An Analysis of the Consolidated Fuel Treatment Center Nuclear

Document Sample
An Analysis of the Consolidated Fuel Treatment Center Nuclear Powered By Docstoc
					An Analysis of the Consolidated Fuel Treatment Center Nuclear Reprocessing Initiative

Energy Policy Final Paper June 4th, 2008

Octavia Biris, Kyle Gracey, Katy Huff, Wai Keong Ng



In the context of international concern over the carbon footprint of the electric power industry, it is difficult to ignore nuclear power as a virtually emissions free energy solution. The relative abundance of uranium versus the quickly depleting fossil fuel resources, the high energy outputs of small quantities of uranium fuel, the reliability of nuclear power plants as base load generators are further advantages of nuclear power over other conventional or “green” power generation technologies. However, the management of nuclear reactor waste and nuclear weapons proliferation concerns remain the main obstacles against nuclear power expansion in many countries, including the United States. Nuclear power expansion will become more acceptable to the public only if these issues are addressed. Our paper analyzes the Consolidated Fuel Treatment Cycle (CFTC), an initiative of the United States‟ Department of Energy and of the Global Nuclear Partnership to make nuclear power more sustainable. CTFC is based on the premise that the current approach to nuclear waste and proliferation in the United States, to store spent nuclear fuel from reactors in geological repositories, with minimum processing, cannot be sustained in the next decade. The program seeks to develop a way of separating the high-energy components of nuclear waste in a way that precludes nuclear proliferation. The next step is burning the components in different reactor technologies, both to reduce their volume and to use up their remaining energy. If successful, this approach of reprocessing spent nuclear fuel will revolutionize current reprocessing technologies which do not possess enough safeguards against nuclear proliferation. We analyze CTFC by doing an overview of the scientific principles behind the different research and development proposals in the program, and by comparing these reprocessing methods to other nuclear waste management approaches. We then present the economic aspects 2

of reprocessing using CFTC, and the political support for CFTC and reprocessing versus other nuclear waste management solutions.

Scientific Considerations

Nuclear fuel and fission Fuel for commercial nuclear power plants consists of uranium oxide pellets stacked in tubes (rods) made of an alloy of zirconium, known as cladding. Fuel rods are bundled together to form hundreds of fuels assemblies, which form the reactor core in a nuclear power plant. The uranium isotope U-235 is the fissile material that sustains the controlled fission in commercial reactors. Fission (the breaking of the large U-235 nucleus into lighter nuclei, giving off energy and neutrons capable of sustaining a new reaction) occurs when a neutron strikes the U-235 nucleus. Since fission is more likely to occur with slow neutrons, water is used as a stopping and medium for neutrons. Water also controls the fission process, by cooling the reactors. Most commercial nuclear reactors around the world are light water reactors (LWR), which use water in its natural state (H2O), or heavy water reactors (HWR), which use water with high proportion (sometimes up to 100%) of the deuterium isotope of hydrogen (D 2O). In commercial LWR, fuel is a mixture of uranium isotopes, of which 3% is U-235 and 97% U-238. However, heavy water reactors (HWR) can use fuel in which U-235 is only 0.7% of the uranium mass (same as in naturally found uranium), the rest being U-238. HWR can sustain fission despite the low percentage of U-235 because the neutrons are slowed down more effectively by heavy water. 3

Light water reactors are most common in the United States and are cheaper to build than heavy water reactors, while maintaining comparable power generation capabilities. They are also inherently safe: if the temperature in the reactor increases beyond operational limits, the density of the water decreases and it becomes less effective in slowing down neutrons, thus decreasing the probability of fission. We chose to discuss the fuel cycle in light water reactors because of their advantages and widespread use. The CANDU reactor considered in one of the reprocessing proposals is a type of heavy water reactor. Inside the reactor, most of the U-235 splits into fission products and neutrons, giving off large quantities of energy. However, only some of the neutrons generate new reactions; some are deflected by atoms and are stopped by the metal cladding, causing damage to the cladding over time. More importantly, other neutrons are absorbed by the U-238 atoms, and cause the uranium to transmute into heavier elements, known as transuranics (TRU). Plutonium (see reaction below), neptunium, americium and curium are some of the highly radioactive transuranics recycled to make new fuel or considered as candidates for reprocessing. U238 + n U239 (unstable) Pu239 + e- + energy

Some fission products absorb neutrons, but are too light to fission; thus, they act as neutron captors and decrease the efficiency of the reactor. In the long run, the reaction is no longer selfsustained when the absorption cross-section increases past a certain level and the reactor runs out of fissile isotopes. To keep an LWR power plant on the grid, it is necessary to replace 25% of the fuel every 12 to 18 months1. The removed fuel rods, containing uranium (96% of SNF mass), transuranics (1%) and other fission products (3%), become “spent nuclear fuel” (SNF). Although of no use in a reactor, SNF is highly radioactive, hot, and radiotoxic for many thousands of years.

Nuclear waste in the world Radioactive chemical elements that no longer have any practical purpose, yet are hazardous to human health and the environment, are found in several industrial waste types. The nuclear fuel cycle, from mining and enrichment of uranium to burning in fission reactors, is the most
1 on nuclear reactors


well-known and discussed source of radioactive waste. However, other activities, such as coal mining, oil production, nuclear weapons reprocessing and nuclear medicine produce large quantities of radioactive waste. Although our paper will discuss spent nuclear fuel (SNF), the radioactive products resulting from fission, the concerns for SNF storage and/or reprocessing are better understood in the general context of the worldwide radioactive waste problem. Internationally, radioactive wastes are classified in three categories, based on level of activity per unit mass or unit volume 2. The fission products in spent nuclear fuel rods from commercial reactors fit in two of these categories. Low-level waste (LLW) comprises wastes from industry and nuclear medicine (i.e. paper, filters, protective equipment, tools), contaminated with low amounts of short-lived radioactive chemicals. The radioactivity levels are so low that these wastes sometimes do not require shielding during handling and storage, can be compacted or incinerated, and disposed of in shallow land burials. Strontium and cesium- in SNF fit in this category, and could be disposed of as LLW if separated from SNF. Intermediate Level Waste (ILW) is of higher activity and in most cases requires shielding. Waste can come in the form of chemical sludge, damaged fuel cladding, or parts of decommissioned reactors. This category is used only in European regulation of radioactive waste. High Level Waste (HLW) describes most radioactive components of SNF. It comprises the transuranics, as well as other highly radioactive and thermally hot fission products. Although the mass proportion of these wastes is low, they account for over 90% of SNF radioactivity. According to the World Nuclear Association, there are 442 operating reactors in the world. 400,000 metric tons of nuclear waste is produced worldwide every year, of which 12,000 t is high level waste. In the United States, there are 53,000 t of SNF in storage to date. Every year, the 103 operational nuclear reactors in the United States put out an additional 2,100 t of SNF. As worldwide and U.S. energy demand is predicted to increase in the next 25 years, we can reasonably expect that nuclear power will at least maintain its share of the energy mix. However, if the scenario by which the number of nuclear reactors will increase proportionally to energy

2; Alsos Digital Library for Nuclear Issues


needs holds, so will the amount of waste that will have to be disposed of. In the United States alone, stored SNF is predicted to double by 2035 (119,000 t) if energy demand doubles and nuclear power plants maintain their share of 20% of power generation capacity.

Approaches to nuclear waste management Spent nuclear fuel can be disposed of in geological repositories, or it can be recycled (reprocessed). Disposal of SNF without any reprocessing is called a “once-through”, or “open fuel cycle”, while recycling is known as a “multi-pass” or “closed fuel cycle” 3. The two approaches are not mutually exclusive, because SNF usually undergoes treatment before it is put into repositories, to prevent the high level waste from interacting with the environment. Conversely, the waste from one or more reprocessing cycles is treated and placed into repositories. The most common form of treatment for highly radioactive waste is vitrification – the mixing of waste with aqueous or organic compounds like sugar, and turning the mixture into water insoluble glass, inside storage cylinders. Other methods are ion exchange, meant to concentrate radioactivity into a smaller volume, and the Australian Synroc (synthetic rock), which immobilizes actinides (TRU), and lower activity fission products in different minerals. Once the United States moved away from reprocessing and allowed only the open fuel cycle approach in the late 1970‟s, nuclear power plant companies became unable to reprocess the SNF that accumulated in the spent fuel pools at reactor sites. Consequently, they sought temporary storage technologies, until more permanent storage/recycling technologies become commercially viable. Dry cask storage technology was developed privately and authorized by the Nuclear Regulatory Commission in the late 1980‟s. Dry casks are steel cylinders with bolted or welded lids, in which HLW SNF is placed after being left to cool and decay in spent fuel pools at power plants for a year. The SNF core of the cylinder is insulated by inert gas. There are several designs of dry casks, produced and marketed by government regulated private companies. Dry casks have been designed as a temporary storage solution, as they are guaranteed to be leak-tight for 100 to 200 years. Their temporary character, as well as the proximity of cask storage facilities to populated areas continues to draw concern and criticism.

DOE Spent Nuclear Fuel Recycling Program Plan, May 2006, p. 8


As a solution to the problem of temporary and de-centralized storage facilities, the DOE has proposed a permanent national repository for nuclear waste in Yucca Mountain. By law, Yucca Mountain is planned to store 63,000 t of waste. Additional considerations, meant to limit storage per area, to protect the metal insulation of the storage chambers from radiation damage, restrict this quantity. The quantity of waste in temporary storage almost reaches the projected Yucca Mountain capacity, if one accounts for an additional 2000 t of nuclear waste from nuclear submarine reactors. In case Yucca Mountain is opened, it may be able to accept new spent fu el for 2 or 3 more years, in addition to what is already in temporary storage.

Sustainable Fuel Cycles and the CFTC In addition to producing large volumes of waste, the unsustainable once through method currently used in our nation's reactors extracts only 5% of the energy that we are currently able to extract from the input fuel. New initiatives by the Global Nuclear Energy Partnership suggest a closed nuclear fuel cycle that will incorporate a recycling system composed of a separation facility (CFTC or NFRC), a fuel fabrication facility (AFCF), and a pyroprocessing Advanced Burning/Recycling Reactor (ABR or ARR). In this report we discuss the proposed plans for the CFTC separations facility as well as the fuel fabrication and pyroprocessing associated with each plan.

SNF Separation Technology Spent Nuclear Fuel (SNF) from current generation commercial light water reactors (LWRs) contains a large amount of still fissionable material, but has accumulated neutron absorbing fission fragments to such a degree that the nuclear chain reaction has ceased to be self sustaining. Thus, it must be separated into its component parts before its fissionable elements may be refabricated into reusable fuels. The component parts of LWR SNF can be summarized as depleted Uranium (~96%), fission fragments (< 3%), and transuranic actinides (TRUs, <2%). The TRUs at hand are primarily Plutonium (Pu), Americium (Am), Neptunium (Np), and Curium (Cm) and are alpha emitters. As such, the United States Government classifies TRUs as a high level form of waste (HLW). Fission fragments which decay by mostly beta and gamma emission


are also high level waste. On the other hand Depleted Uranium has a very long half life and once separated it is considered low level waste (LLW).

PUREX and Proliferation The most well-understood reprocessing technology to-date is PUREX (Plutonium and Uranium Recovery by Extraction), developed in the 1970‟s. The reprocessed uranium and plutonium can be recombined and used in thermal reactors in the form of uranium and plutonium oxide mixed fuel (MOX). Currently, France, the U.K., Russia, India and Japan use PUREX to reuse SNF. PUREX can separate a mixture of plutonium isotopes from SNF (Pu-238, 239, 240 and 241), of which only Pu-239 is weapons-grade. Pu-239 is difficult to separate industrially from the plutonium mixture resultant from most LWRs, but with specialized front-end reactors or more intensive back-end separations, weapons grade plutonium is extractable, and could be villainously diverted to weapons programs. Furthermore, if the extracted plutonium is geologically stored, isotopic separation can occur naturally, over time. The other plutonium isotopes not used for weapons have a shorter half-life than Pu-239, so Pu-239 concentration increases in a PUREX plutonium repository left to decay. Although the half-lives in question are of the order of thousands of years, the concern remains that PUREX chemical repositories can become weapons-grade plutonium mines. PUREX is not used in the United States, because of these nuclear proliferation risks associated with it. Since 1977, the United States considered SNF reprocessing to be the highest proliferation risk, suspended reprocessing activities and discouraged civilian power plant PUREX reprocessing internationally. Although civilian reprocessing activities banned in 1977 were made legal again under the Reagan administration, the U.S. still adheres to the principle of not separating plutonium from SNF. Lack of reprocessing research and development grants in the 1970‟s and 1980‟s has delayed the development of a commercial-scale reprocessing method other than PUREX. Proliferation Resistant Separations Methods The industry teams working under contract with the Department of Energy are considering several separation technologies. UREX+ is a national laboratory technology, primarily developed 8

at Argonne. COEX and NUEX on the other hand are the processes conceived by private companies (Areva and Energy Solutions, respectively). These processes, by never separating pure plutonium, differ importantly from PUREX. In avoiding the separation of pure plutonium, proliferation concerns are largely diverted, so pursuit of these technologies is a high priority for companies interested in United States government support.

COEX The co-extraction COEX process, developed by the French company AREVA is modeled after PUREX and has the main goal of producing a mixed Uranium and Plutonium oxide (MOX) output fuel. Plutonium and Uranium are extracted together in equal amounts so that Plutonium is never extracted alone. They are then oxidized together in order to fabricate a MOX fuel that will ultimately be consumable by light water reactors. COEX also separates a pure uranium stream. COEX leaves other minor actinides with the fission products. This final stream is ultimately destined for the geologic repository. A variation of this separates americium and curium from the fission products (France).

NUEX NUEX is quite similar to COEX, also having been modeled after PUREX. It separates uranium and then Plutonium with the TRUs all together, but separates the fission products separately. The primary separations process in NUEX is flexible and can be organized to produce pure uranium and a mixture of plutonium and neptunium like the UREX+1 process or organized to produce a pure uranium stream and a stream of mixed uranium, plutonium and neptunium. It can also mimic the COEX process by outputting pure uranium and a mixture of uranium and plutonium. These chemical techniques can all be performed interchangeably in the same extraction equipment. Initially, NUEX will be used primarily to create MOX fuel for current LWR and HWRs, but ultimately can produce a TRU fuel for the ABR with Americium and curium that are recovered using TRUEX technology developed by Argonne. NUEX has yet to be tested on a commercial scale, but can be expected to operate with success similar to COEX.

UREX The uranium-extraction UREX+ aqueous separations technologies are a numbered (+1 9

through +4) assortment of methods all of which separate actinides and fission products in groups of varying proportionality. UREX+1a, the method most seriously considered for the CFTC separates the TRU actinides, fission fragments, and Uranium into three distinct waste streams. In order to assuage proliferation concerns, UREX+1a uses a complexing acetohydroxamic acid (AHA) to keep the TRUs inextricably together with Plutonium 4. The fission fragments Technetium-99 and Iodine-129 are separated so that they may be made into transmutation targets for fast reactors. The TRUs Np and Pu are oxidized together either for eventual use in a fast reactor or fabricated into a MOX fuel proven in 2005 to be consumable by current LWRs5. Finally, the Uranium is either disposed of as a Class C Low Level Waste or oxidized eventually re-enriched (also for use in LWRs). This method has not been tested on a commercial scale in the manner in which PUREX has been, but the only concern so far has been with a lanthanide contamination in the final steps of extraction. Argonne has, in the last two years, successfully shown a 99.9% efficiency in overcoming this contamination, however, and the technology seems to be well understood and nearly immediately deployable due to its relative independence from the ABR.

Industry Expressions of Interest In the interest of formulating a plan for the design and implementation of the CFTC, the Department of Energy solicited “Expressions of Interest” in 2006 from sections of the nuclear industry. With an initial funding input from GNEP, four teams, INRA, Energy Solutions, GEHitachi, and General Atomics developed plans over the next two years in which they describe what they believed to be the most efficient and feasible reprocessing plans scientifically and economically for the United States and GNEP to adopt. These Expressions of Interest were made public on May 28, 2008, and here we summarize the scientific goals of each. INRA6 Constituted of Areva, Mitsubishi Heavy Industries, and Japan Nuclear Fuel Limited, INRA is the International Nuclear Recycling Alliance. They suggest a phased plan involving at first only a 800 tHM/yr CFTC.
4 5 6 Report to Congress, Advanced Fuel Cycle Initiative: Status Report for FY2005. DOE, ONEST, Feb 2006.


The separation facility will use the COEX (co-extraction) process in which they have a particular business interest, as COEX was developed by Areva and relies heavily on learned experience from the reprocessing technologies used primarily at the LaHague reprocessing facility in France and secondarily those in Japan, Russia, and Britain. The main distinguishing characteristic between the two processes is that COEX never fully separates Plutonium, instead separating it from the rest of the spent fuel together with an equal amount of Uranium. U and Pu are then, as a mix, converted to their oxide forms and used for fuel fabrication. These oxides will be fabricated into MOX fuel usable to a certain degree in both LWRs and the ARR. Another output of the COEX process is a metal actinide fuel, for use in ABRs. The only waste generated from the COEX process will be the accumulating quantity of unreprocessed fission fragments at the end of each separations cycle. The implicit suggestion is that it will be necessary to place this small but highly radiotoxic volume of fission fragments directly into the geological repository at Yucca Mountain. By modeling their recycling facility directly after LaHague in France, INRA is able to suggest a nearly immediate implementation deadline of 2023. The comparatively low capacity of their processing technology, they hope, will be overcome by an ambitiously flexible upgradability that they intend to employ by using as much already understood technology as possible. Though INRA is taking a baby-steps method they propose to reach a 2500 t/yr capacity CFTC by 2070. GE-Hitachi 7 The American and Japanese conglomerates, General Electric and Hitachi pooled their nuclear energy departments and have since become a single entity, GE-Hitachi. This entity has suggested what they call an NFRC Electrometalurgical cycle. That is to say that they would like to the primary goals of the Nuclear Fuel Recycling Center (this is their preferred new publicly attractive title for the CFTC) to be the consumption of Light Water Reactor waste through the production metallic fuels. Specifically, GE-Hitachi suggests the production of CANDU uranium bundles and PRISM actinide bundles. These metal fuels are made with the separated uranium and actinides, respectively, from spent nuclear fuel. Unlike INRA's COEX plan, GE-Hitachi will rely on the UREX-1a method. In this method, fuel is separated into fission fragments, uranium,


and mixed actinides. This way, too, of course, plutonium is never separated by itself, but is constantly inextricable from the other highly radioactive actinides (Am, Cm, Np…). Once separated, GE-Hitachi suggests that the fission fragments go to the geologic repository and the rest be used for fuel. This implies a 95% volume reduction of SNF from the current once through cycle, but the heat of fission fragments will have an impact on the filling strategy of Yucca Mountain, and will not imply the 20-fold capacity increase that intuition would suggest. Energy Solutions, LLC. 8 Under the plan developed by Energy Solutions, Americium and Curium would be separated and fabricated into CANDU target fuel. The separated Uranium would not necessarily need to be enriched to be fabricated into fuel fissionable by CANDU reactors. This lowers the demands on technological development in the fuel fabrication part of the fuel cycle discussed earlier called the AFCF. Thus, the choice to incorporate CANDU reactors allows for swifter implementation of the Energy Solutions plan than would have otherwise been possible. In a longer term plan they suggest the fabrication of MOX fuels which could be reused by LWRs and metal fuel fabrication and the Advanced Reactors that can use them. NUEX is the separations plan suggested by Energy Solutions. Energy Solutions holds the United States patent rights to PUREX and in much the same way that COEX is based on PUREX, NUEX is also a process based on the PUREX method. The results of NUEX are a quantity of depleted Uranium, a Uranium/Plutonium mix, and an Americium/Curium mix. The Energy Solutions goal will be to conduct this type of reprocessing for the next 30 years without any attempt at construction of an ARR pyroprocessing fast reactor. This way, some technological development can be expected to make that a more achievable goal by the time it is implemented. General Atomics 9 General Atomics would like the GNEP initiative to focus more heavily on hydrogen production for energy. While this may at first seem to be outside the realm of the nuclear fuel

8 9


cycle, they in fact suggest quite an effective integration of their GenIV MHR (modular helium reactor) technology. They will call the pyroprocessing combination of the Advanced Recycling Reactor and the MHR the “Actinide Management Island.” The MHR is a reactor of higher efficiency than the light water reactors that are currently used and can take TRISO fuel from reprocessed SNF as an input. In addition to this, the output from the MHR that is being suggested is 'well-suited' as an input for the Advanced Recycling Reactor. This is to say that the neutron spectrum achievable in the ARR is comparable to the spectrum necessary to degrade the TRUs that the MHR outputs. The so called “Deep Burn” MHR is also a favorable reactor design for hydrogen production applications, so, as the creators and purveyors of this technology, General Atomics is keen to phase out Light Water Reactors with the MHR design across the board. They suggest a UREX+1a separations process for use in producing TRISO fuel. They use the perk of hydrogen production capability to make it attractive for the GNEP fuel cycle initiative. For a total capital cost of $8.3 B and by they year 2020, General Atomics expects its plan for the CFTC to have a 2500 t/yr capacity at 80% efficiency. They hope to produce (with an input of 2000 t/yr SNF) 2300 t/yr U oxide, 18 t/yr of TRU oxides, and 110 t/yr of waste. They suggest a Sodium cooled Fast Reactor as the ARR.

Economic Considerations

In considering the feasibility of the CFTC, there is also a need to examine the economic viability of such a facility, especially in relation with other potential waste handling methods. Since the final form of the CFTC is as yet undetermined, a comprehensive cost-benefit analysis taking into account all possible technologies is not feasible. Hence, we should consider and evaluate the benefit streams which would arise from such a facility. The potential benefit of a facility of any given scale (based on the amount of waste processed annually) can then be calculated and compared against the cost estimates provided by interested firms in their proposals. As previously mentioned, the CFTC facility will accept the input of spent nuclear fuel (SNF) 13

from conventional light water reactors. From this input, the CFTC can potentially produce three outputs: 1) Fuel for use in conventional light water reactors 2) Transuranic fuels for use in Advanced Burner Reactor (ABR) 3) Fission products Based on the volume of inputs and outputs produced, we can estimate the potential benefits of a facility of a given scale. Also, while it is beyond the scope of this paper to consider how the potential benefits of research and development (which will likely accrue as lower costs in future facilities) might be estimated, it should be noted that considering the inputs and outputs alone would likely be an underestimate given the potential gains from this area. Based on the above, we anticipate three streams of benefits from the facility: 1) Value of fuel, both conventional and transuranic, produced 2) Value of waste handling 3) Value from increased nuclear energy use enabled by such a facility. We shall consider each of these benefits in turn.

Value of Fuel As the main objective of the CFTC, fuel reprocessing would net transuranic fuel for use in the ABR. At the same time, it is very likely that fuel could be produced as part of the CFTC for use in conventional reactors. Hence, the value of useable fuel resources that is produced represents the most concrete output of the facility. In evaluating the benefits of extracting these fuel resources from SNF, we should take into account the energy content of the potential outputs of the CFTC. This should be compared to the energy value of natural uranium as a means of determining the relative value of obtaining such resources. MOX fuel is currently the most common product of spent fuel reprocessing plants. A blend of uranium and plutonium oxides, it is a substitute for the lightly enriched uranium that is used in most conventional light water reactors. With minor modifications, many reactors in the US can be fueled in part by MOX and there is a global demand from existing reactor operators for the fuel as well. Based on tested technologies, the 850 metric tons of fuel currently being recycled in France per year nets materials for 100 tons of MOX fuel 10. This represents an energy

World Nuclear Association, “Mixed Oxide Fuel (MOX)”,


content equivalent to about 700 tons of raw uranium (or about 820 tons of U 3O8 – the form it is most commonly traded in), worth more than $100,000 based on current spot prices11 of U3O8 . Since the CFTC could potentially process up to three times the amount of waste, it could net materials for up to 300 tons of MOX annually. Given the potential for uranium prices to increase as supply decreases, the benefits of being able to generate such a quantity of MOX fuel would also increase. Reprocessed uranium, which forms the bulk of SNF, contains significant concentrations of uranium isotopes that are unsuitable for use in light water reactors. Given the current prices of uranium ore, the processing of reprocessed uranium for use in conventional nuclear reactors is not cost-efficient. However, this situation might change as natural uranium become more expensive to extract. Again, the value of reprocessed uranium that might be extracted from SNF by the CFTC could be derived from the value of natural uranium which contains the equivalent amount of energy. A facility with the annual processing capacity of 1500 tons is able to produce almost 1450 tons of reprocessed uranium, which is equivalent to about 1700 tons 12 of U3O8 (worth approximately $230,000 at currently prices). It is more difficult to consider the value of the transuranic fuels that will be produced by the CFTC since the nature of this fuel would depend on the type of ABR design chosen for construction. However, the same method employed for MOX fuel or reprocessed uranium might be applicable since the CFTC is in this case also extracting the energy resources in SNF for use in the ABR.

Value of Waste Handling

However, apart from merely a facility for the production of new fuel, the CFTC will also have a significant impact on the waste management situation in the country. Under the current plan, the more than 50,000 tons of spent nuclear fuel that has already been accumulated in the US will be deposited in the Yucca Mountain repository which currently has a capacity of 70,000 tons, 63,000 of which is earmarked for civilian nuclear waste. The CFTC is a means by which the repository function of Yucca Mountain can be expanded without raising this statutory limit


The Ux Consulting Company, LLC, UxC Nuclear Fuel Price Indicators, WISE Uranium Project, Recycled Nuclear Fuel Cost Calculator,


on it capacity. Unlike other methods of waste management proposed, such as dry cask storage, the CFTC is genuine long-term solution to the problem of nuclear waste since it has the potential to vastly decrease the amount of waste that eventually requires storage (down to 3% of the original mass). In estimating the value of this function of the CFTC, we can assume that the benefit of handling a particular amount of waste is captured in the cost of the current Yucca Mountain site. Specifically, we assume that the cost per ton of waste storage at Yucca Mountain should reflect the minimum benefit of reducing the current stock of spent fuel by that amount. In this way, a facility which is able to reducing the amount of waste that requires storing to 3% of its original mass will net the total benefit of handling 97% of that waste. Based on 2001 estimates, the total cost of the Yucca Mountain site is about $57.5 billion dollars 13 (in 2001 dollars). Since civilian share of that cost is approximately 73% 14, assuming that the limit of 63,000 tons is not raised, the storage of each ton of waste would cost roughly $670,000 (approximately $810,000 in 2008 dollars 15). Even if limits were raised to the proposed 135,000 tons16 (at no significant additional cost), each ton of waste stored would still incur a cost of approximately $377,000 (2008 dollars). Since the project is on-going, we assume that the benefit from storing the waste is valued at least as much as the cost of doing so, which we estimate to be between $377,000 and $810,000 per ton. Given that the CFTC could potentially handle up to 2,500 tons of spent nuclear fuel each year, a plant operating from 2012 to 2050 at that capacity would net a benefit from waste handling between $8 to $19 billion (at an annual discount rate of 7%).

Value from increase nuclear energy use

At the same time, the potential for the CTFC to expand the Yucca Mountain repository also enables the expansion of the nuclear power industry to meet growing energy needs. Given


15 16

Office of Civilian Radioactive Waste Management, Analysis of the Total System Life Cycle Cost of the Civilian Radioactive Waste Management Program, May 2001, (accessed June 3, 2008). Office of Civilian Radioactive Waste Management, Nuclear Waste Fund Fee Adequecy: An Assessment, May 2001, (accessed June 3, 2008). Bureau of Labor Statistics, Consumer Price Index Home Page, Steve Tetreault, “Yucca Mountain: DOE: Enlarge repository,” Las Vegas Review-Journal, October 5, 2007, (Accessed June 3 2008).


that the current capacity of Yucca Mountain is barely sufficient to store the waste already accumulated and the proposed increase in the statutory limit of Yucca Mountain will only accommodate the waste produced by existing reactors that have mostly received license extensions, an alternative waste management strategy is necessary to allow new construction of nuclear power infrastructure to meet growing energy needs. The Energy Information Administration (EIA), in its 2008 Annual Energy Outlook report, predicts a 1.1% average annual rate of increase in electricity consumption 17. The report, which extends only to the year 2030, also predicts a slight decline of nuclear energy use as a percentage of total electricity production even without taking into account the reduction in nuclear power generation that will occur as the current generation of reactors are decommissioned. Also, the lack of an alternative waste handling strategy causes serious doubts in any plan to increase the use of nuclear energy beyond current repository limits for SNF. Hence, However, given the cost advantages of nuclear energy if environmental considerations are taken into account 18, a vast reduction in the use of nuclear energy could potentially be a costly outcome. The CFTC, insofar as it represents a means of allowing the use of nuclear energy to be sustained beyond the capacity of the Yucca Mountain repository to handle SNF is a means by which these environmental costs can be averted. This function of the CFTC will start to accrue benefits once the capacity of Yucca Mountain is reached. A facility capable of handling 2000 tons of waste annually (which is roughly the amount of SNF currently generated in the US each year) would allow (conservatively based on current technologies) the generation of 800 million mWh of electricity. The additional environmental cost of diverting this amount of electricity generation to either coal or natural gas (the most plausible options) could amount from anywhere between $7.8 billion to almost $60 billion 19 for carbon emissions alone.

Total Value In order to capture the total benefits of the CFTC, the three streams of benefits described above should be summed. However, in doing so, it is important to note the timing of each stream of benefits and ensure they are properly discounted. The benefits from fuel reprocessed and



Energy Information Administration, “Annual Energy Outlook 2008 (Early Release) – Electricity Generation Section,” Department of Energy, The Economic Future of Nuclear Power: A Stidy Conducted at the University of Chicago – Summary, August 2004, (accessed June 3, 2008). Ibid.


waste handled will only start to accrue after the facility begins operation and the environmental benefits of the CFTC as a means of enabling continued use of nuclear energy will only accrue when the facility becomes the primary means of waste disposal (potentially after Yucca Mountain is filled if existing waste is not reprocessed). A hypothetical plant with 800 ton capacity operating from 2025 to 2085 is likely to accrue between $1.2 and $2.6 billion of benefits in term of waste handling and, if reprocessing became the main waste management strategy, between $12 to $98 billion worth of environmental benefits from reduced carbon emissions over its lifetime. The present discounted value of energy resources extracted is insignificant compared to the other two streams of benefit. Hence, it is clear that the benefits from the facility are likely to be significant. Even without considering the potential environmental benefits of the CFTC, the facility still provides significant benefit in terms of waste reduction, thus fulfilling one of its key objectives.

The Politics of Nuclear Waste

From before construction of the first commercial power plant, the federal government has regulated nuclear waste. In particular, the government has long struggled with how to deal with the United States‟ buildup of waste. For example, over the last 18 years, Senators and Representatives in Congress have introduced 821 bills designed to regulate nuclear waste in some way. A majority of these related to controlling how the military handles nuclear waste, where the United States will store its waste long-term, whether or not waste will be reprocessed, and what requirements are imposed on nuclear power plant operators in how they handle their waste 20. However, while Congress has made offered many solutions to dealing with nuclear waste, only a fraction of these have received serious consideration. Only 534 of the 821 bills introduced actually saw any type of vote in a chamber of Congress. Of these, only 62 actually made it out of Congress and went to the President for his signature. Most of these were appropriation or authorization bills that funded and approved existing military and civilian nuclear activities but

Thomas. The Library of Congress. Searches performed 1 June 2008.


did not necessarily move forward in developing solutions for long-term waste storage or reprocessing. Thus, while Congress has considered the subject frequently and intensely, it has not made significant progress21. States, similarly, have made little headway in addressing nuclear waste, though this is to be expected. Regional electricity production exceeds the jurisdiction of any one state to regulate, and the federal government has deemed nuclear waste regulation a national issue. States do regulate nuclear waste to some extent internally, such as by imposing some restrictions on waste transport and to what degree citizens have access to information about waste within their state, but largely they cannot control the movement or storage of waste. For example, on May 21, a federal judge overrode a Washington ballot initiative regulating waste importation into the state. Initiative 297 had prevented the federal government from importing additional radioactive waste to the site until cleanup of the existing waste at the Hanford Nuclear Reservation finished. A judge for the Ninth Circuit Court of Appeals ruled that federal law preempted the state law22. Similarly, Yucca Mountain, selected in 1987 to store the country‟s nuclear waste, originally expected to accept waste starting in 1998. The revised start date now begins in 2017 23. Part of this delay has been due to legislation by the Nevada government to slow or stop the construction and opening of the site. For example, in 2002, then-Nevada Governor Kenny Guinn vetoed a Department of Energy certification 24 to proceed with Yucca Mountain as the nation‟s definitive nuclear waste storage site 25, though Congress soon overrode the veto 26. Nevada has similarly passed laws attempting to constrain Yucca Mountain development by, for example, limiting the use of groundwater to operate a spent nuclear fuel repository and blocking the transport nuclear waste in the State 27. On June 3, the Department of Energy submitted Yucca
21 22 23



26 27

Ibid. “Now Taking Reservations.” Grist Magazine. 22 May 2008. “Nuclear Waste Policy Act as amended with appropriations acts appended.” March 2004. Available at Accessed 1 May 2008. United States Department of Energy. “Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982.” February 2002. Available at Accessed 1 May 2008. Rogers, Keith and Tetreault, Steve. “Yucca Mountain: Guinn vetoes Bush.” Las Vegas Review-Journal. 9 April, 2002. Clerk of the United States House of Representatives. “Final Results for Roll Call 133.” 8 May 2002. United States Department of Energy. “Final Environmental Impact Statement for a Geologic Repository for the disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada.” February 2002. 4.1 (83).


Mountain‟s site license application to the Nuclear Regulatory Commission. Nevada officials said they remain determined to block Yucca‟s opening. 28 The Nevada Congressional delegation has also long fought to end the government‟s interest in Yucca Mountain. In the Senate, both Democrat Harry Reid and Republican John Ensign oppose the use of the site. “It is time to move past Yucca Mountain. The project is expensive. Now is not the time to squander money, resources, and time on a project doomed to fail.” John Ensign, Senate Committee on Environment and Public Works, October 31, 2007 “We will not let the people of Nevada be put at risk by the storage or transportation of the nation’s nuclear waste – not now and not ever.” Harry Reid, Yucca Petition drive kickoff, May 28, 2008 Nevada‟s House delegation of two Republicans and one Democrat has expressed similar concern over the project 29. At the same time, Members of Congress from embattled states like Nevada and Washington have had less to say on reprocessing as a way of lessening the volume of waste requiring long-term storage. While some, such as Senator Ensign, have supported reprocessing in theory30, or, like Congressman Jon Porter (R-NV), have visited reprocessing facilities in France31, they have not specifically pushed for reprocessing. This likely stems from their constituents‟ opinions, as citizens tend to oppose sites such as Yucca and Hanford in their own states, but do not advocate strongly or uniformly for a particular alternative. The federal government has similarly made modest progress in considering reprocessing. Currently no commercial reprocessing plants exist in the United States. While the Department of Energy has selected the Savannah River Site in South Carolina to process 34 tons of weapons grade plutonium into reactor-usable fuel, it has no plans or capability to reprocess the spent nuclear fuel currently stored at the nation‟s commercial nuclear reactors 32.
28 29


31 32

Vartabedian, Ralph. “U.S. seeks the go-ahead for Nevada nuclear dump.” The Los Angeles Times. 4 June 2008. “Nevada asks NRC to reject plan for nuclear dump drip shields”. Press Release. 17 April 2008. Available at,10,181&itemid=1012. Accessed 1 May 2008. “Ensign Testifies Against Yucca Waste Dump in Nevada.” Press Release. 31 October 2007. Available at Accessed 1 May 2008. Mascaro, Lisa. “Porter urged to get full picture on nuclear waste in France.” Las Vegas Sun. 7 January 2008. United States Nuclear Regulatory Commission. “Frequently Asked Questions About Mixed Oxide Fuel.” 13 February 2007. Available at Accessed 1 May 2008.


Rather, U.S. attention has focused on the formation of the Global Nuclear Energy Partnership (GNEP), announced in 2006. The project aims to create an international agreement to reprocess fuel for commercial reactor use and make it incompatible with weapon production. A small number of countries with the most advanced nuclear capability would reprocess fuel and ensure its availability to other countries wishing to generate power by fission. Recipient countries would have guaranteed supplies of nuclear fuel, but would agree to not reprocess or enrich nuclear material themselves 33. Twenty-one countries have signed on to the agreement 34, though many others have resisted, concerned that they will lose autonomy over their own energy production. Expanding GNEP to all countries with nuclear ambitions will require designing packages of incentives to persuade them to accept a designated fuel supplier. GNEP would also not eliminate the need for nuclear waste storage in the U.S., 35 but could reduce it in the long-term. Government attention paid to the Consolidated Fuel Treatment Center lags even beyond that of reprocessing generally. Although CFTC should play a major role in the successful implementation of GNEP, it has received limited discussion in Congress, aside from a few hearings in the Senate Environment and Public Works Committee 36
37 38

and the tacit support of

some Representatives whose districts made the shortlist for siting the CFTC 39. In all likelihood, Congress and the Executive Branch will make modest progress in addressing nuclear waste for the remainder of the year, making the opinions of the presidential candidates on the subject highly relevant. Senator Hillary Clinton sees expanded renewable energy generation and improved energy efficiency as faster methods for addressing global warming. She expresses concerns about nuclear cost, safety, disposal, and proliferation, but supports it in theory as part of the U.S.‟s continued energy mix. She opposes Yucca Mountain, and has instead suggested convening a

33 34 35 36




United States Department of Energy. “Global Nuclear Energy Partnership Strategic Plan.” January 2007. 4-10. Global Nuclear Energy Partnership. Available at Accessed 1 June 2008. Dorgan, Byron and Domenici, Pete. “Dear Colleague” letter. 31 October 2007. United States Senate. “Oversight Hearing on NRC‟s Regulatory Responsibilities and Capabilities for Long- and Short- term Spent Fuel Storage Programs: Testimony of Louis Reyes.” 14 September 2006. United States Senate. “Hearing on the Global Nuclear Energy Partnership: Testimony of Neil E. Todreas.” 14 November 2007. United States Senate. “Oversight Hearing on NRC‟s Regulatory Responsibilities and Capabilities for Long- and Short- term Spent Fuel Storage Programs: Testimony of Admiral Frank L. „Skip‟ Bowman.” 14 September 2006. “Paducah Makes Short List for GNEP Study.” Press Release. 29 November 2007. Available at Accessed 1 May 2008.


panel of scientific experts to recommend a preferred solution for managing existing and future waste40. Senator Barack Obama similarly opposes Yucca Mountain. He also expresses tacit

support for nuclear as a tool in combating climate change, but wants to address cost, proliferation, disposal, and public right-to-know issues before supporting an expansion of nuclear power. His solution for waste resolves around the expansion of dry-cask storage until a long-term disposal solution develops41. He specifically advocates for the use of the most modern dry-cask storage technology available, such as that under development at Knolls Atomic Power Laboratory. With either candidate, the CFTC‟s construction seems unlikely. Senator John McCain, in contrast, supports nuclear power expansion as a central strategy to combat global warming and reduce dependence on foreign energy sources42. He supports Yucca Mountain as the destination for U.S. nuclear waste, and would like to see 20 new nuclear plants under construction by the end of his first term 43. He has not specifically addressed how to handle the additional waste that such an expansion would generate. He has stated that the U.S. could reprocess its waste, while not explicitly including this strategy in his energy and environment plans44. Future political movement on waste policy is uncertain. State delegations will undoubtedly continue to oppose storing waste in their state. The rest is highly uncertain, and will largely depend, in the short term, on the outcome of the November 2008 election. With Democrats currently expected to expand their majority in the House and probably the Senate45, a Republican President will face significant opposition, whereas a Democrat may have a rare opportunity to advance his or her waste management strategy significantly. Whether that strategy will result in a long-term reduction in temporary waste storage, or include the CFTC, remains unknown.

40 41 42


44 45

“Powering America‟s Future: Hillary Clinton‟s Plan to Address the Energy and Climate Crisis.” p. 6. “Barack Obama‟s Plan to Make America a Global Energy Leader.” p. 4 “Climate Change.” Available at Accessed 20 May 2008. Sunnucks, Mike. “Nuclear plants, free trade, tax cuts, Iraq win, Bin Laden death on McCain wish list.” Phoenix Business Journal. 15 May 2008. Little, Amanda Griscom. “John McCain.” Outside. 2007. Killian, Linda. “Will the Democrats gain in Congress?” The Boston Globe. 18 May 2008.



The facts outlined above show CFTC to be technologically feasible and economically beneficial. The future benefits are sizeable, and the costs could be minimized by choosing the technological approach that could be implemented as soon as possible and has the lowest research and development costs and risks. Among the expressions of interest, INRA is the most technologically conservative and highly based on the experience of the reprocessing industry in other countries. Since it has the nearest projected demonstration date, it may be the first to be implemented commercially, thus allowing benefits to accrue sooner. Despite the favorable scientific outlook, the economic viability and the political decisions behind reprocessing and the CFTC may cause delays or suspension of the current effort. The political uncertainty is a key obstacle since the economic benefits of the CFTC, while potentially significant, are highly uncertain. A political decision to abandon the CFTC, besides incurring a loss in terms of previous investments, would also prevent any of the potential benefits of the facility from being realized, which would be a serious setback both in the push for greater nuclear power generation capacity and in terms of R&D in this field. Hence, it is very important that the individual proposals submitted by the private sector are carefully examined, which would involve a more specific treatment of their technical feasibility and their economic benefits, in order to determine the course of action that best maximizes the net benefit of the CFTC.



Shared By: