Lab 4 Using the Digital Multimeter (DMM) by slappypappy121

VIEWS: 165 PAGES: 8

									Lab 4:  Using the Digital Multimeter (DMM) 
Introduction:  Parts of the DMM    (to be explained by Instructor or T/A)         
   •   Leads 
   •   Function selector 
           o DC Volts 
           o AC Volts 
           o DC Current 
           o AC Current 
           o Resistance 
           o Scales:  0‐2mV, 0‐200mV, 0‐2.0V,  0‐20V, 0‐200V 
   •   Readout 
   •   DC vs. AC 
   •   Fuse 

                                                                   
How the DMM Works                      
    •   Measuring voltage 
           o Connecting the DMM 
           o A/D conversion 
           o Scaling 
           o Readout 
    •   Measuring current 
           o Connecting the DMM 
           o Converting current to voltage 
               (high current) 
           o Converting current to voltage 
               (low current) 
           o Scaling 
    •   Measuring resistance 
           o Connecting the DMM 
           o Converting resistance to voltage  
           o Diode check function 
           o Continuity testing 


Other functions 
    •   Transistor testing 
    •   Capacitance meter 
    •   Diode tester 
    •   Battery tester 
    •   Frequency counter 


Breadboards and their use 


 


 


 
                               
Resistor Color Codes 
Resistor values can be determined by “reading” the bands of color printed on the resistor.   




                                                                                                                     
Resistors of different wattages showing color code bands.  Bottom = 0.25W.  Color bands give resistance 
and tolerance.   Gold tolerance band is +/‐ 5%,  silver is +/‐ 10%.   Read values by taking first two digits and 
multiply by 10d3  where d3 is the number represented by the third color band.  Chart is below.  For example 
the resistor in the middle is a 1W, 47 x 103 Ω  or 47kΩ resistor.  The one above it is 2W, 27 x 102Ω or 2700Ω 
or 2.7kΩ.  

                                  
Potentiometers 
Potentiometers are resistors whose value can be varied, depending on the position of a shaft or screw.  The 
picture below shows some examples of different styles. 

                                                                                                


                                                                                                


                                                                                                


                                                                                                
                                                                                                

                                                                                                

                                                                                                

                                                                                                

                                                                                                

                                                                                                

                                                                                                

                                

                                

                                

                                

                                

                                

                                

                                

Potentiometers.  Circular ones work like the diagram on the left.  The center terminal is connected to the 
“wiper”, which conducts a piece of carbon, plastic or coil of wire.  The rectangular “pot” is constructed as 
shown on the right, with a tiny lead screw for adjustment. 

 
Experiment 1:  Resistor tolerances and DMM accuracy 
Equipment:    
        DMM, five x 1kΩ resistors. 

Procedure: 
   • Label resistors with your lab station number and a letter, a,b,c, d or e 
   • Lab partner 1 measure the resistance of each resistor and record 
   • Lab partner 2 measure the resistance of each resistor and record 
   • Repeat, so that each person measures each resistor three times. 
   • Trade multimeters with one of the other groups at your bench and repeat, noting the new DMM in 
      your records.  Compare the results by analyzing the differences between the measurements to see 
      if you can detect the influence of the DMM, the influence of the operator, and the tolerance of the 
      resistors. 

Writeup: 
Write up this experiment as instructed in the Labs handout.  Pay special attention to the analysis section. 

                 


Experiment 2:  LED Current and output intensity 
Equipment: 
      DMM, LED, 4 x 1kΩ resistor, breadboard, power supply, wires 

Procedure: 
   • Construct a circuit as shown in Figure 1.  The LED has two leads and a flat spot on one side of the 
      case.  The Anode is usually the longer of the two leads, and the cathode has the flat spot.  The 
      Anode goes toward the “+” side of the circuit and the cathode toward the “–“  side.  Measure the 
      resistance of the resistor you use, or use one with known resistance from Experiment 1, but record 
      the value. 
   • Turn on the power supply and switch the DMM to measure DC Volts.  Measure the voltage across 
      the LED.  Record the reading.  Measure the supply voltage and record the reading.  Note that these 
      two readings, plus the knowledge of the resistor value allow you to compute the current through 
      the circuit.  Do that now and record it.   
   • Measure the resistance of a second 1kΩ resistor and add it in parallel with the first one.  Note what 
      happens to the brightness of the LED.  Compute the equivalent resistance of the two parallel 
      resistors and record this value. 
   • Switch the DMM back to DC Volts function.  Measure  and record the voltage across the LED. 
      Compute the current through the circuit.  
     •   Measure the resistance of a third 1kΩ resistor 
         and add it in parallel to the other two.  Again 
         record the voltage across the LED.  Don’t forget 
         to switch back to DC Volts before trying to 
         measure voltage!!  Compute the equivalent 
         resistance of the three resistors in parallel and 
         record the value.  Compute the current through 
         the circuit. 
     •   Now set up the DMM to measure current.  The 0‐
         20mA scale should be adequate.  Insert the DMM 
         into the circuit as shown in the lab introduction, 
         and measure the current through the LED with all 
         three resistors in parallel.  Record the current for 
         this arrangement.  Is it the same as the current 
         you computed? 
     •   Remove the third resistor from the parallel                 Figure 1:  Diode testing circuit 
         arrangement and again measure and record the 
         current.  Compare to the computed current. 
     •   Remove the second resistor from the parallel arrangement and again measure and record the 
         current.  Compare to the computed current.   

                       Equiv. R 
     Measured          Parallel         V(LED)        I (calc)       I(meas)          Brightness
    R1
    R2
    R3
 

Writeup 
   • Write up this experiment as instructed in the labs handout.  Plot diode current versus diode 
      voltage, diode current versus series resistance and diode current versus 1/(series resistance).  
      Explain the results.  Discuss any discrepancies you find between the measured and calculated 
      values for the circuit current. 

                                 
Experiment 3:  Photoresistor 
Equipment 
      Breadboard, photoresistor, DMM, assorted fixed resistors, potentiometer, 5V power supply, wires. 

Procedure 
   • Insert the photoresistor into the breadboard so it faces “up” toward the ceiling. 
   • Measure and record the resistance of the photoresistor with no “shade” on it. 
   • Cover the photoresistor completely and again measure and record its resistance. 
   • Experiment with partially covering the photoresistor and determine how the resistance changes 
      with different degrees of coverage. 


Project 
Design a circuit that uses a 5V power supply, one or more fixed resistors and a photoresistor (PR) to make a 
day/night detector.  Depending on the range of your photoresistor you may or may not have the fixed 
resistors you need in your lab kit to construct your design.  That’s OK, create the design and we’ll find you 
the resistors you need.  Your circuit should be set up so that if it is “daylight” the voltage at the output of 
the circuit is less than 2 Volts, and if it is “night” the voltage is greater than 3.5 volts.  To do this, you should 
have a photoresistor in which the ratio of Rdark to Rlight is at least 4:1, preferably more.  If your PR is not 
that sensitive, try shining a flashlight onto it during the “daylight” phase and re‐measure its resistance to 
see if you get a 4:1 or better ratio.  If not, speak to a T/A about getting a different PR. 

Document your design , including your calculations to choose a fixed resistor value, and build your circuit.  
Show the T/A your calculations and demonstrate your circuit to a T/A by showing the output on your DMM 
for the dark and daylight situations.   


Experiment 4:  Potentiometers 
Equipment 
      Potentiometer, DMM, 5V power supply, wires. 

Procedure 
       Connect the power supply to your potentiometer as shown in the 
diagram at right.   

    1.  Measure the voltage from ground to the center terminal of the 
       potentiometer.  Turn the shaft of the pot all the way counterclockwise 
       and slowly turn it clockwise and watch as the voltage changes on the 
       DMM. 
    2. Disconnect the power supply and set the potentiometer somewhere in 
       the middle of its range.  Measure the resistance between the “left” 
       terminal and the wiper and between the “right” terminal and the wiper.  
       Now change the position of the shaft and read again.  Predict the voltage you will read at the wiper 
       when you reconnect the power supply.  Try it and verify your prediction. 

Writeup 
      No writeup for this experiment. 

 

								
To top