# formula matematika by asephidayattea

VIEWS: 1,426 PAGES: 34

• pg 1
```									Department of Mathematics, UMIST MATHEMATICAL FORMULA TABLES
Version 2.0 September 1999

CONTENTS page Greek Alphabet Indices and Logarithms Trigonometric Identities Complex Numbers Hyperbolic Identities Series Derivatives Integrals Laplace Transforms Z Transforms Fourier Series and Transforms Numerical Formulae Vector Formulae Mechanics Algebraic Structures Statistical Distributions F - Distribution Normal Distribution t - Distribution χ2 (Chi-squared) - Distribution Physical and Astronomical constants 3 3 4 6 6 7 9 11 13 16 17 19 23 25 27 29 29 31 32 33 34

GREEK ALPHABET Aα Bβ Γγ ∆δ E ,ε Zζ Hη Iι Kκ Λλ Mµ alpha beta gamma delta epsilon zeta eta iota kappa lambda mu Nν Ξξ Oo Ππ Pρ Σσ Tτ Υυ Xχ Ψψ Ωω nu xi omicron pi rho sigma tau upsilon chi psi omega

Θ θ, ϑ theta

Φ φ, ϕ phi

INDICES AND LOGARITHMS

am × an = am+n (am )n = amn log(AB) = log A + log B log(A/B) = log A − log B log(An ) = n log A logc a logb a = logc b

TRIGONOMETRIC IDENTITIES

tan A = sin A/ cos A sec A = 1/ cos A cosec A = 1/ sin A cot A = cos A/ sin A = 1/ tan A sin2 A + cos2 A = 1 sec2 A = 1 + tan2 A cosec 2 A = 1 + cot2 A sin(A ± B) = sin A cos B ± cos A sin B cos(A ± B) = cos A cos B tan(A ± B) =
tan A±tan B 1 tan A tan B

sin A sin B

sin 2A = 2 sin A cos A cos 2A = cos2 A − sin2 A = 2 cos2 A − 1 = 1 − 2 sin2 A tan 2A =
2 tan A 1−tan2 A

sin 3A = 3 sin A − 4 sin3 A cos 3A = 4 cos3 A − 3 cos A tan 3A =
3 tan A−tan3 A 1−3 tan2 A

sin A + sin B = 2 sin A+B cos A−B 2 2

sin A − sin B = 2 cos A+B sin A−B 2 2 cos A + cos B = 2 cos A+B cos A−B 2 2 cos A − cos B = −2 sin A+B sin A−B 2 2 2 sin A cos B = sin(A + B) + sin(A − B) 2 cos A sin B = sin(A + B) − sin(A − B) 2 cos A cos B = cos(A + B) + cos(A − B) −2 sin A sin B = cos(A + B) − cos(A − B) a sin x + b cos x = R sin(x + φ), where R = If t = tan 1 x then sin x = 2
1 cos x = 2 (eix + e−ix ) ; 2t , 1+t2

√

a2 + b2 and cos φ = a/R, sin φ = b/R.

cos x =
1 2i

1−t2 . 1+t2

sin x =

(eix − e−ix )

eix = cos x + i sin x ;

e−ix = cos x − i sin x

COMPLEX NUMBERS √ −1

i=

Note:- ‘j’ often used rather than ‘i’.

Exponential Notation

eiθ = cos θ + i sin θ

De Moivre’s theorem [r(cos θ + i sin θ)]n = rn (cos nθ + i sin nθ) nth roots of complex numbers If z = reiθ = r(cos θ + i sin θ) then z 1/n = √ i(θ+2kπ)/n n re , k = 0, ±1, ±2, ...

HYPERBOLIC IDENTITIES cosh x = (ex + e−x ) /2 tanh x = sinh x/ cosh x sechx = 1/ cosh x coth x = cosh x/ sinh x = 1/ tanh x cosh ix = cos x cos ix = cosh x sinh ix = i sin x sin ix = i sinh x cosh2 A − sinh2 A = 1 sech2 A = 1 − tanh2 A cosech 2 A = coth2 A − 1 sinh x = (ex − e−x ) /2 cosechx = 1/ sinh x

SERIES

Powers of Natural Numbers 1 k = n(n + 1) ; 2 k=1 Arithmetic
n n 1 1 k = n(n + 1)(2n + 1); k 3 = n2 (n + 1)2 6 4 k=1 k=1 2 n−1 n

Sn =
k=0

(a + kd) =

n {2a + (n − 1)d} 2

Geometric (convergent for −1 < r < 1)
n−1

Sn =
k=0

ark =

a(1 − rn ) a , S∞ = 1−r 1−r

Binomial (convergent for |x| < 1) (1 + x)n = 1 + nx + n! n! x2 + ... + xr + ... (n − 2)!2! (n − r)!r!

where

n(n − 1)(n − 2)...(n − r + 1) n! = (n − r)!r! r!

Maclaurin series xk (k) x2 f (x) = f (0) + xf (0) + f (0) + ... + f (0) + Rk+1 2! k! where Rk+1 = Taylor series f (a + h) = f (a) + hf (a) + where Rk+1 = OR f (x) = f (x0 ) + (x − x0 )f (x0 ) + where Rk+1 = (x − x0 )2 (x − x0 )k (k) f (x0 ) + ... + f (x0 ) + Rk+1 2! k! h2 hk f (a) + ... + f (k) (a) + Rk+1 2! k! xk+1 (k+1) f (θx), 0 < θ < 1 (k + 1)!

hk+1 (k+1) (a + θh) , 0 < θ < 1. f (k + 1)!

(x − x0 )k+1 (k+1) (x0 + (x − x0 )θ), 0 < θ < 1 f (k + 1)!

Special Power Series

ex = 1 + x +

x2 x3 xr + ... + + ... + 2! 3! r!

(all x)

sin x = x − cos x = 1 − tan x = x +

x3 x5 x7 (−1)r x2r+1 + − + ... + + ... 3! 5! 7! (2r + 1)! (−1)r x2r x2 x4 x6 + − + ... + + ... 2! 4! 6! (2r)! x3 2x5 17x7 + + + ... 3 15 315 1 x3 1.3 x5 1.3.5 x7 + + + 2 3 2.4 5 2.4.6 7 ... + 1.3.5....(2n − 1) x2n+1 + ... 2.4.6....(2n) 2n + 1

(all x)

(all x)

(|x| < π ) 2

sin−1 x = x +

(|x| < 1)

tan−1 x = x −

x2n+1 x3 x5 x7 + − + ... + (−1)n + ... 3 5 7 2n + 1

(|x| < 1)

n(1 + x) = x − sinh x = x +

xn x2 x3 x4 + − + ... + (−1)n+1 + ... (−1 < x ≤ 1) 2 3 4 n (all x)

x3 x5 x7 x2n+1 + + + ... + + ... 3! 5! 7! (2n + 1)! x2 x4 x6 x2n + + + ... + + ... 2! 4! 6! (2n)! x3 2x5 17x7 + − + ... 3 15 315 1 x3 1.3 x5 1.3.5 x7 + − + 2 3 2.4 5 2.4.6 7 1.3.5...(2n − 1) x2n+1 + ... 2.4.6...2n 2n + 1

cosh x = 1 +

(all x)

tanh x = x −

(|x| < π ) 2

sinh−1 x = x −

... + (−1)n tanh−1 x = x +

(|x| < 1)

x2n+1 x3 x5 x7 + + + ... + ... 3 5 7 2n + 1

(|x| < 1)

DERIVATIVES function xn ex ax (a > 0) nx loga x sin x cos x tan x cosec x sec x cot x sin−1 x cos−1 x tan−1 x sinh x cosh x tanh x cosech x sech x coth x sinh−1 x cosh−1 x(x > 1) tanh−1 x(|x| < 1) coth−1 x(|x| > 1) derivative nxn−1 ex ax na
1 x 1 x na

cos x sec2 x − sin x

− cosec x cot x sec x tan x − cosec 2 x 1 √ 1 − x2 −√ 1 1 − x2

1 1 + x2 cosh x sinh x sech 2 x − cosech x coth x − sech x tanh x − cosech2 x 1 √ 1 + x2 √ 1 x2 − 1

1 1 − x2 − x2 1 −1

Product Rule d dv du (u(x)v(x)) = u(x) + v(x) dx dx dx Quotient Rule d dx Chain Rule d (f (g(x))) = f (g(x)) × g (x) dx Leibnitz’s theorem n(n − 1) (n−2) (2) n! dn .g +...+ f (n−r) .g (r) +...+f.g (n) (f.g) = f (n) .g+nf (n−1) .g (1) + f n dx 2! (n − r)!r! u(x) v(x)
dv v(x) du − u(x) dx dx [v(x)]2

=

INTEGRALS function dg(x) f (x) dx xn (n = −1) e
1 x x

integral f (x)g(x) −
xn+1 n+1

df (x) g(x)dx dx Note:- n|x| + K = n|x/x0 |

n|x| ex − cos x sin x n| sec x|

sin x cos x tan x cosec x sec x cot x 1 2 + x2 a 1 − x2 1 − a2

− n| cosec x + cot x| n| sin x| x 1 tan−1 a a 1 a+x n 2a a − x 1 x−a n 2a x + a sin−1 x a x a x a or or

or
π 4

n tan x 2 +
x 2

n| sec x + tan x| = n tan

a2

x 1 tanh−1 a a − 1 x coth−1 a a

(|x| < a)

x2

or

(|x| > a)

1 √ 2 − x2 a 1 √ 2 + x2 a 1 √ x 2 − a2 sinh x cosh x tanh x cosech x sech x coth x

(a > |x|) n x+ √ x 2 + a2

sinh−1

cosh−1 cosh x sinh x

or

n|x +

√ x 2 − a2 |

(|x| > a)

n cosh x 2 tan−1 ex n| sinh x| − n |cosechx + cothx| or n tanh x 2

Double integral f (x, y)dxdy = where J= ∂(x, y) = ∂(r, s)
∂x ∂r ∂y ∂r ∂x ∂s ∂y ∂s

g(r, s)Jdrds

LAPLACE TRANSFORMS ˜ f (s) = function 1 tn eat sin ωt cos ωt sinh ωt cosh ωt t sin ωt t cos ωt Ha (t) = H(t − a) δ(t) eat tn eat sin ωt eat cos ωt eat sinh ωt eat cosh ωt
∞ −st f (t)dt 0 e

transform 1 s n! n+1 s 1 s−a ω s2 + ω 2 s 2 + ω2 s ω 2 − ω2 s s s2 − ω 2 (s2

2ωs + ω 2 )2

s2 − ω 2 (s2 + ω 2 )2 e−as s 1 n! (s − a)n+1

ω (s − a)2 + ω 2 s−a (s − a)2 + ω 2

ω (s − a)2 − ω 2 s−a (s − a)2 − ω 2

˜ Let f (s) = L {f (t)} then L eat f (t) f (t) t ˜ = f (s − a),
∞ x=s

L {tf (t)} = − L Derivatives and integrals =

d ˜ (f (s)), ds ˜ f (x)dx if this exists.

˜ Let y = y(t) and let y = L {y(t)} then dy dt d2 y L dt2 L L
t τ =0

= s˜ − y0 , y = s2 y − sy0 − y0 , ˜ = 1 y ˜ s

y(τ )dτ

where y0 and y0 are the values of y and dy/dt respectively at t = 0. Time delay Let then Scale change 1˜ s f . k k g(t) = Ha (t)f (t − a) =  ˜ L {g(t)} = e−as f (s).
   

0

t<a

f (t − a) t > a

L {f (kt)} = Periodic functions Let f (t) be of period T then L {f (t)} =

1 1 − e−sT

T t=0

e−st f (t)dt.

Convolution Let then f (t) ∗ g(t) =
t x=0

f (x)g(t − x)dx =

t x=0

f (t − x)g(x)dx

˜ g L {f (t) ∗ g(t)} = f (s)˜(s).

RLC circuit For a simple RLC circuit with initial charge q0 and initial current i0 , 1 1 ˜ E = r + Ls + i − Li0 + q0 . Cs Cs Limiting values initial value theorem lim f (t) = s→∞ sf (s), lim ˜

t→0+

ﬁnal value theorem
t→∞ ∞ 0

lim f (t) = f (t)dt =

s→0+

˜ lim sf (s), ˜ lim f (s)

s→0+

provided these limits exist.

Z TRANSFORMS

˜ Z {f (t)} = f (z) =

∞ k=0

f (kT )z −k

function δt,nT e−at te−at t2 e−at sinh at cosh at e−at sin ωt e−at cos ωt te−at sin ωt te−at cos ωt

transform z −n (n ≥ 0) z z − e−aT T ze−aT (z − e−aT )2 T 2 ze−aT (z + e−aT ) (z − e−aT )3 z2 z2 z sinh aT − 2z cosh aT + 1 z(z − cosh aT ) − 2z cosh aT + 1

ze−aT sin ωT z 2 − 2ze−aT cos ωT + e−2aT z(z − e−aT cos ωT ) z 2 − 2ze−aT cos ωT + e−2aT T ze−aT (z 2 − e−2aT ) sin ωT (z 2 − 2ze−aT cos ωT + e−2aT )2 T ze−aT (z 2 cos ωT − 2ze−aT + e−2aT cos ωT ) (z 2 − 2ze−aT cos ωT + e−2aT )2

Shift Theorem ˜ Z {f (t + nT )} = z n f (z) − n−1 z n−k f (kT ) (n > 0) k=0 Initial value theorem ˜ f (0) = limz→∞ f (z)

Final value theorem ˜ f (∞) = lim (z − 1)f (z)
z→1

provided f (∞) exists.

Inverse Formula f (kT ) = 1 2π
π −π

˜ eikθ f (eiθ )dθ

FOURIER SERIES AND TRANSFORMS

Fourier series
∞ 1 {an cos nωt + bn sin nωt} f (t) = a0 + 2 n=1

(period T = 2π/ω)

where

an = bn

2 T 2 = T

t0 +T t0 t0 +T t0

f (t) cos nωt dt f (t) sin nωt dt

Half range Fourier series 4 T 4 T
T /2 0

sine series

an = 0, bn =

f (t) sin nωt dt

cosine series Finite Fourier transforms sine transform

bn = 0, an =

T /2 0

f (t) cos nωt dt

˜ fs (n) = f (t) = cosine transform

4 T

T /2 0

f (t) sin nωt dt

∞

˜ fs (n) sin nωt

n=1

˜ fc (n) =

4 T /2 f (t) cos nωt dt T 0 ∞ 1˜ ˜ fc (0) + fc (n) cos nωt f (t) = 2 n=1

Fourier integral 1 1 lim f (t) + lim f (t) = t 0 2 t 0 2π Fourier integral transform
∞ −∞

eiωt

∞ −∞

f (u)e−iωu du dω

1 ˜ f (ω) = F {f (t)} = √ 2π

∞ −∞

e−iωu f (u) du
∞ −∞

1 ˜ f (t) = F −1 f (ω) = √ 2π

˜ eiωt f (ω) dω

NUMERICAL FORMULAE

Iteration Newton Raphson method for reﬁning an approximate root x0 of f (x) = 0 xn+1 = xn − Particular case to ﬁnd Secant Method xn+1 = xn − f (xn )/ Interpolation f (xn ) − f (xn−1 ) xn − xn−1 √ f (xn ) f (xn )
1 2

N use xn+1 =

xn +

N xn

.

∆fn = fn+1 − fn , δfn = fn+ 1 − fn− 1 2 2 1 fn = fn − fn−1 , µfn = f 1 + fn− 1 2 2 n+ 2 Gregory Newton Formula p! p(p − 1) 2 ∆ f0 + ... + ∆r f0 2! (p − r)!r! x − x0 h

fp = f0 + p∆f0 +

where p =

Lagrange’s Formula for n points
n

y=
i=1

yi i (x)

where
i (x)

=

Πn j=1,j=i (x − xj ) n Πj=1,j=i (xi − xj )

Numerical diﬀerentiation Derivatives at a tabular point 1 1 hf0 = µδf0 − µδ 3 f0 + µδ 5 f0 − ... 6 30 1 4 1 6 h2 f0 = δ 2 f0 − δ f0 + δ f0 − ... 12 90 1 2 1 3 1 1 hf0 = ∆f0 − ∆ f0 + ∆ f0 − ∆4 f0 + ∆5 f0 − ... 2 3 4 5 11 4 5 5 h2 f0 = ∆2 f0 − ∆3 f0 + ∆ f0 − ∆ f0 + ... 12 6 Numerical Integration
x0 +h x0

T rapeziumRule where fi = f (x0 + ih), E = − Composite Trapezium Rule
x0 +nh x0

f (x)dx

h (f0 + f1 ) + E 2

h3 f (a), x0 < a < x0 + h 12

f (x)dx

h2 h h4 {f0 + 2f1 + 2f2 + ...2fn−1 + fn } − (fn − f0 ) + (f − f0 )... 2 12 720 n where f0 = f (x0 ), fn = f (x0 + nh), etc
x0 +2h x0

Simpson sRule where

f (x)dx

h (f0 +4f1 +f2 )+E 3

h5 (4) E = − f (a) 90 Composite Simpson’s Rule (n even)

x0 < a < x0 + 2h.

x0 +nh x0

f (x)dx

h (f0 + 4f1 + 2f2 + 4f3 + 2f4 + ... + 2fn−2 + 4fn−1 + fn ) + E 3 E=− nh5 (4) f (a). 180 x0 < a < x0 + nh

where

Gauss order 1. (Midpoint)
1 −1

f (x)dx = 2f (0) + E 2 E = f (a). 3 −1<a<1

where Gauss order 2.

1 f (x)dx = f − √ + f −1 3
1

1 √ +E 3 −1<a<1

where Diﬀerential Equations

E=

1 v f (a). 135

To solve y = f (x, y) given initial condition y0 at x0 , xn = x0 + nh. Euler’s forward method yn+1 = yn + hf (xn , yn ) Euler’s backward method yn+1 = yn + hf (xn+1 , yn+1 ) Heun’s method (Runge Kutta order 2) h yn+1 = yn + (f (xn , yn ) + f (xn + h, yn + hf (xn , yn ))). 2 Runge Kutta order 4. h yn+1 = yn + (K1 + 2K2 + 2K3 + K4 ) 6 where K1 = f (xn , yn ) h hK1 K2 = f xn + , yn + 2 2 hK2 h K3 = f xn + , yn + 2 2 K4 = f (xn + h, yn + hK3 ) n = 0, 1, 2, ... n = 0, 1, 2, ...

Chebyshev Polynomials Tn (x) = cos n(cos−1 x) To (x) = 1 Un−1 (x) = Tm (Tn (x)) = Tmn (x). Tn+1 (x) = 2xTn (x) − Tn−1 (x) Un+1 (x) = 2xUn (x) − Un−1 (x) 1 Tn+1 (x) Tn−1 (x) Tn (x)dx = − + constant, 2 n+1 n−1 1 f (x) = a0 T0 (x) + a1 T1 (x)...aj Tj (x) + ... 2 2 π aj = f (cos θ) cos jθdθ π 0 n≥2 T1 (x) = x

Tn (x) sin [n(cos−1 x)] √ = n 1 − x2

where and

j≥0

f (x)dx = constant +A1 T1 (x) + A2 T2 (x) + ...Aj Tj (x) + ... j≥1

where Aj = (aj−1 − aj+1 )/2j

VECTOR FORMULAE

Scalar product a.b = ab cos θ = a1 b1 + a2 b2 + a3 b3 i j k

n Vector product a × b = ab sin θˆ = a1 a2 a3 b1 b2 b3 = (a2 b3 − a3 b2 )i + (a3 b1 − a1 b3 )j + (a1 b2 − a2 b1 )k Triple products a1 a2 a3 [a, b, c] = (a × b).c = a.(b × c) = b1 b2 b3 c1 c2 c3 a × (b × c) = (a.c)b − (a.b)c Vector Calculus ≡ ∂ ∂ ∂ , , ∂x ∂y ∂z

φ, div A ≡ .(

.A, curl A ≡
2

×A

div grad φ ≡ div curl A = 0
2

φ) ≡

φ (for scalars only)

curl grad φ ≡ 0

A = grad div A − curl curl A β+β α

(αβ) = α

div (αA) = α div A + A.( α) curl (αA) = α curl A − A × ( α) div (A × B) = B. curl A − A. curl B curl (A × B) = A div B − B div A + (B. )A − (A. )B

grad (A.B) = A × curl B + B × curl A + (A. Integral Theorems Divergence theorem
surface

)B + (B.

)A

A.dS =

volume

div A dV

Stokes’ theorem
surface

( curl A).dS =

contour

A.dr

Green’s theorems (ψ
2

volume

φ−φ

2

ψ)dV

=

surface

ψ

∂φ ∂ψ |dS| −φ ∂n ∂n

volume

ψ

2

φ + ( φ)( ψ) dV

=

surface

ψ

∂φ |dS| ∂n

where ˆ dS = n|dS| Green’s theorem in the plane (P dx + Qdy) = ∂Q ∂P − ∂x ∂y dxdy

MECHANICS Kinematics Motion constant acceleration v = u + f t, 1 1 s = ut + f t2 = (u + v)t 2 2 v2 = u2 + 2f .s General solution of
d2 x dt2

= −ω 2 x is x = a cos ωt + b sin ωt = R sin(ωt + φ) √ a2 + b2 and cos φ = a/R, sin φ = b/R.

where R =

˙ In polar coordinates the velocity is (r, rθ) = rer + rθeθ and the acceleration is ˙ ˙ ˙ ˙ ˙ ¨ ¨ ¨ r r − rθ2 , rθ + 2rθ = (¨ − rθ2 )er + (rθ + 2rθ)eθ . ˙˙ ˙˙ Centres of mass The following results are for uniform bodies: hemispherical shell, radius r hemisphere, radius r right circular cone, height h arc, radius r and angle 2θ sector, radius r and angle 2θ Moments of inertia i. The moment of inertia of a body of mass m about an axis = I + mh2 , where I is the moment of inertial about the parallel axis through the mass-centre and h is the distance between the axes. ii. If I1 and I2 are the moments of inertia of a lamina about two perpendicular axes through a point 0 in its plane, then its moment of inertia about the axis through 0 perpendicular to its plane is I1 + I2 .
1 r 2 3 r 8 3 h 4

from centre from centre from vertex from centre from centre

(r sin θ)/θ
2 ( 3 r sin θ)/θ

iii. The following moments of inertia are for uniform bodies about the axes stated: rod, length , through mid-point, perpendicular to rod hoop, radius r, through centre, perpendicular to hoop disc, radius r, through centre, perpendicular to disc sphere, radius r, diameter Work done W =
tB tA 1 m 2 12 2 1 mr2 2 2 mr2 5

mr

F.

dr dt. dt

ALGEBRAIC STRUCTURES

A group G is a set of elements {a, b, c, . . .} — with a binary operation ∗ such that i. a ∗ b is in G for all a, b in G ii. a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c in G iii. G contains an element e, called the identity element, such that e ∗ a = a = a ∗ e for all a in G iv. given any a in G, there exists in G an element a−1 , called the element inverse to a, such that a−1 ∗ a = e = a ∗ a−1 . A commutative (or Abelian) group is one for which a ∗ b = b ∗ a for all a, b, in G. A ﬁeld F is a set of elements {a, b, c, . . .} — with two binary operations + and . such

that

i. F is a commutative group with respect to + with identity 0 ii. the non-zero elements of F form a commutative group with respect to . with identity 1 iii. a.(b + c) = a.b + a.c for all a, b, c, in F .

operation + such that

A vector space V over a ﬁeld F is a set of elements {a, b, c, . . .} — with a binary

i. they form a commutative group under +; and, for all λ, µ in F and all a, b, in V , ii. λa is deﬁned and is in V iii. λ(a + b) = λa + λb

iv. (λ + µ)a = λa + µa v. (λ.µ)a = λ(µa) vi. if 1 is an element of F such that 1.λ = λ for all λ in F , then 1a = a.

such that, for all a, b, c in C

An equivalence relation R between the elements {a, b, c, . . .} — of a set C is a relation

i. aRa (R is reﬂextive) ii. aRb ⇒ bRa (R is symmetric) iii. (aRb and bRc) ⇒ aRc (R is transitive).

PROBABILITY DISTRIBUTIONS

Name

Parameters

Probability distribution / density function
n! pr (1 (n−r)!r!

Mean

Variance

Binomial Poisson Normal
Exponential

n, p λ µ, σ λ

P (X = r) =

r = 0, 1, 2, ..., n P (X = n) = f (x) =
1 √ σ 2π e−λ λn , n!

− p)n−r ,

np λ µ
1 λ

np(1 − p) λ σ2
1 λ2

n = 0, 1, 2, ...... exp{− 1 2 −∞ < x < ∞ λ>0
x−µ 2 }, σ

f (x) = λe−λx , x > 0,

THE F -DISTRIBUTION

The function tabulated on the next page is the inverse cumulative distribution function of Fisher’s F -distribution having ν1 and ν2 degrees of freedom. It is deﬁned by P = Γ Γ
1 ν 2 1 1 ν 2 1

+ 1 ν2 2 Γ
1 ν 2 2

1

ν12 ν22

ν1

1

ν2 0

x

u 2 ν1 −1 (ν2 + ν1 u)− 2 (ν1 +ν2 ) du.

1

1

If X has an F -distribution with ν1 and ν2 degrees of freedom then P r.(X ≤ x) = P . in each set being the value for P = 0.95.

The table lists values of x for P = 0.95, P = 0.975 and P = 0.99, the upper number

ν2 ν1 : 1 ν1 : 2 1

3

4

5

6

7

8

9

10

12

15

20

25

50 100

161 199 216 225 230 234 237 239 241 242 244 246 248 249 252 253 648 799 864 900 922 937 948 957 963 969 977 985 993 998 1008 1013 1 4052 5000 5403 5625 5764 5859 5928 5981 6022 6056 6106 6157 6209 6240 6303 6334 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.41 19.43 19.45 19.46 19.48 19.49 2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.41 39.43 39.45 39.46 39.48 39.49 2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.42 99.43 99.45 99.46 99.48 99.49 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.63 8.58 8.55 3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.34 14.25 14.17 14.12 14.01 13.96 3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 27.05 26.87 26.69 26.58 26.35 26.24 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.70 5.66 4 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.75 8.66 8.56 8.50 8.38 8.32 4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.37 14.20 14.02 13.91 13.69 13.58 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.52 4.44 4.41 5 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.52 6.43 6.33 6.27 6.14 6.08 5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.89 9.72 9.55 9.45 9.24 9.13 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.83 3.75 3.71 6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.37 5.27 5.17 5.11 4.98 4.92 6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.30 7.09 6.99 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.40 3.32 3.27 7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.67 4.57 4.47 4.40 4.28 4.21 7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 6.06 5.86 5.75 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.11 3.02 2.97 8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.20 4.10 4.00 3.94 3.81 3.74 8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.26 5.07 4.96 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.89 2.80 2.76 9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.87 3.77 3.67 3.60 3.47 3.40 9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.71 4.52 4.41 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.73 2.64 2.59 10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.62 3.52 3.42 3.35 3.22 3.15 10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.31 4.12 4.01 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.50 2.40 2.35 12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.28 3.18 3.07 3.01 2.87 2.80 12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.76 3.57 3.47 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.28 2.18 2.12 15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 2.96 2.86 2.76 2.69 2.55 2.47 15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.28 3.08 2.98 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.07 1.97 1.91 20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.68 2.57 2.46 2.40 2.25 2.17 20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.84 2.64 2.54 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.84 1.78 25 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68 2.61 2.51 2.41 2.30 2.23 2.08 2.00 25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.60 2.40 2.29 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.95 1.87 1.78 1.73 1.60 1.52 50 5.34 3.97 3.39 3.05 2.83 2.67 2.55 2.46 2.38 2.32 2.22 2.11 1.99 1.92 1.75 1.66 50 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 2.70 2.56 2.42 2.27 2.17 1.95 1.82 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.85 1.77 1.68 1.62 1.48 1.39 100 5.18 3.83 3.25 2.92 2.70 2.54 2.42 2.32 2.24 2.18 2.08 1.97 1.85 1.77 1.59 1.48 100 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50 2.37 2.22 2.07 1.97 1.74 1.60

NORMAL DISTRIBUTION The function tabulated is the cumulative distribution function of a standard N (0, 1) random variable, namely
x 1 2 1 Φ(x) = √ e− 2 t dt. 2π −∞ If X is distributed N (0, 1) then Φ(x) = P r.(X ≤ x).

x

0.00

0.01

0.02

0.03

0.04

0.05

0.06 0.5239 0.5636 0.6026 0.6406 0.6772 0.7123 0.7454 0.7764 0.8051 0.8315 0.8554 0.8770 0.8962 0.9131 0.9279 0.9406 0.9515 0.9608 0.9686 0.9750 0.9803 0.9846 0.9881 0.9909 0.9931 0.9948 0.9961 0.9971 0.9979 0.9985 0.9989 0.9992 0.9994 0.9996 0.9997 0.9998 0.9999 0.9999 0.9999 1.0000

0.07 0.5279 0.5675 0.6064 0.6443 0.6808 0.7157 0.7486 0.7794 0.8078 0.8340 0.8577 0.8790 0.8980 0.9147 0.9292 0.9418 0.9525 0.9616 0.9693 0.9756 0.9808 0.9850 0.9884 0.9911 0.9932 0.9949 0.9962 0.9972 0.9979 0.9985 0.9989 0.9992 0.9995 0.9996 0.9997 0.9998 0.9999 0.9999 0.9999 1.0000

0.08 0.5319 0.5714 0.6103 0.6480 0.6844 0.7190 0.7517 0.7823 0.8106 0.8365 0.8599 0.8810 0.8997 0.9162 0.9306 0.9429 0.9535 0.9625 0.9699 0.9761 0.9812 0.9854 0.9887 0.9913 0.9934 0.9951 0.9963 0.9973 0.9980 0.9986 0.9990 0.9993 0.9995 0.9996 0.9997 0.9998 0.9999 0.9999 0.9999 1.0000

0.09 0.5359 0.5753 0.6141 0.6517 0.6879 0.7224 0.7549 0.7852 0.8133 0.8389 0.8621 0.8830 0.9015 0.9177 0.9319 0.9441 0.9545 0.9633 0.9706 0.9767 0.9817 0.9857 0.9890 0.9916 0.9936 0.9952 0.9964 0.9974 0.9981 0.9986 0.9990 0.9993 0.9995 0.9997 0.9998 0.9998 0.9999 0.9999 0.9999 1.0000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

0.5000 0.5398 0.5793 0.6179 0.6554 0.6915 0.7257 0.7580 0.7881 0.8159 0.8413 0.8643 0.8849 0.9032 0.9192 0.9332 0.9452 0.9554 0.9641 0.9713 0.9773 0.9821 0.9861 0.9893 0.9918 0.9938 0.9953 0.9965 0.9974 0.9981 0.9987 0.9990 0.9993 0.9995 0.9997 0.9998 0.9998 0.9999 0.9999 1.0000

0.5040 0.5438 0.5832 0.6217 0.6591 0.6950 0.7291 0.7611 0.7910 0.8186 0.8438 0.8665 0.8869 0.9049 0.9207 0.9345 0.9463 0.9564 0.9649 0.9719 0.9778 0.9826 0.9864 0.9896 0.9920 0.9940 0.9955 0.9966 0.9975 0.9982 0.9987 0.9991 0.9993 0.9995 0.9997 0.9998 0.9998 0.9999 0.9999 1.0000

0.5080 0.5478 0.5871 0.6255 0.6628 0.6985 0.7324 0.7642 0.7939 0.8212 0.8461 0.8686 0.8888 0.9066 0.9222 0.9357 0.9474 0.9573 0.9656 0.9726 0.9783 0.9830 0.9868 0.9898 0.9922 0.9941 0.9956 0.9967 0.9976 0.9982 0.9987 0.9991 0.9994 0.9995 0.9997 0.9998 0.9999 0.9999 0.9999 1.0000

0.5120 0.5517 0.5910 0.6293 0.6664 0.7019 0.7357 0.7673 0.7967 0.8238 0.8485 0.8708 0.8907 0.9082 0.9236 0.9370 0.9484 0.9582 0.9664 0.9732 0.9788 0.9834 0.9871 0.9901 0.9925 0.9943 0.9957 0.9968 0.9977 0.9983 0.9988 0.9991 0.9994 0.9996 0.9997 0.9998 0.9999 0.9999 0.9999 1.0000

0.5160 0.5557 0.5948 0.6331 0.6700 0.7054 0.7389 0.7704 0.7995 0.8264 0.8508 0.8729 0.8925 0.9099 0.9251 0.9382 0.9495 0.9591 0.9671 0.9738 0.9793 0.9838 0.9875 0.9904 0.9927 0.9945 0.9959 0.9969 0.9977 0.9984 0.9988 0.9992 0.9994 0.9996 0.9997 0.9998 0.9999 0.9999 0.9999 1.0000

0.5199 0.5596 0.5987 0.6368 0.6736 0.7088 0.7422 0.7734 0.8023 0.8289 0.8531 0.8749 0.8944 0.9115 0.9265 0.9394 0.9505 0.9599 0.9678 0.9744 0.9798 0.9842 0.9878 0.9906 0.9929 0.9946 0.9960 0.9970 0.9978 0.9984 0.9989 0.9992 0.9994 0.9996 0.9997 0.9998 0.9999 0.9999 0.9999 1.0000

THE t-DISTRIBUTION

The function tabulated is the inverse cumulative distribution function of Student’s t-distribution having ν degrees of freedom. It is deﬁned by 1 Γ( 1 ν + 1 ) 2 2 P =√ νπ Γ( 1 ν) 2 ν
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 24 30 40 50 60 80 100 200 ∞
x −∞

(1 + t2 /ν)− 2 (ν+1) dt.

1

If X has Student’s t-distribution with ν degrees of freedom then P r.(X ≤ x) = P . P=0.90 P=0.95 0.975
3.078 1.886 1.638 1.533 1.476 1.440 1.415 1.397 1.383 1.372 1.363 1.356 1.350 1.345 1.341 1.337 1.333 1.330 1.328 1.325 1.318 1.310 1.303 1.299 1.296 1.292 1.290 1.286 1.282 6.314 2.920 2.353 2.132 2.015 1.943 1.895 1.860 1.833 1.812 1.796 1.782 1.771 1.761 1.753 1.746 1.740 1.734 1.729 1.725 1.711 1.697 1.684 1.676 1.671 1.664 1.660 1.653 1.645

0.990

0.995

0.999

0.9995

12.706 4.303 3.182 2.776 2.571 2.447 2.365 2.306 2.262 2.228 2.201 2.179 2.160 2.145 2.131 2.120 2.110 2.101 2.093 2.086 2.064 2.042 2.021 2.009 2.000 1.990 1.984 1.972 1.960

31.821 6.965 4.541 3.747 3.365 3.143 2.998 2.896 2.821 2.764 2.718 2.681 2.650 2.624 2.602 2.583 2.567 2.552 2.539 2.528 2.492 2.457 2.423 2.403 2.390 2.374 2.364 2.345 2.326

63.657 9.925 5.841 4.604 4.032 3.707 3.499 3.355 3.250 3.169 3.106 3.055 3.012 2.977 2.947 2.921 2.898 2.878 2.861 2.845 2.797 2.750 2.704 2.678 2.660 2.639 2.626 2.601 2.576

318.302 22.327 10.215 7.173 5.894 5.208 4.785 4.501 4.297 4.144 4.025 3.930 3.852 3.787 3.733 3.686 3.646 3.611 3.579 3.552 3.467 3.385 3.307 3.261 3.232 3.195 3.174 3.131 3.090

636.619 31.598 12.941 8.610 6.859 5.959 5.405 5.041 4.781 4.587 4.437 4.318 4.221 4.140 4.073 4.015 3.965 3.922 3.883 3.850 3.745 3.646 3.551 3.496 3.460 3.416 3.391 3.340 3.291

THE χ2 (CHI-SQUARED) DISTRIBUTION The function tabulated is the inverse cumulative distribution function of a Chisquared distribution having ν degrees of freedom. It is deﬁned by x 1 1 1 P = u 2 ν−1 e− 2 u du. ν/2 Γ 1 ν 0 2 2 If X has an χ2 distribution with ν degrees of freedom then P r.(X ≤ x) = P . For √ √ ν > 100, 2X is approximately normally distributed with mean 2ν − 1 and unit
ν 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 P = 0.005 0.04 393 0.010003 0.07172 0.2070 0.4117 0.6757 0.9893 1.344 1.735 2.156 2.603 3.074 3.565 4.075 4.601 5.142 5.697 6.265 6.844 7.434 8.034 8.643 9.260 9.886 10.520 11.160 11.808 12.461 13.121 13.787 20.707 27.991 35.534 43.275 51.172 59.196 67.328 P = 0.01 0.03 157 0.02010 0.1148 0.2971 0.5543 0.8721 1.239 1.646 2.088 2.558 3.053 3.571 4.107 4.660 5.229 5.812 6.408 7.015 7.633 8.260 8.897 9.542 10.196 10.856 11.524 12.198 12.879 13.565 14.256 14.953 22.164 29.707 37.485 45.442 53.540 61.754 70.065 0.025 0.03 982 0.05064 0.2158 0.4844 0.8312 1.237 1.690 2.180 2.700 3.247 3.816 4.404 5.009 5.629 6.262 6.908 7.564 8.231 8.907 9.591 10.283 10.982 11.689 12.401 13.120 13.844 14.573 15.308 16.047 16.791 24.433 32.357 40.482 48.758 57.153 65.647 74.222 0.05 0.00393 0.1026 0.3518 0.7107 1.145 1.635 2.167 2.733 3.325 3.940 4.575 5.226 5.892 6.571 7.261 7.962 8.672 9.390 10.117 10.851 11.591 12.338 13.091 13.848 14.611 15.379 16.151 16.928 17.708 18.493 26.509 34.764 43.188 51.739 60.391 69.126 77.929 0.950 3.841 5.991 7.815 9.488 11.070 12.592 14.067 15.507 16.919 18.307 19.675 21.026 22.362 23.685 24.996 26.296 27.587 28.869 30.144 31.410 32.671 33.924 35.172 36.415 37.652 38.885 40.113 41.337 42.557 43.773 55.758 67.505 79.082 90.531 101.879 113.145 124.342 0.975 5.024 7.378 9.348 11.143 12.832 14.449 16.013 17.535 19.023 20.483 21.920 23.337 24.736 26.119 27.488 28.845 30.191 31.526 32.852 34.170 35.479 36.781 38.076 39.364 40.646 41.923 43.195 44.461 45.722 46.979 59.342 71.420 83.298 95.023 106.629 118.136 129.561 0.990 6.635 9.210 11.345 13.277 15.086 16.812 18.475 20.090 21.666 23.209 24.725 26.217 27.688 29.141 30.578 32.000 33.409 34.805 36.191 37.566 38.932 40.289 41.638 42.980 44.314 45.642 46.963 48.278 49.588 50.892 63.691 76.154 88.379 100.425 112.329 124.116 135.807 0.995 7.879 10.597 12.838 14.860 16.750 18.548 20.278 21.955 23.589 25.188 26.757 28.300 29.819 31.319 32.801 34.267 35.718 37.156 38.582 39.997 41.401 42.796 44.181 45.559 46.928 48.290 49.645 50.993 52.336 53.672 66.766 79.490 91.952 104.215 116.321 128.299 140.169 0.999 10.828 13.816 16.266 18.467 20.515 22.458 24.322 26.124 27.877 29.588 31.264 32.909 34.528 36.123 37.697 39.252 40.790 42.312 43.820 45.315 46.797 48.268 49.728 51.179 52.620 54.052 55.476 56.892 58.301 59.703 73.402 86.661 99.607 112.317 124.839 137.208 149.449

variance.

PHYSICAL AND ASTRONOMICAL CONSTANTS c e mn mp me h ¯ h k G σ c1 c2 εo µo NA R a0 µB α M R L M⊕ R⊕ 1 light year 1 AU 1 pc 1 year Astronomical Unit Parsec Speed of light in vacuo Elementary charge Neutron rest mass Proton rest mass Electron rest mass Planck’s constant Dirac’s constant (= h/2π) Boltzmann’s constant Gravitational constant Stefan-Boltzmann constant First Radiation Constant (= 2πhc2 ) Permittivity of free space Avogadro constant Gas constant Bohr radius Bohr magneton Fine structure constant (= 1/137.0) Solar Mass Solar radius Solar luminosity Earth Mass Mean earth radius 2.998 × 108 m s−1 1.675 × 10−27 kg 1.602 × 10−19 C

9.110 × 10−31 kg

1.673 × 10−27 kg

1.055 × 10−34 J s

6.626 × 10−34 J s

Second Radiation Constant (= hc/k) 1.439 × 10−2 m K Permeability of free scpae 4π × 10−7 H m−1

3.742 × 10−16 J m2 s−1

5.670 × 10−8 J m−2 K−4 s−1

6.673 × 10−11 N m2 kg−2

1.381 × 10−23 J K−1

8.854 × 10−12 C2 N−1 m−2 6.022 ×1023 mol−1 5.292 ×10−11 m

8.314 J K−1 mol−1

7.297 ×10−3

9.274 ×10−24 J T−1 1.989 ×1030 kg 6.96 ×108 m

3.827 ×1026 J s−1 6.371 ×106 m 5.976 ×1024 kg 9.461 ×1015 m

1.496 ×1011 m 3.086 ×1016 m 3.156 ×107 s

ENERGY CONVERSION : 1 joule (J) = 6.2415 × 1018 electronvolts (eV)

```
To top