Pembahasan Lingkaran

					1. Salah satu persamaan garis singgung lingkaran ( x – 2 )² + ( y + 1 )² =13 di titik yang berabsis –1 adalah …. a. 3x – 2y – 3 = 0 b. 3x – 2y – 5 = 0 c. 3x + 2y – 9 = 0 d. 3x + 2y + 9 = 0 e. 3x + 2y + 5 = 0 Soal Ujian Nasional tahun 2007 Langkah 1 : Substitusi nilai x = –1 pada persamaan ( x – 2 )² + ( y + 1 )² =13, sehingga didapat (–1 – 2 )² + ( y + 1 )² =13 : (–1 – 2 )² + ( y + 1 )² =13 : 9 + ( y + 1 )² =13 ( y + 1 )² =13 – 9 ( y + 1 )² = 4 y+1=±2 y = –1 ± 2, sehingga didapat : y1 = –1 – 2 y1 = –3 Langkah 2 : Persamaan garis singgung pada umumnya “ membagi adil “ persamaan. Dari persamaan ( x – 2 )² + ( y + 1 )² = 13 jika berbagi adil maka menjadi persamaannya menjadi ( x – 2 ) ( x – 2 ) + ( y + 1 ) ( y + 1 ) = 13, kemudian substitusikan kedua koordinat titik singgungnya. ( –1,–3 ) (–1 – 2 ) ( x – 2 ) + (–3 + 1 ) ( y + 1 ) = 13 –3 ( x – 2 ) + –2 ( y + 1 ) = 13 –3x + 6 – 2y – 2 = 13 –3x – 2y + 4 – 13 = 0 –3x – 2y – 9 = 0 3x + 2y + 9 = 0 atau ( –1,1 ) (–1 – 2 ) ( x – 2 ) + ( 1 + 1 ) ( y + 1 ) = 13 –3 ( x – 2 ) + 2 ( y + 1 ) = 13 –3x + 6 + 2y + 2 = 13 –3x + 2y – 13 + 8 = 0 –3x + 2y – 5 = 0 3x – 2y + 5 = 0 , keduanya merupakan jawaban y2 = –1 + 2 y2 = 1

didapat koordinat titik singgungnya adalah : ( –1,–3 ) dan ( –1,1 )

{kedua ruas dikalikan dengan (–)}, maka akan diperoleh : yang benar tetapi hanya jawaban D yang tersedia pada option . 2. Persamaan garis singgung lingkaran x² + y² – 2x – 6y – 7 = 0 di titik yang berabsis 5 adalah …. a. 4x – y – 18 = 0 b. 4x – y + 4 = 0 c. 4x – y + 10 = 0 d. 4x + y – 4 = 0 e. 4x + y – 15 = 0 Soal Ujian Nasional tahun 2006

Langkah 1 : Subtitusikan nilai x = 5 pada persamaan lingkaran untuk mendapatkan titik singgungnya. x² + y² – 2x – 6y – 7 = 0 5² + y² – 2(5) – 6y – 7 = 0 y² – 6y – 7 + 25 – 10 = 0 y² – 6y + 8 = 0 (y–2)(y–4)=0 y =2 atau y = 4, sehingga koordninat titik singgungnya adalah ( 5,2 ) dan ( 5,4 ). Langkah 2 : Persamaan berbagi adil x² + y² – 2x – 6y – 7 = 0 x.x1 + y.y1 – ( x + x1 ) – 3( y + y1 ) – 7 = 0 Langkah 2 : Substitusikan kedua titik singgung pada persamaan x.x1 + y.y1 – ( x + x1 ) – 3( y + y1 ) – 7 = 0 ( 5,2 ) x.x1 + y.y1 – ( x + x1 ) – 3( y + y1 ) – 7 = 0 5x + 2y – ( x + 5 ) – 3( y + 2 ) – 7 = 0 5x + 2y – x – 5 – 3y – 6 – 7 = 0 4x – y – 18 = 0 negative dan sumbu y negative adalah …. a. x² + y² + 4x + 4y + 4 = 0 b. x² + y² + 4x + 4y + 8 = 0 c. x² + y² + 2x + 2y + 4 = 0 d. x² + y² – 4x – 4y + 4 = 0 e. x² + y² – 2x – 2y + 4 = 0 Soal Ujian Nasional tahun 2006 Dari soal terdapat pernyataan “ menyinggung smbu x negative dan sumbu y negative “, itu artinya lingkaran berada di kuadran III. Karena pusat lingkaran menyinggung kedua sumbu maka nilai x dan y pastinya sama sehingga didapat persamaan x = y. Substitusikan x = y pada persamaan garis 2x – 4y – 4 = 0, didapat : 2x – 4(x) – 4 = 0 –2x = 4 x = –2, karena x = y maka koordinat pusat lingkarannya adalah ( –2,–2 ). Karena lingkaran menyinggung sumbu x dan sumbu y maka jari – jri lingkaran adalah 2. Subtitusikan nilai yang didapat pada persamaan umum limgkaran : ( x – x1 )² + ( y – y1 )² = r² ( x + 2 )² + ( y + 2 )² = 2² x² + y² + 4x + 4y + 4 = 0 4. Persamaan garis lingkaran yang berpusat di ( 1,4 ) dan menyinggung garis 3x – 4y – 2 = 0 adalah …. a. x² + y² + 3x – 4y – 2 = 0 ( 5,4 ) x.x1 + y.y1 – ( x + x1 ) – 3( y + y1 ) – 7 = 0 5x + 4y – ( x + 5 ) – 3( y + 4 ) – 7 = 0 5x + 4y – x – 5 – 3y – 12 – 7 = 0 4x + y – 24 = 0

3. Persamaan lingkaran yang pusatnya terletak pada garis 2x – 4y – 4 = 0, serta menyinggung smbu x

b. x² + y² – 4x – 6y – 3 = 0 c. x² + y² + 2x + 8y – 8 = 0 d. x² + y² – 2x – 8y + 8 = 0 e. x² + y² + 2x + 2y – 16 = 0 Soal Ujian Nasional tahun 2005 kurikulum 2004 Karena pusat lingkarannya sudah diketahui maka nilai lain yang tinggal dicari adalah jari – jarinya. Untuk menentukan nilai tersebut kita tinggal mencari jarak dari pusat lingkaran ke garis singgungnya dengan menggunakan jarak titik ke garis yaitu : d 
ax1  by1  c a2  b2

Dari soal diketahui persamaan garisnya 3x – 4y – 2 = 0 berarti nilai a = 3, b = –4, dan c = –4, dengan titiknya yaitu ( 1,4 ) berarti nilai x1 = 1 dan y1 = 4. Masukkan niliai tersebut ke dalam rumus jarak titik ke garis

d

3(1)  4(4)  2 (3) 2  (4) 2



3  16  2 9  16



 15 25

3

Maskkan nilai ( 1,4 ) yaitu pusat lingkarannya dan jari – jarinya 3. ( x – x1 )² + ( y – y1 )² = r² ( x – 1 )² + ( y – 4 )² = 3² x² + y² – 2x – 8y + 8 = 0 5. Salah satu persamaan garis singgung lingkaran x² + y² = 25 yang tegak lurus garis 2y – x + 3 = 0 adalah…. a. b. c. d. e.
1 5 y  x 5 2 2 1 5 y   x 5 2 2
y  2x  5 5

y  2 x  5 5 y  2x  5 5

Soal Ujian Nasional tahun 2005 kurikulum 2004 Gradien dari persamaan garis ax + by + c = 0 adalah m  
a b (1) 1  , karena persamaan garis 2 2

Gradien dari persamaan garis 2y – x + 3 = 0 adalah m  

singgung lingkaran tegak lurus dengan garis 2y – x + 3 = 0 maka gardien garis tersebut adalah

m1  

1 1    2 1 m2 2

6. Persamaan garis singgung lingkaran x² + y² – 4x + 2y – 20 = 0 di titik P( 5,3 ) adalah …. a. 3x – 4y + 27 = 0 b. 3x + 4y – 27 = 0 c. 3x + 4y – 7 = 0

d. 7x + 4y – 17 = 0 e. 7x + 4y – 7 = 0 Soal Ujian Nasional tahun 2005 7. Jarak antara titik pusat lingkaran x² + y² – 4x + 4 = 0 dari sumbu y adalah …. a. 3 b. 2 ½ c. 2 d. 1 ½ e. 1 Soal Ujian Nasional tahun 2004 8. Diketahui lingkaran 2x² + 2y² – 4x + 3py – 30 = 0 melalui titik ( – 2,1 ). Persamaan lingkaran yang sepusat tetapi panjang jari – jarinya dua kali panjang jari – jari lingkaran tadi adalah …. a. x² + y² – 4x + 12y + 90 = 0 b. x² + y² – 4x + 12y – 90 = 0 c. x² + y² – 2x + 6y – 90 = 0 d. x² + y² – 2x – 6y – 90 = 0 e. x² + y² – 2x – 6y + 90 = 0 Soal Ujian Nasional tahun 2003 9. Persamaan garis singgung lingkaran x² + y² = 13 yang melalui titik ( 3,–2 ) adalah …. a. 3x – 2y = 13 b. 3x – 2y = –13 c. 2x – 3y = 13 d. 2x – 3y = –13 e. 3x + 2y = 13 Soal Ujian Nasional tahun 2002 10. Salah satu persamaan garis singgung dari titik( 0,4 ) pada lingkaran x² + y² = 4 adalah …. a. y = x + 4 b. y = 2x + 4 c. y = – x + 4 d. y = – 3 x + 4 e. y = – 2 x + 4 Soal Ujian Nasional tahun 2001 11. Garis singgung lingkaran x² + y² = 25 di titik ( –3,4 ) menyinggung lingkaran dengan pusat ( 10,5 ) dan jari – jari r. Nilai r = …. a. 3 b. 5 c. 7 d. 9 e. 11

Soal Ujian Nasional tahun 2000 12. menyusul


				
DOCUMENT INFO
Shared By:
Categories:
Stats:
views:4340
posted:1/8/2010
language:Malay
pages:5