# In water a very small percentage of NH3 is converted into the

Document Sample

```					The chemistry of ammonia
When dissolved in water, normal ammonia (NH3) reacts to form an ionised species called
ammonium (NH4+)

NH3 + H2O        NH4+ + OH-

This is a shorthand way of saying that one molecule of ammonia reacts with one
molecule of water to form one ammonium ion and a hydroxyl ion. From the doubled
headed arrow we can tell that the reaction can go either way and hydroxyl ions and
ammonium ions could combine to form ammonia and water. This is precisely what
happens as the pH of water increases; that is the water becomes more alkaline. An
increase in hydroxyl ions (or alkalinity) pushes the equilibrium to the left and more un-
ionised ammonia is formed.

At any given time there will be both ammonia molecules and ammonium ions present.
The quantity of each species is dependant on both pH and temperature.

The percentage as Ammonia at 20°C is:
pH       %ammonia
7.0        0.5
7.5        1.5
8.0        4.7
8.5       13.7
9.0       35.8
9.5       62.1
9.6
The toxicity of ammonia
Ammonia (NH3) is highly toxic, whereas the ammonium ion is significantly less toxic. All
test kits measure total ammonia-nitrogen (TAN), that is ammonia plus ammonium.
However it is possible to determine the actual ammonia level if we know (a) TAN, (b) the
water temperature and (c) the water pH.

Using this information we can then calculate the percentage of un-ionised ammonia at
any given pH and temperature. Table 1 below shows how changes in pH and temperature
affect the toxicity of TAN.

Temperature oC

5      10       15        20      25      30

pH

6.5     50      34       23        16      11       8
7.0     16    11        7         5       4          3

7.5     5      3        2         2       1          1

8.0    1.6 1.1         0.7       0.5     0.4       0.3

8.5    0.5 0.4         0.3       0.2     0.1       0.1

9.0    0.2 0.1        0.09      0.07 0.05          0.04

Table 1 Showing the maximum levels of total ammonia (TAN
mg/litre) for fish health
Table 1 shows the maximum acceptable level of TAN at a given pH and temperature. For
example at pH 7.5 and a water temperature of 20oC a TAN of 2 mg / litre would be fairly
safe as only 1.2% would exist as un-ionised ammonia (0.024 mg/litre). However, the
danger is that should the pH or temperature rise, this ‘safe’ level would quickly become
toxic!

As a rule of thumb it is best to aim for a zero level of total ammonia at all times. In
normal circumstances any readings above 0.1 mg/litre TAN should be considered as
unacceptable and steps taken to reduce it.

```
DOCUMENT INFO
Shared By:
Categories:
Tags:
Stats:
 views: 207 posted: 2/24/2010 language: English pages: 2
Description: In water a very small percentage of NH3 is converted into the