part in half. One part is land that is too hot or too
      cold for the cultivation of food. Set this part aside. (1/8 of the apple
    Have students cut the remaining apple into fourths. The students will
      set aside three fourths. This represents the parts of the earth that are
      too rocky or too rainy. Tell students that some of the remaining piece
      can’t be used for food because that’s where we live, shop, work and
      go to school. Food can't grow on these parts. (1/32 of the apple
    On the remaining piece of apple, have the students carefully remove
      the apple skin. Set the peeled apple piece aside and just look at the
      apple skin. Tell students that the skin, or the topsoil layer, is the only
      place where food can be cultivated. Below the layer of topsoil is solid
      rock and nothing can grow there.
 LEP’S - During the “Explore” portion of the activity, allow students to work
 with partner if students work sure to model each They the cutting the
Explain: Have needed. Make on questions below. step ofcan present process
 so students can see what you
answers in a group discussion. are doing, as well as, listen to instructions.
Questions: to add to and review vocabulary words with students.

      1.   Why is so much of the earth not used for food production?
      2.   What kinds of things or activities might cause the topsoil to
      3.   How can you help protect the topsoil in your neighborhood?
  LEP’S can work with a partner for this activity, and may use isolated words
  or phrases for their responses.
  Question modifications:
     1. Why is a large part of the earth not used for growing food?
     2. How does topsoil disappear?
     3. What can you do to protect the topsoil in your neighborhood?

Elaborate: (Optional: one class period) Use the parts of the apple
designated “ocean” (about 3/4 of the apple) to discuss productive areas of
the sea. Take three fourths of the apple left over from the first activity and
set two of the sections aside. These represent parts of the ocean that are
either inaccessible to fishing or do not support sufficient populations of
animals. Take the remaining section, or one fourth of the total apple, and
cut it in half. Put one section aside. The final eighth piece represents the
coastal areas with enough upwelling currents to supply nutrients to the vast
majority of the ocean’s animal populations.

Evaluate: Have students discuss the answers to the questions posed
above. Check for student understanding. Have students draw or write
about the importance of topsoil in their science notebooks.

*Optional: Have fresh apples ready to eat as a snack while students are
discussing what they have learned.

Lesson Three: Compost and Vermicomposting

Creating a worm’s indoor compost habitat is a great activity that can be
done at the beginning unit or at the beginning of the year in order to see
long term results.

     2.06 Determine the relationship between heat and decaying plant
     matter in a compost pile
     2.05 Determine how composting can be used to recycle discarded
     plant and animal material.

 LEP Language Objective: Students can:
    tell what compost is, and name things to put in a compost pile.
    tell how temperature changed.
    write about changes.

Essential Question: How does the temperature change in a compost

Time: one 60 minute period, three 45 minute periods with 15 minute follow
ups on subsequent days for recording temperatures; worm bin can be
ongoing throughout the year. This observation period should last a
minimum of five weeks to create compost and see some great changes.

Content Blast: Compost is nature’s way of recycling items that were once
alive. A compost pile is created by decomposing organic material. Some
examples are leaves, bark, twigs, food scraps and manure. While organic
materials are decaying, they release nutrients into the soil which are
important for plant growth. Bacteria and other organisms (which are called
decomposers) work together to help decompose the organic material.
Worms, sow bugs, millipedes and other insects help breakdown the
materials faster. To begin a compost pile, a good mix of green (nitrogen
rich items: greener leaves and plants) and brown (carbon rich items: fallen
leaves, wood parts) are required. These should be alternatively layered
with a scoop of soil dropped in between each layer. A shovelful of compost
(or soil) will also help get it started as this will put the decomposers into
your pile. The compost pile needs to be kept moist (use aged water as the
chlorine may kill some of the useful decomposers) and air should be

circulated by turning the pile once a week or so. The worms will help
speed up the breakdown process and will excrete castings which make a
great fertilizer for gardens and houseplants. An initial temperature of each
compost pile should be taken. Hot compost piles degrade material more
quickly than cool piles. Compost piles heat up because the cells of
microbes in a compost heap are working hard and are using lots of fuel.
When they use lots of fuel, heat is given off as a by product. This heat kills
many microbes. However, some microbes like the heat. These
thermophiles can live at temperatures above 45 degrees centigrade.

Preparation: You will be making two compost bins. One will be a regular
compost bin; the other will be a vermicompost bin. The only difference is
that the vermicompost will have red worms added to it. Begin by preparing
two Rubbermaid totes (10 gallon (38 liter) size or larger) by drilling or
poking air holes in the sides and tops of the containers. The containers
should be opaque. Worms do not like light. Order or collect red worms
(sometimes called red wigglers). Do not use Earthworms. They do not
like containers. Gather the green and brown organic materials that will be

     Per Class:
          two 10 gallon (38L) totes or larger
          30 red worms also known as red wigglers
          fruit and vegetable leftovers
          newspaper
          sand, soil, leaves, twigs, bark etc.
     Per student group:
          one gallon zip lock sandwich bag
          thermometers (decide if you are using Fahrenheit or Celsius for
           the unit)
          eye droppers or spray bottles
          small garden shovel

      Use the following materials for each compost bin: sand, soil, dry
      leaves, plastic measuring cup, ruler, eyedropper, spray bottle, hand
      lens, aged water (leave a gallon of tap water out in an open container
      for a day or so), small cubes/ pieces of: apple, potato, orange peels,
      green beans (uncooked)

     One bin will contain the red worms. You will add the worms on the
     second day so that the students will have more time to observe them.

Process Skills: Communicate, Observe, Infer, Classify, Measure, Predict

Engage: Ask students what happens to living (organic) things like leaves
when they die?
Discuss the student’s answers and tell them that we will be conducting an
ongoing investigation to determine what will happen to dead organic

Day One:
   Show students the two totes and the air holes.
   You create the two compost bins simultaneously as a class. The two
     compost bins should be exactly the same. Do this by filling the
     containers with layers.
   The first layer should be approximately 3 cm of soil. Then add 3 cm
     of sand. Alternate the soil/sand layers five times until you have about
     15 cm of earth materials. All of the layers should be loosely packed.
   Water the soil/sand layers with a spray bottle. Do not over water, just
   Place moist shredded pieces of newspaper in the bin to cover the
     soil/sand layers.
   Crumble up the dried leaves and sprinkle over the newspaper.
   Scatter potato, apples, orange peels, and green beans on the
     surface. Repeat these layers all of these layers beginning with soil at
     least twice in the bin.
   Students will collect data by drawing, coloring, and labeling both
     compost bins exactly as they looks today.
   Record the temperature of each compost pile.
   Students should also make predictions about what changes they
     expect to see (if any) in five weeks (or longer period).
   Store worm habitat in a cool place out of direct sunlight.

Day Two:
   Gently remove tops of containers and examine contents. Moisten
     with a spray bottle as needed.

 Call groups to the bins and allow them to use hand lenses to observe
  any changes.
 Ask students how we could turn one of the compost bins into a
  vermicomposter. Accept all answers.
 Ask students what they know about worms.
 Ask students to examine a red wiggler and record their observations.
 Pass out the red worms.
 Students should discuss what they see, think, and wonder. Record
  the results on a See, Think, Wonder class chart.

           See                   Think                  Wonder

 After students have made observations have them gently place 15
  red worms into one compost bin. This will be the classroom
 Each pair of students will create an individual vermicompost bag with
  the remaining worms.
 Ask students how they can create a vermicompost bin with a partner.
  Accept all answers.
 Give each pair of students a zip lock bag and ask if they need to poke
  a few air holes near the top seal of the bag. After that is completed
  have the students fill their bags with layers of soil, greens and
  browns. Add fruit or vegetable materials to each bag. (Apples,
  bananas and lettuce are great.) Do not put anything in that is too
  acidic such as oranges; also do not add any animal matter: cheese,
  meat, eggs etc. into the bags.
 Students should take an initial temperature reading and then all bags
  should be sprayed to moisten the compost. (Students should record
  the temperatures each time that they are taken in the “Observations”
  section of their science notebooks.)
 Each student group should add two red worms to their bag.
 Discuss care of bags so that students do not accidentally injure

Day Three:
   Use an eyedropper or spray bottle to sprinkle water on compost piles
     including each compost zip bag.
   Record any changes noticed. In the science notebooks write an “I
     wonder…” question.
   Place the cover back over the compost bins and collect the zip bag
     vermicompost. Store zip bags in a dark place and leave undisturbed
     for a few days.

Next science class:
   Open the two compost bins.
   Call class up and use hand lenses to observe changes in the
   Record the temperature of the two compost piles.
   Observe and discuss zip bag compost. Is there still visible food? /
     Are the worms still in the bag? How many are there?
   Discuss and record any similarities or differences between the two
     large classes’ totes and the individual bags.
   Write, draw, and color observations in science notebooks.
   Water the compost piles.
   Place the cover back over the compost bins and leave for about two
   Monitor the compost as to whether it needs more water or air
     circulation. This can be done by scooping it around with a small
     garden shovel.
   To keep the compost ongoing simply, continue to add fruit, vegetable
     matter and leaves. The compost bin will take care of itself.

                     Observations and Temperatures
               Compost           Vermicompost                  Individual Bag
Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8
Week 9

Explain: Students write down or draw the changes that occurred each day
in their science notebook. They should notice that the plant material is
changing (wilting, browning, breaking apart etc). They should also have a
data table where they recorded the temperature changes in the compost
piles. If the pile is large enough, the students will be able to feel the heat
with their hands. The smaller and drier piles will not get the same
temperature readings. Discuss how the temperature changed and what
caused it to warm up.

 LEP’S could benefit from a real life connection with composting, for
 example, a trip to a local nursery, farm, or local composting center. If this is
 not available, a video or internet presentation on composting would help to
 build background knowledge for students. Remember to add new vocabulary
 to the unit word list.

Elaborate: Discuss any changes to the investigation that the students
would like to try and set up a new compost bag for an independent
investigation. Some students might want to find out what happens if there
is too much green and not enough brown items etc.

Evaluate: Refer back to the essential question and use science notebooks,
data collection and data table as evidence of understanding.
 LEP’S may have difficulty putting their observations into words and may need
 to work with a partner who can help them with the explanation, and scaffold
 their writing for the recording of data collection. Novice level students can
 draw and label.
Lesson Four: Sediment Testing

     2.04 Identify the basic components of soil: sand, clay, humus.

 LEP Language Objectives: Students can:
    tell a partner about the layers in the jar, and label those layers.
    write responses to lesson questions about soil components.
ELDSCS (2003):
   Use vocabulary effectively to participate in class discussions.
   Use previously modeled strategies to connect prior knowledge and
   Check copying for accuracy and print legibly (e.g. form letters, word
    spacing, and sentences).

LEP Modification: Continue to build background knowledge by discussing
as a class where “soil” is found. Students should conclude soil is found in
many places (e.g., playground, lawns, and farms).

Essential Question: What are the characteristics of the soil samples?

Time: two 45-minute periods on separate days

Content Blast: Soil is a combination of all kinds of materials. The basis for
soil is finely ground up rocks and minerals from the earth’s surface but
each soil sample will have its own characteristics. The students will
observe soils settling and forming different layers. The heavier parts settle
first and the lightest ones (the humus) settle last. If layers are difficult to
distinguish, the first layer formed within the first minute of settling should be
sand; between one to fifteen minutes will be silt and anything else after
that: clay.

Per Student Pair:
    three jars with lids (medium sized)
    three different soil samples (ex. woodland soil, garden soil, farmland
    metric rulers

Per Student:
   one-inch cube of clay
   string

Process Skills: Observe, Communicate, Infer, Predict, Classify, Measure

Day One: Ask students, “What are the characteristics of the soil samples?”
Observe soil samples. “What characteristics do you see?” (Have students
record a list of characteristics in their science notebook, and create a class
chart.) “Are there any others?”
 LEP’S should participate in a discussion of soil characteristics with the
 class. As students give characteristics, list them on chart paper so
 students can refer to list throughout unit.
Day One:
   Students fill jars 1/3 full with soil samples.
   Pour water into jar until it is full.
   Place lid on jar and shake for several minutes until the soil sample is
     suspended. Make observations and discuss predictions about the
     settling. Set aside for at least 24 hours before making next
   Students should draw and label a diagram for their observations. The
     next day a second diagram will be drawn to compare settling.

Science Notebook Recording Sheet
                       Day One Observations
        Soil #1               Soil #2                       Soil #3

                          Day Two Observations
        Soil #1                 Soil #2                     Soil #3

Day Two:
   After the soil samples have settled for 24 hours (or longer) have the
     students observe the layers of sediment.
   Measure the total depth of the sediment from the outside of the jar
     and record on a chart.
   Create a class chart and a chart in the students’ science notebooks
     for each soil sample and discuss the components.

Guiding Questions:
What do you see in your jars? What is different about each layer? Why do
you think each layer was created as it is? Does each layer have specific
characteristics? Can you identify the different types of soil represented

Explain: See Content Blast. Draw and label the soil samples.

Reflection Questions:
1.   What were the three types of soil and their characteristics?
2.   How could the soils be improved for growing things?

  LEP’S Reflection Questions:
    1. What were the three types of soil? Tell about each type.
    2. What can we do to make the soil better?

Elaborate: Students each receive a one-inch cube of clay in which they
will use their senses to observe. They will create a necklace pendant (ex.
ball, triangle, design), and poke a hole for a string that can be threaded
through later. Either allow the clay time to air dry, or if you have access to
a kiln, you can fire the clay to make it harden. Discuss painting
opportunities with your school’s art teacher.

Evaluate: Students record diagrams of sediment jars including labels of
soil types, depth of sediment and parts of the soil in science notebooks.

Additional Resources:

Lesson Five: Soil Layering

     2.01 Observe and describe the properties of soiI: color, texture,
     capacity to hold water.
     2.04 Identify the basic components of soil: sand, clay, humus.

 LEP Language Objective: Students can:
    tell a partner details about layering.
    make an illustration of their jars and label it.

ELDSCS (2003):
    Retell facts and details using limited verbal responses.
    Write several simple sentences describing a familiar topic with

LEP Modification: Continue to have vocabulary list posted throughout unit
so students can refer to list when giving verbal responses and when
completing written assignments.

Essential Question: How do soil particles separate into layers?

Time: two 45-minute periods on separate days, daily observations after
initial construction of layered bottles

Content Blast: Sedimentary rock forms in layers that are deposited one
after the other over long periods of time. When soil, rocks, and mineral
deposits are mixed with water, the soil properties cause them to settle at
various rates towards the bottom and form layers. Over time (thousands of
years) the layers will harden into a sedimentary rock formation. Prior to the
lesson, make sure you have discussed the terms, sedimentation, particles,
rocks, minerals, and soil.

     Per Student Group:
            water bottles with caps
            mixture of different sized rock, gravel, sand and soil
      particles (rocks
            small enough to fit into a water bottle)
            one plastic baggie
            water
            scissors
            marker
            spoon
     Per Student:
            three small pieces of sand paper (one fine, one
               medium, one coarse)
            blank white paper
            crayons
            hand lenses

Process Skills: Observe, Predict, Communicate

Engage: Show students a soil profile.


   Gather up different sources of particles that vary in size, type and
     texture. Good sources are mud, sand, gravel, and rocks.
   Keep and label a class sample of each source in a separate container
     so that students can go back and look at them later if needed.

   Each student pair should add two spoonfuls of each material into the
     plastic baggie. Then seal the baggie and shake to mix the materials
     together. Label this baggie as your mixture.
   Students will cut off the bottom corner of the baggie to create a
     funnel. They will then place the cut corner into the top of the water
     bottle and slowly empty the contents into the bottle.
   Fill the water bottle to the top with water. Pour it slowly into the bottle
     so that the particles have time to absorb the water and don’t float out
     of the bottle.
   Replace the cap of the water bottle, label your group’s bottle, and
     shake about 20 times up and down to thoroughly mix the particles
     and the water.
   Set the bottle down in a safe place, remove the cap and leave it
     undisturbed until ALL the water has evaporated. A sunny place is
     best to help the water evaporate and the layers to harden.
     (Evaporation time will vary depending on the amount of water added.)
   When all the water is evaporated, teacher will cut the bottle length-
     wise in half to show the cross section of the layers that formed in the
LEP Modification: Model each step of “exploration” process so students
can visually follow each step.

Explain: Students will describe the properties of the soils and what caused
them to settle at various rates. Each layer can be distinguished in color,
texture, and composition.
LEP Modifications: Give students assistance when sequencing the steps
of the sedimentary rock formation. One suggestion is to have the steps
written for students and have them use time and order words to put them
in the correct order. Another suggestion is to allow students to work with
a partner to retell steps of the process.

Elaborate: Each student receives three sections of sand paper (fine,
medium, and coarse) in order to examine with hand lenses the various
particle sizes and textures. They will create sand paper rubbings by
placing a piece of blank white paper on top of each section of sand paper
and rubbing with a crayon. Students can discuss their observations as they
create a textured picture.

Evaluate: Evaluate students’ participation and discussions. Students will
observe and record results by creating and labeling an illustration.

LEP’S may use simple words or phrases to show understanding when
talking with a partner.

Lesson Six: Soil Sieves

     2.01 Observe and describe the properties of soil: color, texture, and
     capacity to hold water.

   LEP Language Objective: Students can:
      complete the soil separating activity with a partner
      tell about size and appearance of soil particles of their sample.

ELDSCS (2003):
    Participate in discussions using academic vocabulary effectively.
    Respond to who, what, when, where and how questions through
    limited verbal and non-verbal responses.
    Understand and follow two-step and three-step directions with
    prompting and modeling with little difficulty.

LEP Modification: Build background by discussing the word “separate” with
students. Using objects in the classroom tell students they will “separate”
the objects in groups. One suggestion is to use pattern blocks. Have
students separate based on shape, size, color etc. This will show students
that separate means to put into different groups. Discuss other examples
things students see daily that are separated (e.g., during dismissal car
riders are separated from bus riders, students are separated by their grade
level). Support students as needed when discussing ways to separate soil
samples. Allow students to give non-verbal responses. Allow students to
use given materials to show their ideas rather than discussing orally.

Essential Question: How can we separate soil?

Time: one 45-minute period, can be used as an ongoing center activity

Content Blast: Earth materials can be sorted by size through sieves. These
different sized stacking screens separate the soil into silt, sand, gravel,
and pebbles. Soils are made of tiny pieces of rock or minerals. But not all
of the particles are the same size. Gravel particles are greater than 2.00
mm, sand is classified between 2.00 and 0.05 mm, silt is a particle that is
between 0.05 and 0.002 mm, and clay is any mineral particle less than
0.002 mm. To determine a type of soil, particles are analyzed. Most soils

are a mixture of sand, silt, and clay and are said to be loams. If the
sample has more sand, it is a “sandy loam,” more silt, a “silty loam,” more
clay, a “clay loam”. Depending on the amounts of sand, silt,
and clay, the soil type may be further classified as a “sandy, clay loam”,
“silty, clay loam”, “silty, clay”, etc.

   class set of sieves (You may want to do this as a center activity, if
     you are unable to obtain enough sieve sets. Cost is approximately
     $30 at a teacher supply store.)
   soil samples
   sand
   gravel
   pebbles
   balance scale
   paper plates
   toothpicks
   hand lenses

Process Skills: Observe, Communicate, Predict, Classify, Measure

Engage: The student will observe the soil sample they collected at home.
Record what they observe about their soil sample in their science
notebook. Ask the question: How can we separate soil?

   Students discuss ways to separate soil samples.
   Students observe the soil on a paper plate with a hand lens and try to
     separate with a toothpick.
   Students discuss observations and view soil sieves.
   Students determine a way to use the sieves for separating the soil.
   Students separate the soil into four different size particles by shaking
     it through three screens and one bottom.
   Students weigh each separated sieve sample and record in
   Students glue a sample of each size particle in their notebook.

Explain: Students will discuss the observations they made of their soil

1.   Were the soil particles all the same size?
2.   What did the particles look like?
3.   What happened when the soil was put in the sieves?
Discuss concepts and vocabulary.
LEP’S can work with a partner to help discuss the wording to use for their

Elaborate: Have students compare various soil samples from around the
community to note any differences between the soil samples.

Evaluate: Observe student data collection including the mass of each
separated sieve sample. Use science notebook with a sample of each
particle size glued in notebook.

LEP’S can orally share data with a partner to help them record data in
their notebooks. Novice learners can use drawings if they are unable to
write simple words or phrases.

Lesson Seven: Soakin’ it Up!

     2.02 Investigate and observe that different soils absorb water at
     different rates.
     2.03 Determine the ability of soil to support the growth of many
     plants, including those important to our food supply.

 LEP Language Objective: Students can:
    tell what soils let water pass through better.
    plant growth.
ELDSCS (2003):
    Understand and follow two-step and three-step directions with
    modeling and prompting.
    Demonstrate comprehension of a topic through graphic organizers,
    pictures or responding to simple questions or statements.

LEP Modification: Build background with students by conducting a brief
discussion about what plants need to grow. Using prior knowledge from the
unit, students should conclude plants need soil to grow. Discuss further by
asking simple questions about types of soil. For example show students
rocky soil and potting soil. Ask students to predict which soil would be
better for a plant. Challenge students to explain why the potting soil is

Essential Question: How much water does soil hold?

Time: two 45-60 minute periods, extend can be done on a separate day
during a 45-minute period

Content Blast: The best kind of soil for plants will allow water to move
through slowly enough so that some of it stays in the soil for the plants to
use. Water moves too quickly through sand. It moves very slowly through
clay, but clay holds the water so tightly that plants can’t get to it. Soil that is
good for plants has a mixture of sand, silt, clay and organic material, or
humus. Humus acts like a sponge to help the soil capture water. Humus is
formed when plants and animals die and decompose. When organic
matter is used up, soil packs together in clods. A cloddy soil has fewer air
spaces. A soil with more organic matter will be crumbly. Not only does a

crumbly soil take in water faster than a cloddy one, it holds more. The
humus in a crumbly soil can absorb lots of water. This increased water-
holding capacity of soils high in organic matter makes a big difference in
the intake of water. The students will be conducting a percolation test,
which is a test of the soil to determine if it will absorb and drain water

Per Student Group:                                    Per Class:
   one cup of clay, one cup of sand, one cup of         chart paper
     humus, one cup of playground soil                   sticky notes
   funnel (use top half of a 2-liter bottle)
   collection cup (use bottom half of a 2-liter
   four coffee filters
   one gallon of water
   measuring cups
   stopwatches or a clock with a second hand
   graduated cylinders
   food coloring (optional)

Process Skills: Observe, Communicate, Classify, Measure, Predict, Infer

Day 1—Show students several different types of soil. Allow them to
observe the soils using as many of the senses as possible. Once they
have had sufficient time to observe, they will write down what they think
about “How much water soils hold?” on a sticky note. They will place the
sticky notes on the “Think” section of the class chart shown below.
Students will then think about what puzzles them in regards to “How much
water soils hold?” They will write their puzzling questions onto another
sticky note and place them on the “Puzzle” section of the class chart below.
The teacher will discuss the puzzling questions with the class and urge
them to think about what they would like to explore based on what puzzled
them. The students will then create exploratory questions and write those
onto sticky notes and place them into the “Explore” section of the class
chart below.

                    Think, Puzzle, Explore Class Chart
         Think                    Puzzle                    Explore
Ex. I think the sand     Ex. I wonder how          Ex. I want to know if a
would be hot and dry     cactuses grow in sand.    cactus can grow in my
out easily.                                        yard.

LEP’S Puzzling Questions:

I think……….                  How does……                   I want to know…..

Provide students with modeled sentences to help them with this activity

Day 2 Preparation:
   Prepare the 2-liter bottle for use as a funnel and collection cup. Place
     the bottle on a table and measuring up from the table surface, place a
     mark at 5 ½ inches. This is where you should cut the bottle in half.
   Collect various soil types. Contact your county’s Soil and Water
     Conservation office for assistance, if needed.

   Divide the class into groups.
   Provide each group with a funnel and collection cup (made from a 2
     liter bottle), a coffee filter, soil samples of each soil, a graduated
     cylinder, and a one cup measuring cup.
   Each group will measure 50 ml. of water into a graduated cylinder. (At
     this time you could add food coloring to the water, which will make it
     easier to read the amount of water in the graduated cylinder.)
   Place one coffee filter into the funnel. Measure and add one cup of
     soil into the filter.
   Each group should have a timekeeper, water pourer, materials
     manager, and a recorder.

   When the time keeper says go, the water pourer should slowly pour
    the 50 ml. of water into the funnel.
   Time should be kept for a maximum of three minutes. Most should
    be finished by this time, however some samples may not be. For
    those that are not finished, discuss what caused those samples to
    take longer.
   Record the amount of water collected for each sample. Add the data
    to the percolation graph and the percolation data table.
   Pour out and measure the water that percolated through the sample.
    Record this on the graph.
   Repeat this process until all soil samples have been tested.
   Once each soil sample has been tested use the last column of the
    data table to find the difference between water before pouring and
    water collected after pouring to determine the amount of water that
    remained in the soil.

LEP Modifications: Before starting the activity, the teacher should hold up
each item to be used in the experiment and name it.

                         Percolation Data Table
                       Amt. of Water       Amt. of Water          Difference (Amt.
                       Before Pouring      Collected After        retained in soil)
                            (ml)            Pouring (ml)                 (ml)
    Sample 1                  50
    Sample 2                  50
    Sample 3                  50
    Sample 4                  50

                                  Percolation Graph

           Water collected


                                   S1     S2            S3       S4
                                         Soil Samples

Discussion Questions:
1. How does your data support where a plant thrives best?
2. What makes the other soil samples unable to sustain plant growth?
3. How does rainfall affect the soil in your community?
LEP Discussion Questions:
  1. Where does a plant grow best?
  2. Why didn’t plants grow well in other samples?
  3. Why is rain important for the soil in your area?

Elaborate: Students can choose any of the explore questions from the
engage activity to investigate independently. This could be extended into
another class period if so desired.

Evaluate: Students should complete a reflection activity entitled, “I used to
think…Now I think…” in which they will write an entry in their science
notebooks about misconceptions that they may have had about a soil’s
ability to support life.

LEP Modification: Accept a reflection of any length, even isolated words and
phrases for Novice level learners. It would be very helpful to these students if
the teacher models a reflection.

 Additional Resources:

 Lesson Eight: Squeezing Through

      2.01 Observe and describe properties of soil: color, texture, and
      capacity to hold water.
      2.02 Investigate and observe that different soils absorb water at
      different rates.

LEP Language Objective: Students can:
   tell how water moves through different types of soils.
   write responses to questions about the movement of water.

 Essential Question: How does water move through various soils?

 Time: one 45-minute period

 Content Blast: See Lesson 7.

   Per Student Pair:
       water in a pitcher
       buckets

 Process Skills: Classify, Communicate, Observe, Predict, Infer

    Have students work in pairs to complete the following activity.
    One student will clasp their hands together as tightly as possible over
     the empty bucket while another student slowly pours water over the
     clasped hands.
    Students should observe what happens to the water.
    The student will then slightly loosen their hands while the other
     student again slowly pours water over the loosened hands.
    Finally, the student will barely touch their hands together as the
     partner pours water over the hands.
    Students should complete a “See, Think, Wonder” chart about the

          See                      Think                    Wonder
Ask students what          From the actions that     What did this activity
actions they saw           they saw, what did it     make the students
happening.                 make them think?          wonder?

 LEP’S “See, Think, Wonder” Chart

 See                           Think                    Wonder

 What did you see?        What did you think            What are you
                          about the three actions?      thinking now?

   Divide the class into four groups.
   Assign each group one of the following titles: water, sand, humus,
     and clay. The three soil groups should position their arms like the
     examples in the drawing below.

                  Sand                     Humus                Clay
      Group the sand particles together so that each particle is touching
       another (finger tip to finger tip).
      Now tell students in the water group to try and walk through the sand
       group (under their arms). They should be able to walk through will
       little difficulty.
      Repeat the above step for humus and clay. Humus particles should
       be touching elbows, and clay particles should be touching shoulders.
      Discuss the results.

Discussion Questions:
1.   Which group was the hardest for the water to move between?
2.   Which types of soils hold more water?
3.   Why is it important for you to know how water percolates through

LEP Discussion Questions:
  1. When did the least water move?
  2. What soil holds more water?
  3. Why is information about how water moves important?

Elaborate: Mix up a variety of the sand, humus, and clay particles
(students) to make a loam. Ask the water group to walk through. Discuss
the results and explore the differences between the groups of uniform
particles and the loams.

Evaluate: Students will write a reflection paragraph identifying whether or
not their “Wonder” questions were answered.

LEP’S: Accept a reflection of any length, depending on the students’
language ability. It would be very helpful for these students if the teacher
models a reflection.

Additional Resources:

Multiple Choice Questions:

Objective 2.01 (RBT Tag A4)
1.    A student exploring soil samples described the sample as rough,
grainy and hard. What property are they exploring?
      A. Color
      B. Smell
      C. Texture
      D. Sound

Use the following science entries to answer next two questions.

     #1              #2             #3               #4
     1:00 PM         1:00 PM        1:00 PM          1:00 PM
     The soil        I wet the      The soil         The sample
     looks black,    soil sample.   feels            has a worm
     moist and       Water stays    smooth.          and small
     has some        on top and     There are        rocks in it. It
     sticks in it.   looks like     no clumps        has small
                     bubbles.       in it.           leaves too.

2.     Which journal entry tells about soil color?
       A. 1
       B. 2
       C. 3
       D. 4

3.     Which notebook entry tells us about soil texture?
       A. 1
       B. 2
       C. 3
       D. 4

Objective 2.02 (RBT Tag C5)
4.   If you add some clay and some sand to a bottle full of water and then
shake it up, what will you most likely see in a few hours?
     A. The sand will be in a layer on the bottom.
     B. The clay will be in a layer on the bottom.
     C. The clay and the sand will form individual layers.
     D. The clay and sand will be floating in the water.

5.     If you pour water through a sieve holding a soil sample containing a
lot of sand, you would expect to see the water
       A. Flow out very quickly
       B. Flow out very slowly
       C. Remain in the soil
       D. Overflow the top of the sieve

Objective 2.03 (RBT Tag B5)
6.   Where do growing plants get their water and nutrients?
     A. Leaves
     B. Rocks
     C. Flowers
     D. Soil

7.    How can a scientist test soils to see which will grow the best?
      A. Plant seeds in different soils.
      B. Plant seeds in sand.
      C. Soak the seeds in water.
      D. Measure the amount of seeds.

8.    If a seed falls onto a patch of soil with a lot of clay it will most likely
      A. Sprout quickly then grow
      B. Sprout quickly then die
      C. Not sprout at all
      D. Not sprout for a long time

Objective 2.04 (RBT Tag A1)
9.   Which of the following soils contain more than one material?
     A. Sand
     B. Clay
     C. Humus
     D. Asphalt

10.   Soil may contain all of the following except
      A. Sand
      B. Clay
      C. Humus
      D. Asphalt

Objective 2.05 (RBT Tag B2)
11. A compost pile is most similar to
     A. Recycling paper
     B. Throwing trash away
     C. Collecting money
     D. Shopping at the store

12.   Where do the nutrients from the compost pile (or the pumpkin) go?
      A. Disappear
      B. Into the soil
      C. Evaporate
      D. Remain in place

Objective 2.06 (RBT Tag B2)
13. The best purpose of a compost pile is to ________ organic matter
     A. Grow
     B. Decay
     C. Decorate
     D. Water

14.   The temperature in a compost pile will usually
      A. Increase
      B. Decrease
      C. Increase then decrease
      D. Stay the same

Multiple Choice Questions For LEP’S:

Objective 2.01 (RBT Tag A4)
1.   If we use the words rough, grainy and hard, we are talking about
     A. Color
     B. Texture
     C. Sound

Objective 2.02 (RBT Tag C5)
2.    If you put clay and sand in a bottle of water and shake, what will you
most likely see in a few hours?
      A. The sand will be on the bottom.
      B. The clay will be on the bottom.
      C. The clay and the sand will be in two separate layers.

3.   If you pour water into a sieve with a lot of sand, what do you think the
water will do?
     A. Flow out quickly
     B. Flow out slowly
     C. Remain in the soil

Objective 2.03 (RBT Tag B5)
4.   Where do plants get their water and nutrients?
     A. Leaves
     B. Rocks
     C. Soil

Objective 2.04 (RBT Tag A1)
5.   Which of the following soils has more than one material?
     A. Sand
     B. Clay
     C. Humus

Objective 2.05 (RBT Tag B2)
6.   A compost pile is like
     A. Throwing trash away
     B. Recycling paper
     C. Shopping at the store

7.   Where do the nutrients from the compost pile (or the pumpkin) go?
     A. Disappear
     B. Into the soil
     C. Remain in place

Objective 2.06 (RBT Tag B2)
8. A compost pile ________ organic matter
     A. Grows
     B. Decays
     C. Decorates

9.   The temperature in a compost pile will
     A. Increase
     B. Decrease
     C. Stay

                           Answer Keys

Multiple Choice Answers:          LEP Multiple Choice Answers:

1.    C                           1.     B
2.    A                           2.     C
3.    C                           3.     A
4.    C                           4.     C
5.    A                           5.     C
6.    D                           6.     B
7.    A                           7.     B
8.    D                           8.     B
9.    C                           9.     A
10.    D
11.    A
12.    B
13.    B
14.    A

                       Appendix – Master Materials
(Check individual lessons to see if materials are per class, per group, or per

Lesson One
   small pumpkins
   measuring tapes
   scoop
   bowl for pulp and seeds
   newspapers
   pencils
   crayons
   paper
   bathroom scale
   knife
   chart paper
   digital camera (optional)

Lesson Two
   large apples
   plastic knives
   paper plates

Lesson Three
   two 10 gallon (38L) totes or larger
   30 red wigglers
   fruit and vegetable leftovers
   newspapers
   box of gallon size zip lock sandwich bags
   thermometers
   eye droppers or spray bottles
   small garden shovels

Lesson Four
   jars with lids (medium sized)
   three different soil samples (ex. woodland soil, garden soil, farmland
   metric rulers

    paper towels for clean up
    one-inch clay cubes
    string

Lesson Five
   water bottles with caps
   mixture of different sized rock, gravel, sand and soil particles (rocks
   small enough to fit into a water bottle)
   one plastic baggie
   water
   scissors
   marker
   spoon
   various sand paper pieces (fine, medium, coarse)
   blank white paper
   crayons

Lesson Six
   class set of sieves (can be purchased from a teacher supply store for
    approx. $30)
   soil samples
   sand
   gravel
   pebbles
   balance scale
   paper plates
   toothpicks
   hand lenses

Lesson Seven
   cup of clay, cup of sand, cup of humus,
   cup of playground soil
   funnel (use top half of a 2-liter bottle)
   collection cup (use bottom half of a 2-liter bottle)
   coffee filters
   one gallon of water
   measuring cups
   stopwatches or a clock with a second hand

     graduated cylinders
     food coloring (optional)
     chart paper
     sticky notes

Lesson Eight
   water in a pitcher
   buckets


Shared By: