Docstoc

2

Document Sample
2 Powered By Docstoc
					Uji Asumsi 1 : Uji Normalitas dalam SPSS
Dua post saya terdahulu tentang Uji Asumsi 1 berbicara hal-hal teoritis mengenai uji normalitas. Sekarang bagaimana prakteknya? Maksud saya dengan praktek tentu saja bagaimana cara menghitungnya. Dalam kesempatan ini saya akan banyak berbicara mengenai bagaimana cara melakukan uji normalitas menggunakan SPSS. Saya memilih SPSS dengan alasan program ini paling banyak dipakai oleh mahasiswa psikologi sehingga bisa dikatakan paling familiar. Selain itu SPSS termasuk program yang cukup user friendly sehingga cukup mudah digunakan meskipun oleh orang yang tidak mempelajari statistik sangat dalam. Langkah Awal Saya berasumsi paling tidak pembaca artikel ini adalah orang yang sudah pernah berurusan dengan SPSS. Paling tidak tahu bagaimana memulai SPSS dan membuka file. Jadi saya akan langsung berkisah mengenai cara melakukan analisis datanya. Cara Pertama Ada satu kebiasaan yang saya amati ketika teman-teman hendak melakukan uji normalitas dengan SPSS. Biasanya mereka memilih menu : Analyze - Non Parametrik Test - 1 Sample KS

Setelah diklik pada menu ini, akan muncul dialog box seperti ini:

Sekarang yang kita lakukan hanya memasukkan variabel yang ingin kita uji normalitasnya ke dalam kotak Test Variable List. Kemudian klik OK. Hasil yang akan didapat kurang lebih seperti ini:

Lalu bagaimana cara membacanya? Untuk kepentingan uji asumsi, yang perlu dibaca hanyalah 2 item paling akhir, nilai dari KolmogorovSmirnov Z dan Asymp. Sig (2-tailed).






Kolmogorov-Smirnov Z merupakan angka Z yang dihasilkan dari teknik Kolmogorov Smirnov untuk menguji kesesuaian distribusi data kita dengan suatu distribusi tertentu,dalam hal ini distribusi normal. Angka ini biasanya juga dituliskan dalam laporan penelitian ketika membahas mengenai uji normalitas. Asymp. Sig. (2-tailed). merupakan nilai p yang dihasilkan dari uji hipotesis nol yang berbunyi tidak ada perbedaan antara distribusi data yang diuji dengan distribusi data normal. Jika nilai p lebih besar dari 0.1 (baca posting sebelumnya) maka kesimpulan yang diambil adalah hipotesis nol gagal ditolak, atau dengan kata lain sebaran data yang kita uji mengikuti distribusi normal. Jangan terkecoh dengan catatan di bawah tabel yang berbunyi Test distribution is Normal. Catatan ini tidak bertujuan untuk memberitahu bahwa data kita normal, tetapi menunjukkan bahwa hasil analisis yang sedang kita lihat adalah hasil analisis untuk uji normalitas.

Cara Kedua Cara yang pertama biasanya menghasilkan hasil analisis yang kurang akurat dalam menguji apakah sebuah distribusi mengikuti kurve normal atau tidak. Ini disebabkan uji Kolmogorov Smirnov Z dirancang tidak secara khusus untuk menguji distribusi normal, tetapi distribusi apapun dari satu set data. Selain normalitas, analisis ini juga digunakan untuk menguji apakah suatu data mengikuti distribusi poisson, dsb.

Cara kedua merupakan koreksi atau modifikasi dari cara pertama yang dikhususkan untuk menguji normalitas sebaran data. Kita Analyze memilih Descriptive Statistics menu Explore...

Sehingga akan muncul dialog box seperti ini:

Yang perlu kita lakukan hanyalah memasukkan variabel yang akan diuji sebarannya ke dalam kotak Dependent List. Setelah itu kita klik tombol Plots... yang akan memunculkan dialog box kedua seperti ini:

Dalam dialog ini kita memilih opsi Normality plots with tests, kemudian klik Continue dan OK. SPSS akan menampilkan beberapa hasil analisis seperti ini:

SPSS menyajikan dua tabel sekaligus di sini. SPSS akan melakukan analisis Shapiro-Wilk jika kita hanya memiliki kurang dari 50 subjek atau kasus. Uji Shapiro-Wilk dianggap lebih akurat ketika jumlah subjek yang kita miliki kurang dari 50. Jadi bagaimana membacanya? Kurang lebih sama seperti cara pertama. Untuk memastikan apakah data yang kita miliki mengikuti distribusi normal, kita dapat melihat kolom Sig. untuk kedua uji (tergantung jumlah subjek yang kita miliki). Jika sig. atau p lebih dari 0.1 maka kita simpulkan hipotesis nol gagal ditolak, yang berarti data yang diuji memiliki distribusi yang tidak berbeda dari data yang normal. Atau dengan kata lain data yang diuji memiliki distribusi normal. Cara Ketiga Jika diperhatikan, hasil analisis yang kita lakukan tadi juga menghasilkan beberapa grafik. Nah cara ketiga ini terkait dengan cara membaca grafik ini. Ada empat grafik yang dihasilkan dari analisis tadi yang penting juga untuk dilihat sebelum melakukan analisis yang sebenarnya, yaitu:


Stem and Leaf Plot. Grafik ini akan terlihat seperti ini:

Grafik ini akan terlihat mengikuti distribusi normal jika data yang kita miliki memiliki distribusi normal. Di sini kita lihat sebenarnya data kita tidak dapat dikatakan terlihat normal, tapi bentuk seperti ini ternyata masih dapat ditoleransi oleh analisis statistik sehingga p yang dimiliki masih lebih besar dari 0.1. Dari grafik ini kita juga dapat melihat ada satu data ekstrim yang nilainya kurang dari 80 (data paling atas). Melihat situasi ini kita perlu berhati-hati dalam melakukan analisis berikutnya.


Normal Q-Q Plots. Grafik Q-Q plots akan terlihat seperti ini:

Garis diagonal dalam grafik ini menggambarkan keadaan ideal dari data yang mengikuti distribusi normal. Titik-titik di sekitar garis adalah keadaan data yang kita uji. Jika kebanyakan titik-titik berada sangat dekat dengan garis atau bahkan menempel pada garis, maka dapat kita simpulkan jika data kita mengikuti distribusi normal. Dalam grafik ini kita lihat juga satu titik yang berada sangat jauh dari garis. Ini adalah titik yang sama yang kita lihat dalam stem and leaf plots. Keberadaan titik ini menjadi peringatan bagi kita untuk berhati-hati melakukan analisis berikutnya.


Detrended Normal Q-Q Plots. Grafik ini terlihat seperti di bawah ini:

Grafik ini menggambarkan selisih antara titik-titik dengan garis diagonal pada grafik sebelumnya. Jika data yang kita miliki mengikuti distribusi normal dengan sempurna, maka semua titik akan jatuh pada garis 0,0. Semakin banyak titik-titik yang tersebar jauh dari garis ini menunjukkan bahwa data kita semakin tidak normal. Kita masih bisa melihat satu titik 'nyeleneh' dalam grafik ini (sebelah kiri bawah). Sekilas Mengenai Outlier Dari tadi kita membahas satu titik nyeleneh di bawah sana, tapi itu sebenarnya apa? Dan bagaimana kita tahu itu subjek yang mana? Titik 'nyeleneh' ini sering juga disebut Outlier. Titik yang berada nun jauh dari keadaan subjek lainnya. Ada beberapa hal yang dapat menyebabkan munculnya outlier ini: 1. Kesalahan entry data. 2. Keadaan tertentu yang mengakibatkan error pengukuran yang cukup besar (misal ada subjek yang tidak kooperatif dalam penelitian sehingga mengisi tes tidak dengan sungguh-sungguh) 3. Keadaan istimewa dari subjek yang menjadi outlier. Jika outlier disebabkan oleh penyebab no 1 dan 2, maka outlier dapat dihapuskan dari data. Tetapi jika penyebabnya adalah no 3, maka outlier tidak dapat dihapuskan begitu saja. Kita perlu melihat dan mengkajinya lebih dalam subjek ini. Lalu bagaimana tahu subjek yang mana yang menjadi outlier? Kita bisa melihat pada grafik berikutnya yang dihasilkan dari analisis yang sama, grafik boxplot seperti berikut ini:

Sebelum terjadi kesalahpahaman saya mau meluruskan dulu bahwa tulisan C10,Q1, Median, Q3 dan C90 itu hasil rekaan saya sendiri. SPSS tidak memberikan catatan seperti itu dalam hasil analisisnya. Grafik ini memberi gambaran mengenai situasi data kita dengan menyajikan 5 angka penting dalam data kita yaitu: C10 (percentile ke 10), Q1 (kuartil pertama atau percentil ke 25), Median (yang merupakan kuartil kedua atau percentile 50), Q3 (atau kuartil ketiga atau percentile 75) dan C90 (percentile ke 90). Selain itu dalam data ini kita juga dapat melihat subjek yang menjadi outlier, dan SPSS memberitahu nomor kasus dari subjek kita ini; yaitu no 3. Jadi jika kita telusuri data kita dalam file SPSS, kita akan menemukan subjek no 3 ini yang menjadi outlier dalam data kita. Catatan akhir: Sangat penting bagi kita untuk tidak sepenuhnya bergantung pada hasil analisis statistik dalam bentuk angka. Kita juga perlu untuk 'melihat' (dalam arti yang sebenarnya) data kita dalam bentuk grafik bahkan keadaan data kita dalam worksheet SPSS untuk memeriksa kejanggalankejanggalan yang mungkin terjadi.


				
DOCUMENT INFO
Shared By:
Categories:
Stats:
views:162
posted:12/21/2009
language:Indonesian
pages:7