Docstoc

word doc - Mount Holyoke College_ South Hadley_ Massachusetts

Document Sample
word doc - Mount Holyoke College_ South Hadley_ Massachusetts Powered By Docstoc
					                 Designing STEM College Peer Mentoring Programs– A Quick Guide

                       Becky Wai-Ling Packard, Ph.D.       bpackard@mtholyoke.edu



This document is divided into four components. Although I developed this resource as a guide for STEM
peer mentoring at the college-level, much of the information can benefit program design across a range of
ages and fields of study. Please refer to my website for updates throughout the semester.



    1. Design Considerations

            a. What is your goal?

            b. Range of options for the goal(s)

            c.   Tailoring based on budget and participants

            d. Training and assessment



    2. Peer Mentoring Program Examples

            a. Peer-to-Peer- Same Level- Cohort/Teammate

            b. Peer-to-Peer- Same Level- Seasoned ―Near-Peer‖

            c.   Peer-to-Peer- Step Ahead



    3. Short Annotated Bibliography

            a. Articles on Peer Typologies, Selection, Training

            b. Supplementary Readings




                                  Packard STEM College Mentoring Quick Guide

                                                      1
                                      Design Considerations

Consideration 1: What is your goal? What type of mentoring makes sense?

       Define your goal for the program, or your ideal outcome. Is your goal recruitment, retention in
        school during a particular transition, or graduation in a particular major? Or increasing
        competitiveness of applicants to Ph.D. programs?

       Make sure that your mentoring program aligns with your goal such that you include mentoring
        functions likely to produce your desired outcomes. If the primary concern is raising performance
        in a gateway course, then emphasizing academic coaching and tutoring by peer mentors within
        that course would be ideal. If students are excelling in courses but eventually become
        disinterested in the major, then providing access to peer mentors within internships or other field-
        based opportunities would be more appropriate. This comment may seem obvious, but it seems
        that many mentoring programs are designed to emphasize peer socializing even when social
        support and belongingness may not be the primary outcome of interest. In other words, articulate
        your own definition of mentoring that will be used in your mentoring program. (See AAAS
        science mentoring website’s guidelines http://ehrweb.aaas.org/sciMentoring/research.php)

Consideration 2: Consider options for meeting the goal, peer mentoring or otherwise

       Peer mentors are particularly adept at providing social support and a sense of belonging;
        facilitating the acquisition of academic skills or competencies; coaching through a particular
        process or transition by providing ―inside knowledge‖ about a pathway. Thus, peer mentors make
        great coaches or tutors, if step-ahead or seasoned peers, or teammates if at the same level or
        in the same cohort. Consider how peer mentoring fits into the overall mentoring landscape in
        conjunction with faculty/supervisory mentoring which tends to provide better career support
        opportunities or increase competitiveness and interest for graduate school. (see Ensher et al.,
        2001; Kram & Isabella, 1985; Terrion & Leonard, 2007 for peer typologies and outcomes)

       Mentoring usually means interactive support over a period of time on a monthly if not weekly
        basis. Distributing information or sparking interest may not require a mentoring ―program‖ per se,
        but peer mentors could be tapped for outreach through panels or demonstrations. (see Packard,
        2003a; Shotton et al., 2007)

       Gateway courses or learning centers are logical places to integrate peer mentoring. Socializing
        is an important part of any mentoring program, but it is recommended to feature activities with an
        explicit academic or career focus such as coursework or research in some form where
        socializing can emerge as a natural byproduct of interaction. Most successful programs at the
        college-level pair academic/career goals with social goals. Contributing to one’s community and
        increasing competitiveness in one’s field are clear incentives for both mentors and mentees alike.
        (see Arrington et al., 2008; Shotton et al., 2007; Smith-Jentsch et al., 2008).

       A cadre of mentors (whether peer-same level, peer-seasoned, peer-step ahead, or supervisory)
        is recommended as multiple mentors provide access to different models and skill sets and
        increase support and retention of mentors—a double-win for a peer mentoring program. Even if
        pairing mentors and mentees into dyads, consider mixers for the entire community and allow
        mentors and mentees to meet up in their own groups on a regular basis. (see Packard, 2003a)
                                  Packard STEM College Mentoring Quick Guide

                                                      2
Consideration 3: Tailor based on budget and participants

       Logistics matter, whether looking at financial incentives, scheduling, and transportation. Do your
        research- don’t assume an opportunity is so good ―anyone‖ would do it. You may miss out on the
        key folks you hope to reach. Gaining perspective on relative workloads (part-time work, school
        expectations) can help to design a program in which your target students can actually participate
        and thrive. It is better to have fewer mentors who are likely to follow through, as mentor
        commitment is linked to mentee satisfaction and other positive outcomes.

       Include training for mentors and mentees, including basic selection criteria, expectations for
        program, consequences for not meeting expectations, and resources to use when facing conflicts
        or difficulties. Goal-setting exercises at the start of the program for both parties can help facilitate
        dialogue about reasonable expectations with regard to which goals are likely to be met in the
        program, and thereby increasing commitment to meet goals that are possible, diminishing
        potential disappointments, and avoiding confusion. Having mentors and students show how they
        will integrate the program into their schedules is another useful mechanism for increasing
        commitment and follow-through. Anticipate the potential burden (face-to-face time, tracking,
        financial, paperwork) on the faculty/advisor sponsor such that the design sufficiently considers
        the support needed to keep the program running and support to parties involved. For example,
        the program coordinator may need assistance with the logistics of the program to make it feasible.
        (see Kasprisin et al., in press; Packard, 2003b)



Consideration 4: Plan for assessment from the start

       Consider how you will baseline and track individuals over time, if desired. Do you have access to
        a contact person who will know the whereabouts of your participants after graduation?

       Make sure your assessments align with your objectives. Will you have access to the information
        you need to make your case for ―effectiveness‖ at the end of the program (or a few years down
        the road)? For example, do you have access to grade reports?

       Include a variety of data sources. Focus groups tend to provide useful qualitative richness of
        experiences.




                                   Packard STEM College Mentoring Quick Guide

                                                       3
                          Peer mentoring definitions and examples


1. Peer Mentoring- Same-Level

          Peers support one another in a cohort, either supervised by an advisor, faculty member, or
           graduate student, usually focused on a research project or a transition into college program.
           Often, students enroll in courses or workshops with access to tutors. Peer mentoring in these
           programs, however, usually described in terms of the peers within the team or cohort. The
           goal is to solidify relationships among entering (often underrepresented) students.

          Likely outcomes- social support, positive affect toward field-relevant activities, retention,
           increased academic skills if peer-to-peer academic study groups emphasized.

          Certain LSAMP programs take this form, such as Summer Bridge programs, where a cohort
           of incoming college students arrives early to the university for coursework and mentoring.
           Alternatively, a program can focus on the academic year, developing cohorts of students,
           typically featuring residential groupings in the same dorm (Residential Academic Programs),
           enrolling in a common seminar, co-scheduling of sections of courses, or fixed study groups
           within a section of a course.



       Summer Bridge examples:

              University of Maryland (http://www.umes.edu/amp/)

              UC-Berkeley (http://summerbridge.berkeley.edu/info.html)

              UC-Riverside (http://www.summerbridge.ucr.edu/)



       Residential Academic Program example:

              Umass-Amherst - http://www.umass.edu/rap/declared_majors.htm




                                  Packard STEM College Mentoring Quick Guide

                                                      4
2. Peer Mentoring- Near-Peer or Seasoned

          Peer with relevant experience in a particular domain provides support to peers at the same
           level, meaning they are both in the same college (e.g., usually advanced students mentoring
           incoming students, but can just be one semester ahead). This typically takes place in a class
           in which the peer mentor already took and excelled, and the peer mentor acts as a teaching
           assistant, tutor, or study group leader within the class or outside of class. The peer mentor
           may also act as a peer leader, or ―liaison‖, providing coaching and advising to newer students,
           as part of a leadership circle, cadre, or student leader organization.

          Likely outcomes: higher grades and persistence in class, social support, greater knowledge
           about steps needed to advance in the major or extra-curricular options.

          Even when the programs pair mentors with mentees, there are usually activities for the whole
           community. A team of mentors is recommended- at least two peer mentors so they have
           support from each other and collectively can provide multiple models to their peers. When
           housed in the student resource center, peer mentors can hold ―office hours‖ and then are not
           assigned to any one student. Typically there is a faculty sponsor.



       Club Format, Pairing Incoming with Advanced Students Examples:

              Carnegie Mellon big sisters/little sisters within computer science
               http://www.cs.cmu.edu/~women/initiatives/bigsister.shtml

              Texas A & M University – peer mentors for newer female students in computer science
               http://awics.cs.tamu.edu/mentoring.php

              Moraine Valley Community College—Connects incoming women students in computer
               technology to experienced women students and professionals. The web ―showcasing‖ of
               multiple mentors is especially notable. http://www.morainevalley.edu/cad/nsfmentors.htm

              University of Michigan- pairs incoming engineering students with advanced students
               http://www.engin.umich.edu/students/advising/mentoring/index.html

              University of Nebraska-Lincoln- peer mentors for computer science/engineering students
               http://cse.unl.edu/gpsti/PDFs/MentoringCenter.pdf

              Depaul University- College of computing, digital media- pairing first years with advanced
               http://www.cdm.depaul.edu/studentlife/Pages/UndergraduatePeerMentoring.aspx




                                 Packard STEM College Mentoring Quick Guide

                                                     5
Course-Based, Peer Tutoring Examples:

      University of Woolgong—Peer-Assisted Study Sessions
       http://www.uow.edu.au/student/services/pass

      New Mexico State – Peer Tutoring in Gateway Computer Science Courses with good
       notes on mentor training and what did not work
       http://www.cs.nmsu.edu/~mmartin/pubs/SETE_2004.pdf




                       Packard STEM College Mentoring Quick Guide

                                           6
3. Step-Ahead Peer Mentoring

          Peer is a step-ahead in schooling, so for example, college students mentoring high school
           students, or four-year college students mentoring community college students. The peer
           mentors have relevant experience in a particular domain, and they may engage in joint
           projects, discussion sessions, or tutoring in classes. Step-ahead mentors can provide greater
           role modeling and career support than seasoned peers as they are further ahead in the
           pathway, but logistically there can be different issues to facilitate regular contact.

          Likely outcomes: higher grades and persistence in classes, social support, greater knowledge
           about steps needed to advance in the major or extra-curricular options, role modeling,
           scaffolding in research or related career support.

          Step-ahead programs have developed out of student leadership organizations or science
           scholars programs, providing a cadre of student leaders that can be tapped to provide
           outreach to high school students. Not all programs have regular contact with high school
           students, thus the result may be a pool of peer mentors but not necessarily a peer mentoring
           program per se. College community service learning courses offer opportunities to partner
           with high school students in a course or after-school program. Linking mentors to course
           requirements or participation in the leadership program increases success whereas purely
           volunteer-based programs are not as likely to see the same follow through.

       Examples: ―Leadership‖ or ―Scholars‖ Cadre model

              Lamar University: Computer science program for women and minorities, good example of
               selection criteria and expectations
               http://www.cs.lamar.edu/inspire/Content/INSPIREDOnePageSp08.pdf

              Towson University: COSMIC S-Stem Scholars program emphasizes link between
               computer science and math http://www.towson.edu/cosmic/

              Iowa State Women in Science and Engineering’s Student Role Models program, includes
               a list of 61 prepared activities for K-12 with a brief description K-12
               http://www.pwse.iastate.edu/PDF/rolemodelactivities.pdf

              Lousiana State University- Isaiah Warner’s national model funded by HHMI, peer
               mentors take courses for increased effectiveness, need to maintain eligibility
               http://appl003.lsu.edu/acadaff/hhmippweb.nsf/$Content/Success?OpenDocument

       Example of Community Service Learning course:

              Umass Lowell - Holly Yanco’s program where college students and high school students
               work together in an 8-week program intregrating technology and art.
               http://artbotics.cs.uml.edu/index.php?n=Programs.Fall2007AfterSchoolProgram




                                Packard STEM College Mentoring Quick Guide

                                                    7
                                  Short Annotated Bibliography

Although many STEM peer mentoring programs exist, few research articles have been published on the
topic, or the peer mentoring component is embedded into a larger mentoring framework making it more
challenging to find. This bibliography includes a few core pieces about peer mentoring and a few targeting
mentoring and STEM mentoring in general. Feel free to contact me for suggestions about further reading.

               Arrington, C. A., Hill, J. B., Radfar, R., Whisnant, D. M., & Bass, C. G. (2008). Peer
                mentoring in the general chemistry and organic chemistry laboratories. The Pinacol
                rearrangement: An exercise in NMR and IR spectroscopy for general chemistry and
                organic chemistry laboratories. Journal of Chemical Education, 85(2), 288-290.
                Peer mentors drawn from organic chemistry course teach organic chemistry lab for
                general chemistry students to increase understanding and interest in organic chemistry.

               Ensher, E. A., Thomas, C., & Murphy, S. E. (2001). Comparison of traditional, step-ahead,
                and peer mentoring on proteges’ support, satisfaction, and perceptions of career success:
                A social exchange perspective. Journal of Business & Psychology, 15, 419-438.
                Contrasts different types of mentors. Illustrates the usefulness of peer mentors for social
                support and effectiveness of traditional supervisory mentors for career support. Step-
                ahead peers can (modestly) provide modest both career and social mentoring.

               Kasprisin, C. A., Single, P. B., Single, R. M., Muller, C. B., & Ferrier, J. L. (in press).
                Improved mentor satisfaction: Emphasizing protege training for adult-age mentoring
                dyads. Mentoring & Tutoring.
                Reviews training in mentoring programs with a focus on MentorNet program. Using an
                experimental design, the study documents benefits of protégé training. Much previous
                research solely focuses on mentor training.

               Kram, K. E., & Isabella, L. A. (1985). The role of peer relationships in career development.
                The Academy of Management Journal, 28(1), 110-132.
                Foundational piece that introduces the notion of peers (categorized as information peer,
                collegial peer, and special peer) providing mentoring functions in psychosocial and career
                domains (such as sharing information, providing emotional support) that can be
                complementary to those provided by supervisors (sponsorship, role modeling).

               Packard, B. W. (2003a). Web-based mentoring: Challenging traditional models to
                increase women’s access. Mentoring & Tutoring, 11(1), 53-65.
                Provides a useful review of literature of curricular and extra-curricular, face-to-face and
                technology-supported mentoring programs designed to increase women’s participation in
                STEM fields. Argues for alternatives for traditional mentors to gain relevant functions.

               Packard, B. W. (2003b). Student training promotes mentoring awareness and action.
                Career Development Quarterly, 51, 335-345.
                Describes a program used to help women, minorities, and first generation college
                students in STEM fields to set goals for mentoring and to identify multiple mentors.




                                  Packard STEM College Mentoring Quick Guide

                                                      8
               Shotton, H. J., Oosahwe, E. S. L., & Cintron, R. (2007). Stories of success: Experiences
                of American Indian students in a peer-mentoring retention program. The Review of
                Higher Education, 31(1), 81-107.
                Used focus groups to analyze a peer mentoring program targeting academic and social
                transitions of incoming and transfer American Indian students. Peer mentors met with
                mentees in weekly study hall meetings. Identified core elements of the mentoring
                relationships that predicted success including mentor commitment and ability to relate.
                Illustrates the power of successful matches and the precarious nature of matching.

               Seymour, E., Hunter, A., Laursen, S. L., & Deantoni, T. (2004). Establishing the benefits
                of research experiences for undergraduates in the sciences: First findings from a three-
                year study. Science Education, 88, 493-534.
                Study illustrates the many benefits of undergraduate research experiences for networking,
                learning and persistence in the field.

               Smith-Jentsch, K. A., Scielzo, S. A., Yarbrough, C. S., & Rosopa, P. J. (2008). A
                comparison of face-to-face and electronic peer-mentoring: Interactions with mentor
                gender. Journal of Vocational Behavior, 72, 193-206.
                Female electronic mentors (college seniors) assigned to first year students in an
                introductory biology class provided just as much psychosocial and career support as
                face-to-face female mentors, whereas male mentors in the electronic condition reduced
                dialogue, with reduced effectiveness.

               Terrion, J. L., & Leonard, D. (2007). A taxonomy of the characteristics of student peer
                mentors in higher education: Findings from a literature review. Mentoring & Tutoring,
                15(2), 149-164.
                This is an excellent synthesis of literature on peer mentoring, focused on only face-to-
                face mentoring. Key elements for selecting mentors (e.g., ability to commit, same
                program of study, empathy, communication skills, flexibility) are discussed at length.



Supplementary Readings:

        I recommend any articles written by Jean Rhodes as she studied the importance of long-term
mentoring relationships, and detrimental outcomes for relationships that end prematurely, and ways to
screen potential participants. Even though she does not focus on STEM, and instead focuses on youth
mentoring programs such as Big-Brother Big-Sister, her work provides a rich foundation for all mentoring
researchers. http://psych.umb.edu/faculty/rhodes/publications/recent.html

         AAAS has a science mentoring research website in development. Mentoring resources including
publications from AWIS and HHMI are available here. http://ehrweb.aaas.org/sciMentoring/resources.php




                                  Packard STEM College Mentoring Quick Guide

                                                      9