VIEWS: 1,751 PAGES: 8

									GEOLOGY 12                                                     Name __________________

   •   Weathering is the breakup of rock mainly from exposure to the atmosphere.
   •   Erosion is the moving or transport of earth materials by moving natural agents.
       The four agents of erosion are water, wind, ice and gravity.

A. Mechanical Weathering – physical changes due to…
   1. Biological Effect is the action of plants and animals – lichen, tree's roots, ants,
      earthworms, etc. Also known as Biological Weathering
   2. Unloading of overlying rock and soil which causes:
         a) joints - long curved breaks in sheet rock
         b) exfoliation - when large sheets of loosened rock break away from an
   3. Ice Wedging - freezing water forces rocks apart (see diagram p.4)
         a) talus – steep slopes of broken rock at base of mountains or cliffs
         b) ice heaving results in potholes
B. Chemical Weathering – chemical changes mainly from the action of rainwater,
                         oxygen, carbon dioxide, and acids from plant decay
                         (i.e. AKA the biological effect).
   1. Hydration - chemical union with water. First they expand and then they crumble
      into powdery clay, e.g. feldspar, hornblende, and augite.
   2. Oxidation - the chemical reaction of oxygen with other substances. Minerals
      containing iron are especially prone to oxidation forming rust or iron oxide. e.g.
      magnetite, pyrite, hornblende, augite, biotite from hematite (red) or limonite
   3. Carbonic Acid - Carbon dioxide dissolves in water forming carbonic acid which
      leeches (dissolves) elements like K, Na, Mg, and Ca out of feldspar, hornblende,
      augite, and biotite to change them into clay. It dissolves calcite completely leaving
      caverns, etc.
   4. Acid Rain - CO2 and sulphur compounds (from industry) combine with rainwater to
      produce carbonic acid and sulphuric acid. It increases chemical weathering.
Chemical weathering occurs most quickly at the edges and corners of rock outcrops. This
rounds the rock and is called spheroidal weathering.
Weathering occurs more quickly in a hot humid climate.

In accordance with Bowen’s Reaction Series (discussed in Chapter 3) quartz is most
resistant and weathers slowly making pebbles and sand grains. Mechanical weathering
breaks many minerals into large fragments and then chemical weathering breaks them

into fine clays. Most igneous and metamorphic rocks weather more quickly in wet
Sedimentary rocks differ in their resistance to weathering depending on the cements
holding their particles together. When these break up, their quartz fragments remain as
boulders, pebbles, and sands. Quartzites, well-cemented sandstones and conglomerates
(with silica cement) are among the longest lasting of all rocks. Shales, the weakest, split
easily between layers and crumble into clay.
Marbles and limestones resist mechanical weathering well but are especially prone to
weathering by acids in water due to their calcite content. Moist climates affect these but
limestone is one of the most durable in a dry climate.


•   Soil - loose, weathered rock material in which plants with roots can grow. Always
    contains some organic material. Soils differ in color, mineral composition and amount
    of organic material.
•   Regolith - any loose earth material covering bedrock.

Soil formation is the process by which rocks are broken down into progressively smaller
particles and mixed with decaying organic material. Bedrock begins to disintegrate as it is
subjected to freezing-thawing cycles, rain, and other environmental forces. The rock
breaks down into parent material, which in turn breaks into smaller mineral particles.
Biological material adds to the chemical breakdown of the rock material. As soil continues
to develop, layers called horizons form.

The A-horizon, nearest the surface, is usually richer in organic matter, while the lowest
layer, the C-horizon, contains more minerals and still looks much like the parent material.
The soil will eventually reach a point where it can support a thick cover of vegetation and
cycle its resources effectively. At this stage, the soil may
feature a B-horizon, where leached minerals collect.

A-horizon - topsoil, contains most organic materials (humus)
B-horizon - subsoil, more clay, less organic material (humus)
C-horizon - mostly rock fragments sitting on bedrock


•   Residual soil - where the soil is made up of weathered
    bedrock of that area.
•   Transported soil - is soil that is made up of material that has
    been brought from other areas by winds, rivers, or glaciers.

•   Pedalfers - ped for soil, al for aluminum, fer for ferrous (iron), rich in clay, iron oxides
    and quartz fragments, poor in soluble minerals because usually in high rainfall areas
    (> 65 cm/ year.)
•   Pedocals - cal for calcium, generally rich in calcium because rainfall is less than 65 cm
    per year; less clay.

Gravity is an aid to weathering and causes steep slopes to weather more rapidly than the
gradual slopes. Movements of loose earth materials are collectively called mass


Mass movements occur in areas of heavy rainfall and steep slopes. Volcanic eruptions
and earthquakes may also trigger large-scale mass movements. (i.e. Mt. St. Helens,
Columbia, SA 1985 – 25000 deaths)
A. Climate
   1. Climate is an important factor for it affects the rate and type of weathering.
      Weathered materials become susceptible to mass movement under the influence
      of gravity.
   2. The hot and humid climate in the summer promotes chemical weathering.
   3. Dry winters and wet summers result in alternate drying out and soaking of
      weathered materials.

B. Rainwater
   Occasional and sudden heavy downpours are particularly serious problems since the
   amount of runoff water often cannot be effectively and quickly drained away.

C. Rock Structure
   Granite is easily weathered by physical and chemical processes and is susceptible to
   mass wasting.

D. Terrain
   1. Rapid movements, such as landslides and slumping, are common along steep
   2. Slow movements, such as soil creep, are common along gentle slopes.

E. Deforestation
   1. Bare areas without vegetation due to human activities such as clearing of trees,
      excavation for building sites, mining, quarrying, logging, trampling.
   2. Hill fires, especially in dry periods, also contribute to deforestation.

F. Excavation
   Excavation work to construct roadways and the steepening of slopes for building
   weaken the geological support structure.

G. Vibrations
   Vibrations are caused by dynamiting during construction or quarrying or earthquakes.

Mass wasting may be classified according to the rate, direction and nature of movement.

1. Slow Movement - common along gentle slopes (as gentle as 5 degrees)
   a. Soil Creep
      ♦ Soil creep is a very slow, often not discernable.
      ♦ downslope movement of soil particles or fine weathered materials under the
          influence of gravity.
      ♦ It may be caused by presence of rain water which increases the weight of the
          soil mass and reduces friction by trampling and burrowing.
      ♦ Evidence of soil creep includes trees with curved or bent trunks, tilted or
          displaced posts, and accumulation of material against stone walls on the
          upslope side.
   b. Solifluction and Frost Creep
      ♦ Solifluction is a very slow, viscous flow of materials saturated with meltwater
          over a gently sloping frozen ground.
      ♦ Frost creep is a slow mass movement caused by the lifting of soil surface by
          frost action which is common in cold areas with temperatures fluctuating above
          and below 0 degrees Celsius.

2. Rapid Movement - common along steep slopes
   a. Landslide and Slumping
      ♦ Landslide or slide is a rapid and sudden movement of weathered materials
         down a slope under the force of gravity. It is common on steep slopes.
      ♦ If the slope has a curved surface, the movement is rotational with a backward
         tilt, and the slide
         is called a slump or slumping.
   b. Rock Slide
      ♦ Rock slide is the rapid and sudden downward movement of rocks or boulders
         along a steep slope under the influence of gravity.
      ♦ It often results in road blockages, endangering lives and seriously interrupting
         and transportation.
   c. Mud Flow and Earth Flow
      ♦ These are rapid and sudden downslope movement of waterlogged soil particles
        in the form of a stream.
      ♦ Streamlike mudflows are produced in arid regions after sporadic, highly
        localized and intense rains or due to snowmelt.
      ♦ They may bury surface features and vegetation, sometimes adjacent
        settlements. For smaller scale mud flow, they may also block the drainage inlets
        and cause flooding.

3. Vertical Movement

   a. Rock Fall
      ♦ It is the rapid, sudden, vertical and free falling of rocks or debris from a cliff.
   b. Subsidence
      ♦ Subsidence is a sudden, rapid vertical movement of materials due to
         undermining. It is caused by lack of support and vibrations.


                              Landslide is a general term used to describe the sudden
                              down-slope movement of soil, rock and organic materials
                              under the influence of gravity. It also describes the landform
                              that results. (i.e. Hope Slide, Frank Slide)

Creep is the slow imperceptible movement of soil
and is noticeable wherever there are leaning fence
posts, crooked steps, sagging sidewalks and
cracked driveways. (i.e. Wilkinson Road Jail

                                    Talus or scree slopes are formed from the rock
                                    fragments that gather at the base of cliffs.

                                    Slumps occur when small
                                   block of land tilt or “slouch”.
                                              (i.e. HWY #1 near
                                                     Thetis Lake)

                                       Mudflows result from the rapid movement of water
                                       saturated masses of clay and silt.

Soil erosion is a serious problem. It can undermine structures and paved areas, ruin the
environmental and aesthetic attraction of planted areas and clog downstream areas with
excess sediment.

1. Threat to Life and Property
    There are several serious incidents of landslides and rock slides every year. They
    cause loss of life and property. In a minor incident they may block only one lane of a
    road, but in severe cases entire blocks of buildings collapse.

2. Environmental Impact
    ♦ Loss of vegetation
       Mass wasting and soil erosion result in the loss of surface topsoil which is essential
       for vegetation. As a result, more areas become barren.
    ♦ Scars and Gullies
       In areas where topsoil and vegetation are removed, bare spots form scars in the
       landscape. Gullies form deep grooves on weathered slopes through rain action and
       mass wasting in areas with little or no vegetation. Intense gullying cuts up the
       landscape into large-scale gullies and ridges and destroys the area. Gullying is
       common in the bare, granitic areas.

Since the impact of mass wasting, especially landslides, is so severe, some measures
can be taken to prevent accidents. See pages 412 to 416 for diagrams and additional
explanations. Similar diagrams are often found on the Provincial Exam.

♦   Chunam plaster or cement can be spread on steep slopes.
♦   Gradients of steeper slopes could be reduced.
♦   Potentially unstable rocks or soil masses should be removed.
♦   Retaining walls or structures can be built to hold back possible slides.
♦   Steep slopes should be inspected regularly, especially during periods of intense or
    prolonged rainfall.
♦   More surface drainage channels and ditches can be constructed.
♦   Subsurface drainage systems may need to be constructed or improved.
♦   Legislation can restrict development and building in dangerous zones.
♦   Vegetation can be planted on steeper slopes.
♦   Instruments can be installed to check slope instability, providing early warning in areas
    of concern.

Wind is most effective on dry materials found in arid regions. Smaller particles are easier
to move. The terms sand, silt, clay and pebble/gravel refer to the size of particles. Wind
can move masses because it has energy from the Sun.

      Particle Sizes (in mm)
         boulder     >256 mm
          cobble     64 – 256 mm
          pebble     2 – 64 mm
           sand      0.0625 – 2 mm
              silt   0.0039 – 0,0625 mm
             clay    0.0005 – 0,0039 mm
         colloids    < 0.0005 mm

•   Particle size is only important because it indicates MASS.
•   “Sand” refers to particle size, NOT composition.

Sand Grains -      require > 18 km/h winds to move them
            -      bouncing action (saltation) causes scouring
            -      most action < 1 m above ground level
            -      usually composed of quartz but may be composed of calcite,
                   gypsum, quartz, mica, magnetite, obsidian or shells
                 - features formed by quartz sand → toadstools and ventifacts

Silt/Clay -   too soft to abrade most rocks
          -   can lift very high and form dust clouds, even up into upper atmosphere
          -   form very uniformly textured, compact deposits
          -   sorted by energy of the wind

1. Desert Pavement - removal of the fine products of erosion by wind action (deflation)
   leaves surface of pebbles and boulders (ie Badlands of S. Dakota + SE Alberta + SW
   Sask., Sahara + Gobi deserts, high deserts of Mongolia)

2. Blowouts - hollow depressions caused by wind action. Reaching the water table stops
   this action and forms an OASIS. Vegetation also stops further action.

3. Loess - windborn deposits, highly sorted, fine soils, yellowish silt, angular particles
   found in China, N. Europe, N. Central USA from 1 m. – 100 m. thick

4. Sand Dunes        -   formed when wind-carried sand piles up against an obstruction
                     -   usually made of quartz sand
                     -   white sands Monument, N. Mexico is made of gypsum sand
                     -   Bermuda has dunes of white, coral-derive calcite sand
                     -   other sands: mica, magnetite, shells
                     -   shape depends on supply of sand, wind strength, vegetation

Label the following:

Dune Migration

Types of Dunes
1. Barchan Dunes - steady wind, limited sand, cusps point downwind
2. Transverse Dunes - steady winds, abundant sand, series of ridges across the wind
3. Parabolic Dunes - form around blowholes from the material blown out, vegetation
   anchors horns so cusps face upwind, oasis may form in blowout if it meets water table
4. Longitudinal Dunes - strong winds, one direction, thin sand cover, run parallel to wind
5. Beach Dunes - usually traverse or parabolic

Reference Pages: Chapter 5 p.86-93, 97-103
                 Chapter 18 p.385-393
                 Chapter 19 p.400-416
Complete the following worksheets and activities.
•   Chapter 5 WS
•   Chapter 18 WS
•   Chapter 19 WS
•   Landslide Exercise (hand in for marks)

To top