Docstoc

FORMATO DE ARTIGO CIENTÍFICO

Document Sample
FORMATO DE ARTIGO CIENTÍFICO Powered By Docstoc
					FORMATO DE ARTIGO CIENTÍFICO / PÓS-GRADUAÇÃO
4.1 ELEMENTOS PRÉ-TEXTUAIS

4.1.1 Capa

UNIVERSIDADE DO SAGRADO CORAÇÃO

Times ou Arial, tamanho 18, negrito, maiúsculo e centralizado. Times ou Arial, tamanho 16, negrito, maiúsculo e centralizado.

AUTOR

TÍTULO DO TRABALHO: SUBTÍTULO

Times ou Arial, tamanho 18, negrito, maiúsculo e centralizado.

LOCAL ANO

Times ou Arial, tamanho 14 centralizado.

4.1.2 Lombada

Nome da Instituição. (Sigla) (1,5 cm)

Sobrenome do Autor (3 cm)

Título e subtítulo do Trabalho. (Tamanho variável)

Espaço reservado para etiqueta (classificação) da Biblioteca. (4 cm) Parte inferior (em branco). (2 cm)

4.1.3 Folha de rosto

AUTOR

Times ou Arial, tamanho 16, negrito, maiúsculo e centralizado.

TÍTULO DO TRABALHO: SUBTÍTULO
Trabalho de Conclusão de Curso apresentado ao Centro de Ciências Exatas e Naturais como parte dos requisitos para obtenção do título de bacharel em Administração, sob orientação do Prof. Dr. Benedito Felipe de Souza.

Times ou Arial, tamanho 18, negrito, maiúsculo e centralizado. Nota explicativa Times ou Arial, tamanho 12 alinhada do centro para a direita, de acordo com o tipo de trabalho, veja abaixo os exemplos.

LOCAL ANO

Times ou Arial, tamanho 14 centralizado.

4.1.4 Ficha catalográfica

D129a

Daher, Sandra Chaves. Avaliação de lesões de cárie artificial nas margens de cemento de preparos cavitários realizados com laser ER:YAG em microscopia de luz polarizada/ Sandra Chaves Daher.- - 2005. 130f. Orientadora: Prof.Dra.Lucirene Ap. Domingues. Dissertação (Mestrado Odontologia)- Universidade do Sagrado Coração, Bauru- São Paulo. 1.Cárie artificial. 2.Laser ER:YAG. I.Domingues, Lucirene Aparecida. II.Título.

Impressa no verso da folha de rosto. Para a elaboração da ficha catalográfica, envie a folha de rosto, as palavras-chave e o número total de folhas do trabalho no e-mail normalizacao@usc.br.

4.1.5 Errata A errata consiste em uma lista das folhas e linhas em que ocorrem erros, seguida das devidas correções. Deve ser inserida após a folha de rosto. O texto da errata é disposto da seguinte maneira:

ERRATA Folha 32 Linha 3 Onde se lê publcação Leia-se publicação

4.1.6 Folha de aprovação

AUTOR

Times ou Arial, tamanho 14, negrito, maiúsculo e centralizado. Times ou Arial, tamanho 14, negrito, maiúsculo e centralizado. Nota explicativa.

TITULO DO TRABALHO: subtítulo

Monografia apresentada ao Centro .. da Universidade do Sagrado Coração como parte dos requisitos para obtenção do título de ... sob orientação do Prof.... Banca examinadora:
_____________________________ Prof. Dr. Benedito Felipe de Souza Universidade do Sagrado Coração ____________________________ Prof. Ms. Julio Cézar Fernandes Universidade do Sagrado Coração ____________________________ Profa. Ms. Eliane Aparecida Borba
UNESP- Faculdade de Filosofia e Ci

Nomes dos membros da Banca, titulação e Instituição a que pertencem.

Data

Data de aprovação.

4.1.7 Dedicatória

Dedico este trabalho a todos que...

Times ou Arial, tamanho 12, justificado e espaçamento simples.

4.1.8 Agradecimentos
Times ou Arial, tamanho 14 Times ou Arial, tamanho 12, justificado e com espaçamento 1,5.

AGRADECIMENTOS Agradeço aos meus familiares, colegas...

Obs.: A palavra AGRADECIMENTOS deverá ser apresentada com a mesma grafia que os capítulos do trabalho (maiúsculas e em negrito).

4.1.9 Epígrafe

“Livros relidos são livros eternos”
Machado de Assis

Times ou Arial, tamanho 12, justificado e espaçamento simples.

4.1.12 Listas de ilustrações

As ilustrações (desenhos, esquemas, fluxogramas, fotografias, gráficos, mapas, organogramas, plantas, quadros, retratos e outros) devem ser numeradas na ordem em que aparecem no texto. É recomendável que sejam feitas listas separadas para cada tipo de ilustração. Em cada lista devem constar: número, título e página. Quando as ilustrações forem em grande número e/ou em tamanho maior, podem ser agrupadas no final do trabalho como APÊNDICE ou ANEXO. As ilustrações, com exceção de tabelas, quadros e gráficos, podem ser sinalizadas no texto ou entre parênteses no final da frase, com o termo Figura.

LISTA DE ILUSTRAÇÕES Figura 1 - Título......................................10

Times ou Arial, tamanho 14, negrito, maiúsculo e centralizado. Times ou Arial, tamanho 12.

4.1.14 Lista de Abreviaturas e Siglas

Consiste na relação alfabética das abreviaturas e siglas utilizadas no texto, seguidas das palavras ou expressões correspondentes grafadas por extenso. Recomenda-se a elaboração de lista própria para cada tipo.

4.1.15 Lista de Símbolos

Os símbolos devem ser apresentados na lista na ordem em que aparecem no texto, com o devido significado.

4.1.16 Sumário

O sumário é um elemento obrigatório e suas partes são acompanhadas do respectivo número de páginas. Apresenta enumeração dos capítulos, seções ou

partes do trabalho, na ordem em que aparecem no texto, indicando suas subordinações, bem como as folhas em que se iniciam. Havendo mais de um volume, em cada um deve constar o sumário completo do trabalho. A paginação deve ser apresentada sob uma das formas:  Número da primeira página (ex.: 13);  Números das páginas inicial e final, separadas por hífen (ex.: 91143).

Obs.: Não confunda sumário com: Índice: Lista de palavras ou frases, ordenadas segundo determinado critério, que localiza e remete para as informações. Lista: Enumeração dos elementos selecionados do texto, tais como datas, ilustrações, exemplos, etc., na ordem de ocorrência.

SUMÁRIO 1 2 INTRODUÇÃO................................................8 TÍTULO............................................................9

Times ou Arial, tamanho 14, negrito, maiúsculo e centralizado.

3 TÍTULO...........................................................15 3.1 SUBTÍTULO....................................................16 3.2 SUBTÍTULO....................................................20 4 5 TÍTULO...........................................................30 CONSIDERAÇÕES FINAIS...........................40

Times ou Arial, tamanho 12, justificado e espaçamento simples.

REFERENCIAS....................................................45 APENDICE A - Questionário................................50 ANEXO A - Parecer da comissão.........................60

Obs.: A determinação da divisão do texto em sessões ou capítulos fica a critério do aluno e do orientador. O sumário é o último elemento pré-textual. Os elementos pré-textuais não são apresentados no sumário.

4.2 ELEMENTOS TEXTUAIS: MODELO

UNIVERSIDADE DO SAGRADO CORAÇÃO

AUTOR

TÍTULO DO TRABALHO: SUBTÍTULO

Local Ano

AUTOR

TÍTULO DO TRABALHO: SUBTÍTULO

Dissertação (Tese) apresentada à Proreitoria de Pesquisa e Pós-graduação da Universidade do Sagrado Coração, como parte integrante dos requisitos para obtenção do título de Mestre no Programa de Mestrado em Odontologia, área de concentração: ......., sob orientação do Prof.(ª) Dr.(ª) .....

Local Ano

Ficha catalográfica (verificar com a bibliotecária)

FOLHA DE APROVAÇÃO PODE SER SUBSTITUÍDA PELA ATA DA DEFESA

DEDICATÓRIA

AGRADECIMENTOS

SUMÁRIO INTRODUÇÃO REVISÃO DA LITERATURA REFERÊNCIAS BIBLIOGRÁFICAS ARTIGO 1 (Título do trabalho) ARTIGO 2 (Título do trabalho) ANEXOS (Comitê de ética, normas da(s) revista (s))

RESUMO

ABSTRACT

INTRODUÇÃO

REVISÃO DE LITERATURA

REFERÊNCIAS BIBLIOGRÁFICAS (Normas Vancouver)

ARTIGO 1 TÍTULO DO ARTIGO (Trabalho submetido à revista Journal of Periodontology, em ..........)

In vitro sealing ability of two materials at five different implant-abutment surfaces Antonio R. C. Duarte*, Paulo H. O. Rossetti*, Leylha M. N. Rossetti*, Sergio A. Torres†, Wellington C. Bonachela ‡

*

DDS, MSc, Graduate Student, Oral Rehabilitation Program, Bauru School of

Dentistry, University of São Paulo, Brazil
†

DDS, MSc, PhD, Associate Professor, Department of Microbiology, Bauru School

of Dentistry, University of São Paulo, Brazil
‡

DDS, Msc, PhD, Associate Professor, Department of Prosthodontics, Bauru

School of Dentistry, University of São Paulo, Brazil

Send correspondence to: Paulo Henrique Orlato Rossetti R. Dr. Sérvio T. C. Coube, 3-33 ap. 83A 17012-632 Bauru, São Paulo, Brazil

e-mail: phrossetti@uol.com.br 2 figures, 1 table Running title: Sealing ability of five different implant-abutment surfaces One sentence summary: Bacterial contamination in the experimental groups was verified after 35 days regardless of external or internal hexagonal implant configurations.

Abstract Background. The aim of the present study was to test the sealing ability of two materials at five different implant-abutment surfaces. Methods. In the first phase, 2µL of brain-heart infusion (BHI) broth was deposited into the implant wells and glass culture tubes. A varnish or silicon sealant was applied at the cervical implant portion of experimental groups. Control group remained unexposed. The abutments were torque-tightened to 20Ncm with a manual torque driver. Implants were immersed in 4mL of BHI broth at 37oC for 2 hours to exclude contamination. In the second phase, 100µL of Enterococcus faecalis ATCC strain 29212 was deposited into the glass culture tubes. After periods of 7, 14, 21, 35, 49 and 63 days, the sealing capacity was checked. Abutments were removed and a sterile paper cone collected material inside implant bodies. This material was transferred to new tubes with BHI to verify the presence of cloudy broths within 24-48 hours. Results. There were no significant statistically differences between the two materials for each time period (Fisher exact test, p>0.05). Group E showed the least level of sealing ability (6 implants contaminated) whereas group T showed the highest level (only 2 implants). Conclusions. 1) Materials tested were not able to prevent contamination over 63 days, 2) Bacterial contamination was verified after 14 and 35 days in the control and experimental groups, respectively; 3) Although materials tested had demonstrated similar sealing capacities, dental implants showed bacterial contamination regardless of their external or internal hexagonal configurations. Keywords: Osseointegrated implants. Sealing ability. Microorganisms. Implantabutment surface.

INTRODUCTION
Literature has shown that microflora around periimplant sulcus is similar to that of healthy gingival tissues1. However, some microorganisms can harbor at implant-abutment interface2. In non-submerged two-stage implants, it is believed that malodor and bleeding on probing are clinical signs of bacterial infiltration 3. Several studies have reported microbial contamination of the microgap at the implant-abutment junction4-11. Besides, the level of implant-abutment interface prevents its effective cleaning. All above factors lead to prosthesis failure. During the last 10 years, several materials have been described to seal this interface: Cekabond adhesive13, silicone O’ring washer8, stick wax3, silicone hermetic washer13, Cervitec varnish14, Frialit 2 seal washer15, and 2% chlorhexidine solution16. However, there are no long-term clinical studies published on their efficacy. In this way, the quest for an hermetic seal at implant-abutment interface continues. Implant systems available show different connection designs with adequate mechanical characteristics but of uncertain biological properties. The aim of this study was to verify the sealing capacity of two materials at five different implant-abutment surfaces. The null hypothesis tested was that no differences could be found between the sealing ability of these two materials.

MATERIAL AND METHODS
Sixty implants divided in five different implant-abutment systems were chosen for this study. Ten interfaces were tested for each experimental group. Experimental groups were labeled C§, E║, N¶, S# and T**. The control groups had two implant-abutment interfaces for each experimental group. Group E had internal hexagonal connection. All other groups were of external hexagonal type. Prior to connection, abutments were autoclaved at 121oC, 15atm pressure, for 15 minutes. First phase – in the first phase of this experiment, implants were removed from their sterile packs and secured with a forceps in vertical position. After, 2µL of brain-heart infusion broth†† was deposited into the implant with the aid of glass pipette‡‡. After, disposable sterile brushes§§ were used to apply a thin layer of either a varnish composed of 1% chlorhexidine and timol║║ or a silicon material¶¶ at the implant cervical portion in both groups (Fig. 1). Then, abutments were seated onto the implant bodies and torque-tightened to 20Ncm with a manual torque driver##. All procedures were carried out in the sterile environment of a cell culture hood *** to avoid contamination. In the control group (10 implants being two of each tested company) the broth was deposited but both sealing materials were not applied. After, implants were immersed individually in glass culture tubes containing 4mL of sterile brain-heart infusion broth and incubated at 37oC±1oC for 72 hours. The purpose was to exclude possible contamination. None of the implants were discarded.

Second phase. In the second phase, all glass culture tubes were inoculated with 100µL of Enterococcus faecalis ATCC strain 29212 obtained after 18 days at 37oC. The microorganism was previously identified by positive gram-staining and its morphological characteristics confirmed after being plated on KF streptococci plates†††. In this stage, bacterial counts were of 4 x 43 x 10 9 CFU/mL. The implants were transferred to new glass culture tubes containing the same brain-heart infusion broth every seven days to maintain the viability of microorganisms. The sealing capacity at implant-abutment interface was observed in periods of 7, 14, 21, 35, 49 and 63 days. For this, implants were removed of the glass culture tubes, transferred to 12x75mm tubes containing 70V/V alcohol solution, and agitated‡‡‡ at maximum speed for 60 seconds to clean its external portions. After, abutments were detorqued and removed from implants. An sterile absorbent paper cone§§§ collected the culture media in the implant well. This solution was deposited in glass culture tubes containing 4mL of BHI broth. After 24 or 48 hours, cloudy broths indicated that internal implant surface was contaminated, i.e., bacterial seepage occurred from external to the internal portions (Fig. 2). The Fisher exact test (α=.05) was used to compare the number of contaminated implants over time in each group. All statistical analysis was conducted with the aid of appropriate software║║║. Then, abutments were retightened to their respective implants with the same applied torque. After, each abutment-implant connection was set up under an optical microscope¶¶¶ with the aid of a metallic hexagonal jig. Vertical measurements were taken three times at six different parts along the implant-

abutment interface. The overall mean of these values was used to compare marginal fit among groups.

RESULTS
The sealing ability over time can be seen on Table 1. After 7 days, only three implants in control groups (C1, E1, S1) presented infiltration. All experimental groups showed no infiltration. After 14 days, all implants in the control groups showed infiltration. After 21 days, none of the implants showed infiltration. After 35 days, one implant in the silicon group (E5) and two in the varnish group (E10, S10) showed infiltration. Fisher’s exact test did not find statistically significant differences (p=1.000) between the two materials. After 49 days, two implants in the silicon group (E6, S6) and one in the varnish group (T11) showed infiltration. Fisher’s exact test revealed no statistically significant differences between the two materials (p>.05). After 63 days, three implants in silicon group (C7, E7, T7) and three in the varnish group (E12, S12, T12) (Table 3). However, statistically significant differences were not found between these sealing materials. Group E showed the least level of sealing ability (6 contaminated implants) whereas group T showed the highest level (only 2 contaminated implants). Means and standard deviations (in microns) for marginal fit values were: C = 8.190.70, E = 9.320.66, N = 9.301.07, S = 8.631.07 and T = 8.881.31. A one-way ANOVA test (α=.05) revealed no statistically significant differences among groups (P=.74).

DISCUSSION Inadequate surgical procedures, as well as tissue trauma during prosthesis loading can lead to failures that, when associated to bacterial infection at the implant-abutment interface17 cause progressive changes during regeneration.18 In this study, none of the tested systems demonstrated an effective seal after 63 days. Also, the influences of geometric configuration (external or internal hexagon) at implant-abutment junction on the biologic seal are not well explained by manufacturers. One of the studied groups had in internal hexagonal connection (group E) and even thus was not effective to seal the implant-abutment interface. Findings reported by Jansen, Conrads and Richter8 were similar to that observed in this study, showing that some interfaces presented leakage after 14 days. One can assume that, the greater the gap, the greater the number of colonizing microorganisms harbored and perhaps, some pathogenic species amongst them. Furthermore, bacterial contamination occurred even with low marginal fit levels observed. There are several methods to verify contamination. In this paper, an outsidein test14 was used. Some experiments reported problems with microorganism viability after 30 days. The volume deposited into the implant well (0.2µL) would not be enough to provide nutrition for bacterial broth. This could be aggravated in the presence of a sealing material at implant-abutment interface. However, the bacterial strain of Enterococcus faecalis has confirmed resistance and survival in laboratory tests. Several materials have been used to prevent microleakage around components. In this study, silicon and varnish materials were applied. The Cervitec

varnish is composed of 2% chlorhexidine and timol, a bactericidal solution that can reduce the number of microorganisms in the oral cavity. 23 Both materials could prevent some bacterial leakage in vitro for a 45-63 day period, with 40% of interfaces still intact. This is an interesting finding. Clinically, the application of a sealing material before abutment connection could control periimplant bacterial population for some extent, since it constitutes one of the determining factors for the success of implant prosthesis.20 Two-stage implant systems have peculiar characteristics: first, change of healing abutment and connection of a transmucosal component. 11 Second, the gap formed at implant-abutment interface which permits passage of bacteria and oral fluids, leading to bacterial accumulation and chronic inflammation. 21 In this sense, some patients can develop mucositis and further periimplantitis. Although our study showed reduced leakage, there is much doubt whether this can influence microorganism type or its potential. When the second surgical stage and periodontal surgery are performed, it is expected that tissue healing will be completed after a 30-to-60 day period.20 Moreover, sealing materials would be temporarily beneficial for anterior esthetic regions with thin periodontal tissues. Another aspect is the use of a bacterial seal in partially edentulous patients, because remaining teeth behave as bacterial reservoirs increasing the likelihood of adjacent implant contamination. In addition, Piatelli et al.22 stated that implant-abutment interfaces positioned 1mm above the crest level have influence on alveolar bone resorption. Thus, even excellent margin fit can show poor results over time. In this sense, one-stage implants would be a more logical approach but their limited clinical data still

motivate professionals to search materials with good sealing abilities for two-stage systems. Also, it must be pointed out that implants tested showed contamination even still not under any occlusal force. This would only be expected to be worse it they were in the mouth under forces of occlusion. Contamination at the experimental groups occurred after 35 days (Table 1). If one can extrapolate the present findings to immediate loading protocols, the use of a sealant is even more questionable.

CONCLUSIONS Between the limits of this study, the following conclusions can be drawn: 1) Materials tested were not able to prevent contamination over 63 days; 2) Bacterial contamination was verified after 14 and 35 days in the control and experimental groups, respectively; 3) Although materials tested had demonstrated similar sealing capacities, dental implants showed bacterial contamination regardless of their external or internal hexagonal configurations.

REFERENCES 1. Bauman GR, Mills M, Rapley JW, Hallmon WH. Clinical parameters of evolution during implant maintenance. Int J Oral Maxillofac Implants 1992;7:220-227. 2. Keller W, Bragger U, Mombelli A. Peri-implant microflora of implants with cemented and screw retained suprastructures. Clin Oral Implants Res 1998;9:209-217. 3. Gross M, Abramovich I, Weiss EI. Microleakage at the implant-abutment interface of integrated implants: a comparative study. Int J Oral Maxillofac Implants 1999;14:94-100. 4. Quirynen M, van Steenberghe D. Bacterial colonization of the internal part of two-stage implants. An in vivo study. Clin Oral Implants Res 1993;4:158-161 5. Quirynen M, Bollen CM, Eyssen H, van Steenberghe D. Microbial penetration along the implant components of the Brånemark system. An in vitro study. Clin Oral Implants Res 1994;5:239-244. 6. Persson LG, Lekholm U, Leonhardt A, Dahlen G, Lindhe J. Bacterial colonization on internal surfaces of Brånemark system implant components. Clin Oral Implants Res 1996;7:90-95. 7. Besimo C, Bodenschatz V, Guggenheim R, Hassell T. Marginal fit of prefabricated crowns of the Ha-Ti implant system: an in vitro scanning electron microscopic study. Int J Prosthodont 1996;9:87-94. 8. Jansen VK, Conrads G, Richter EJ. Microbial leakage and marginal fit of the implant-abutment interface. Int J Oral Maxillofac Implants 1997;12:527-540

9. Guindy JS, Besimo CE, Besimo R, Schiel H, Meyer J. Bacterial leakage into and from prefabricates screw-retained implant-borne crowns in vitro. J Oral Rehabil 1998;25:403-408. 10. Steinebrunner L, Wolfart S, Bossman K, Kern M. In vitro evaluation of bacterial leakage along the implant-abutment interface of different implant systems. Int J Oral Maxillofac Implants 2005;20:875-881. 11. King GN, Hermann JS, Schoolfield JD, Buser D, Cochran DL. Influence of the size of the microgap on crestal bone levels in non-submerged dental implants. A radiographic study in the canine mandible. J Periodontol 2002;73:1111-1117. 12. Breeding LC, Dixon DL, Nelson EW, Tietge JD. Torque required to loosening single-tooth implant-abutment screws before and after simulated function. Int J Prosthodont 1993;6:435-439. 13. Rimondini L, Marin C, Brunella F, Fini M. Internal contamination of a 2component implant system after occlusal loading and provisionally luted reconstruction with or without a washer device. J Periodontol 2001;72:16521657. 14. Besimo CE, Guindy JS, Lewetag D, Meyer J. Prevention of bacterial leakage into and from prefabricated screw-retained crowns on implants in vitro. Int J Oral Maxillofac Impants 1999;14:654-660. 15. Broggini N, McManus LM, Hermann JS, Medina RU, Oates TW, Schenck RK et al. Persistent acute inflammation at the implant abutment interface. J Dent Res 2003;82:232-237.

16. Groenendijk E, Dominicus JJ, Moorer WR, Aartman IH, van Wass MA. Microbiological and clinical effects of chlorhexidine enclosed in fixtures of 3ititamed implants. Clin Oral Implants Res 2004;15:174-179. 17. Steinebrunner L , Wolfart S, Böβmann K, Ludwig K, Kern M. Fatigue strength compared to microleakage in different implant-abutment interfaces. 82nd General IADR Session. Available at:

http://iadr.confex.com/iadr/2004Hawaii/techprogram/abstract_47937.htm. Accessed May, 4, 2006. 18. Ericsson I, Persson LG. Berglundh T, Marinello CP, Lindhe J, Klinge B. Different types of inflammatory reactions in peri-implant soft tissues. J Clin Periodontol 1995;22:255-261. 19. De Lorenzo JL, Simionato MRL, De Lorenzo A. Infection: the main cause for the lack of success in dental implants. (in Portuguese). Rev ABO 1997;5:321-324. 20. Hiatt WH, Stallard RE, Butler ED, Badgett B. Repair following

mucoperiosteal flap surgery with full gingival retention. J Periodontol 1968;39:11-16. 21. Todescan FF, Pustiglioni FE, Imbronito AV, Albrektsson T, Gioso M. Influence of the microgap in the periimplant hard and soft tissues: a histomorphometric 2002;17:467-472. 22. Piattelli A, Vrespa G, Petrone G, Iezzi G, Annibali S, Scarano A. Role of the microgap between implant and abutment: a retrospective histologic evaluation in monkeys. J Periodontol 2003;74:346-352. study in dogs. Int J Oral Maxillofac Implants

23. Keltjens HM, Creugers TJ, Schaeken MJ, Van der Hoeven JS. Effects of chlorhexidine-containing gel and varnish on abutment teeth in patients with overdentures. J Dent Res 1992;71:1582-1586.

Tables Table 1. Sealing ability over time for tested groups. Groups Control Silicon Days 7 14 21 28* 35 42* 49 56* 63 Total Positive 3 5 5 Negative 2 0 2 positive 0 0 1 2 3 6 Negative 5 5 4 3 2 19 Experimental Varnish Positive 0 0 2 1 3 6 Negative 5 5 3 4 2 19

*broth was changed at this period

List of figures Fig. 1. Sealing material is applied at the top of the implant. Fig. 2. Cloudy broth indicating bacterial contamination.

List of footnotes § Master Screw, Conexão Sistemas de Implantes, São Paulo, São Paulo, Brazil. ║ Colosso, Emfils Industria e Comercio de Produtos Odontologicos, Itu, São Paulo, Brazil. ¶ Titamax, Neodent, Curitiba, Paraná, Brazil. # EX, Serson Implant, São Paulo, São Paulo, Brazil. ** Titanium Fix, AS Technology, São Jose dos Campos, São Paulo, Brazil. †† Gibco, Becton Dickinson Co, Sparks, USA. ‡‡ Sigma, Sigma Aldrich Corp., St. Louis, MO, USA. §§ KG Sorensen, Barueri, São Paulo, Brazil. ║║ Cervitec, Vivadent, Ivoclar Liechenstein. ¶¶ Era seal, dow silastic, Sterngold, USA. ## Neodent, Curitiba, Paraná, Brazil. *** Veco, Campinas, São Paulo, Brazil. ††† Difco, Becton, Dickinson and Company, Sparks, USA. ‡‡‡ Agitador Mixtron – Leucotron, Minas Gerais, Brazil. §§§ Endopoints, Rio de Janeiro, Brazil. ║║║ SigmaStat 2.0, Jandel Corporation, California, USA. ¶¶¶ Mitutoyo – Model 505, code 176-811A, digimatic heads numbers 164-162, cross-hair line reticle, Tokyo, Japan.

ANEXO PARECER DO COMITÊ DE ÉTICA

NORMAS DE PUBLICAÇÃO – Journal of Periodontology


				
DOCUMENT INFO