20320140503017-2

Document Sample
20320140503017-2 Powered By Docstoc
					 International Journal of Civil              and             (IJCIET), ISSN
INTERNATIONALEngineeringMarchTechnologyCIVILIAEME0976 – 6308 (Print),
 ISSN 0976 – 6316(Online) Volume JOURNAL OF 160-169 © ENGINEERING
                                 5, Issue 3,     (2014), pp.
                      AND TECHNOLOGY (IJCIET)
ISSN 0976 – 6308 (Print)
ISSN 0976 – 6316(Online)                                                        IJCIET
Volume 5, Issue 3, March (2014), pp. 160-169
© IAEME: www.iaeme.com/ijciet.asp
Journal Impact Factor (2014): 7.9290 (Calculated by GISI)
                                                                                ©IAEME
www.jifactor.com




      REMOVAL OF REACTIVE RED 3B FROM AQUEOUS SOLUTION BY
                  USING TREATED ORANGE PEEL

                                           Afrah A. Hassan
                                            Lecturer,
              Environmental Department, College of Engineering, University of Babylon




 ABSTRACT

         In this study modified agricultural residus, orange peel was examined as sorbent to remove
 reactive red 3BF from aqueous solution. To modify its sorptive characteristics, orange peel was
 treated with HCL. This study on adsorption of reactive red 3B was conducted by using batch
 experiment by varying various parameters such as contact time, PH and amount of adsorbent. The
 percentage of adsorption of RR3B on top was found to be 93.6 at initial concentration of (50PPM).
         Treated orange peel was found to be very effective and reached equilibrium in the 2.5hr. The
 percentage of adsorption decreased with increase in the PH and showed the maximum removal of
 reactive red in the range (4-6) pH , Also it was observed that the removal efficiency of reactive dye
 increase with increasing adsorbent dose and contact time. The freundlich and Langmuir isotherm was
 employed and their isotherm constant wascalculated. The experimental data fitted well with the
 Langmuir and freundlich adsorption isotherm. The result indicated that the treated orange peel could
 be alternative material of more costly adsorbent used for dye removal.

 Keywords: Orange Peel, Reactive Red, Isotherm Model.

 1- INTRODUCTION

          Dyes are chemicals, which on binding with material will give colour to them. Dyes are ionic
 aromatic organic compound with structure including aryl rings, which have delocalized electron
 system. The colour of dye provided by the presence of chromophore groupe. A chromophore is a
 radical configuration consisting of conjugated double bond containing delocalized electrons. The
 Chromogen, which is aromatic structure normally containing benzene, naphathalen or anthracene
 ring, is a part of chromogen –chromophore structure along with an auxochrom. The presence of the


                                                  160
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print),
ISSN 0976 – 6316(Online) Volume 5, Issue 3, March (2014), pp. 160-169 © IAEME

ionizing groups known as auxochrom result in a much stronger alteration of maximum absorption of
compound and provide bonding affinity (Velmurugan .P ,2011).
        Many dyes and their break dawn products may be toxic for living organism therefore
decolourization of dyes is an important aspect of wastewater treatment before discharge.
conventional method such as a chemical precipitation, chemical oxidation or reduction, filtration,
electrochemical treatment, ion exchange, adsorption, membrane processing and electrolytic methods,
have been traditionally employed for colour and heavy metal removal from industries waste water,
(tobin and roux, 1998).
        However the shortcoming of most of this methods are of high operational and maintenance
costs, generation of a toxic sludge and complicated procedure in the treatment involved in the
treatment. Comparatively, adsorption process is considered better in the water treatment because of
the convenience, ease operation and simplicity of design, (faust and ally, 1987).
        A number of non- conventional low cost adsorbent used for dyes removal include fruit waste
of the prosopisnjuliflora, wood, waste orange peel, banana pith and bagasse pith etc. Utilisation of
agricultural waste as low cost adsorbent, (M C.Somasekhara Reddy, 2006) the present study is to
explore the feasibility of orange peel as low cost natural adsorbent with respect to the various
parameter such as colour adsorbent capacity of material with initial concentration at different doses
and pH. The adsorption isotherm are plotted to study the removal capacity of material, the study
shows that the material has good potential for the removal of colour from aqueous solution.
        Orange peel principally consists of cellulose, pectin, hemicelluloses, lignin, chlorophyll
pigments and other low molecular weight hydrocarbons (Liang, s.et.al.2010). These components
contain various functional groups, such as carboxyl and hydroxyl groups which make the orange peel
to be a potential adsorbent material for removing metal ions from aqueous solution (Arami,.
A.etal.2005).
        R.S.Mane and V.N. Bhusari (2012) studies the adsorption process by using the banana and
the orange peel to remove the colour from the waste effluent of textile industry .The material was
obtained and treated for the removal colour at different doses and evaluated for removal of the colour
at different PH.
        GurusamyAnnaduriaa et al. (2002) use the low cost banana and orange peels were prepared
as a adsorbent for the adsorption of dyes from aqueous solution.
        A. G. El-Said a and A.M. Gamalb (2012) use the low cost and eco- friendly adsorbent has
been investigated as ideal alternatives to the current expensive methods for removing dyes from
waste water. Orange peel (OP) was used as a low cost natural waste adsorbent for removal of textile
effluent.

RESEARCH OBJECTIVE

The main objectives of this study can be summarized in the following option:

 1- Investigating the removal of the (Reactive Red 3B) from the aqueous solution by using orange
    peel as adsorbent material bed with different operational conditions.
 2- Modify orange peel by pretreatment of row orange peel with HCL acid to enhance adsorption
    capacity and to investigate the adsorption of RR3BF dye on it. The study including the
    characteristics of adsorbent and determination the factors affecting the sorption such as contact
    time, PH and initial dose.
 3- Calculation of the adsorption capacity and intensity using langmuir and freundlich isotherm
    models for the adsorbent.



                                                 161
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print),
ISSN 0976 – 6316(Online) Volume 5, Issue 3, March (2014), pp. 160-169 © IAEME

2- MATERIALS AND METHODS

2-1- Adsorbate
The chemical structure of the dye is shown in figure (2-1).


                                                          
Reactive Red 3 B
                                             E

                           K                          E


                   E                         E
                                                                             ^K , , K^K E
           E
                                                          E


               E K                               ^K
                ^                                E
                           Fig. (2-1): Chemical structure of RR 3B dye

        Table (2-1) shows some of specification of reactive red dye. Some suppliers consider these
specification of their product as know how due to commercial reasons.

        Table: (2-1) physiochemical properties of reactive red 3B (Abood W. M., (2012)
                        Item                                 Reactive Red R
       Trade name                               Red 3B
       origin                                   China
       phase                                    Solid / Powder Package 25 kg
       Wave length (nm)                         540
       Solubility g/l                           100
       pH                                       6.2 - 6.5
       Molecular weight g/mol                   881.5

        Dye solution preparation an accurately weighted quantity of the dye dissolved in distilled
water to prepared stock solution (50 PPM).
        Solution used in the experiment for the desired concentration obtained by successive
dilutions. Dye concentration was determined by using absorbance values measured after the
treatment, at (540 nm) with double beam u v visible spectrophotometer (model: 6800 UV / VIS.
Spectrophotometer JE.NWAY). Experiments were carried out at Initial ph value is (6.4) and was
controlled by addition of sodium hydroxide Or Hydrochloric acid with (0.1 N).

2-2 Adsorbent
      Orange peel was selected and washed with water several times to remove ash and other
contamination and dried at( 90° c)for (24hr) the product was then crushed and sieved through screen

                                                 162
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print),
ISSN 0976 – 6316(Online) Volume 5, Issue 3, March (2014), pp. 160-169 © IAEME

to an average size less than 600mm and was designated as op. After drying the op treatment with
(1N) for 5 hrs of HCL and they were washed with distilled water to remove excess acid and dried
and used for the study.
        Orange peel principally consists of cellulose, pectin, hemicelluloses, lignin, chlorophyll
pigments and other low molecular weight hydrocarbons (Liang, s.et.al.2010). These components
contain various functional groups, such as carboxyl and hydroxyl groups which make the orange peel
to be a potential adsorbent material for removing metal ions from aqueous solution (Arami.
A.et.al.2005)
        Depending on this phenomenon, this work was aimed on studying the potential adsorption of
orange peel as natural waste material that could provide a successful eco friendly low cost solution
for removing reactive red 3B from aqueous solution. The effective parameters of pH, and contact
time and initial dose of adsorbent were investigate .

2-3 Adsorption studies
       Batch adsorption experiments were carried out by agitation at speed of (250 rpm) accurately
weighted amount of adsorbent (orange peel) with (100 ml) aqueous solution dye concentration in
(250 ml). Conical flasks placed on a shaker set. After the shaking samples were filtered through watt
man 42 filters papers and analyzed.

2-4 Determination of MB
       The concentrations of RR3B in aqueous solutions were determined by measuring the
absorbance of the solution at 540 nm using a uv-visible spectrophotometer. Aqueous solutions of the
dye within the concentration range (5-30) mg/l were used for calibration. Plots of absorbance against
concentration were linear as shown in figure (2-2).

                        35

                        30

                        25           Z

                        20

                        15

                        10
                    




                         5

                         0
                             0           0.2          0.4         0.6         0.8




                                   Fig.(2-2): Calibration curve

2-5 Adsorption parameters studied

●Adsorbent dosage (0.5,1,1.5,2,2.5,3)gm
●Contact time (0.5,1,1.5,2,2.5,3) hour
●solution PH (4,6,8,10)

                                                163
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print),
ISSN 0976 – 6316(Online) Volume 5, Issue 3, March (2014), pp. 160-169 © IAEME

3- EXPERIMENTAL PROCEDURES

3-1 Effect of adsorbent concentration on dye adsorption:
        Different amounts of orange peel ( 0.5 ,1 , 1.5 , 2 , 2.5 , 3 )g were mixed with reactive red
solution at concentration ( 50 mg/l) and pH ( 6.4 ) .The mixture was agitated at 28°c for two and half
hour the dye concentration was determined by measuring the absorbance of the solution at 540 nm.

3-2 Effect of contact time on dye adsorption:
        To study the effect of contact time on efficient removal of colour form aqueous solution , the
study was carried out the effect of contact time was investigation for ( 0.5 , 1 , 1.5 , 2 , 2.5 , 3 ) hour
at PH ( 6.4 ).

3-3 Effect of PH on dye adsorption
        Adsorption test was carried out by mixing 3 gm of orange peel 600 Mm particle size with
reactive red solution that adjusted by using a few drops from ( H CL) and (Na OH) to ( 4 , 6 , 8 and
10). The mixtures were agitated at 28°c for two and half hour. The dye concentration was determined
by measuring the absorbance of the solution at 540 nm.

4- EQUILIBRIUM ISOTHERM PROCEDURE

       Adsorption experiments were carried out in batch conditions. for isotherm Studies ,
accurately weighted amount (0.5-3) gm at adsorbent were continuously stirred at 250 rpm with 100
ml of 50 mg/l reactive red3bf aqueous solution. The mixture was agitated. For predetermination
period of time at room temperature at the end of the equilibrium period the residual dye
concentration was determined by using uv/ visible Spectrophotometer.
The amount of reactive red adsorbed at equilibrium, q e (mg/g),

q e=[(c0 - c e) *v] / m       ……………… (1)

C 0 and c e (mg/l): are the initial and equilibrium concentration of dye Solution respectively.
M (g): is the amount of adsorbent used
V (L): is the volume of solution.
The removal efficiency can be calculated as follows:

R (%) = [(C0-Ce) / c0]* 100       ………………… (2)

5- RESULTS AND DISCUSSIONS

5.1 Introduction
        The behavior of treated orange peel as an adsorbent was studied by evaluating the
equilibrium isotherm and removal efficiency of reactive red (3B) in batch. Equilibrium data is fitted
to Langmuir and Freundlich models. The applicability of the isotherm equation was compared by
calculating values (R2). The effect of various initial dose concentration, pH, and contact time also
was studied.

5.2 Effect of contact time
        Figure (5-1) depicts the amount of RR3B removed by treated orange peel at 28°c and PH
(6.4) as a function of contact time. The figure shown dye adsorption at initial stage is quit rabid but it
gradually slows down unit (it reaches the equilibrium).
                                                   164
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print),
ISSN 0976 – 6316(Online) Volume 5, Issue 3, March (2014), pp. 160-169 © IAEME

         This is due to the fact that a large number of vacant surface sites are available for adsorption
during the initial stage, and after a lapse of time the remaining vacant surface sites are difficult to be
occupied due to repulsive forces between the solute molecules on the solid and bulk phases (Ahmad
et al, 2009). The equilibrium was attained after shaking for (2.5) hr.


                   W




                             0             1              2           3             4

                                                    d
   Fig. (5-1): Effect of initial contact time of RR3B on the equilibrium adsorption capacity of
                                     treatment orange peel (TOP)

5-3 Effect of initial solution PH
        The pH of the solution affects the surface charge of the adsorbents as well as the degree of
ionization of different pollutants. The hydrogen ion and hydroxyl ions are adsorbed quite strongly
and therefore the adsorption of other ions is affected by the pH of the solution.
        The effect of pH on the adsorption of RR3B on orange peel is presented in figure (5-2) .It
shows that the percentage removal of RR3B was maximum at the (pH =4) and decreased with further
increase in pH.
                    W




                                 0              5                10               15
                                                          ,
   Fig. (5-2): Effect of initial PH solution of RR3B on the equilibrium adsorption capacity of
                                    treatment orange peel (TOP)



                                                    165
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print),
ISSN 0976 – 6316(Online) Volume 5, Issue 3, March (2014), pp. 160-169 © IAEME

5-4 Effect of adsorbent dosage
       Variation of adsorbent dose showed that although increasing of TOP dose in aqueous solution
can result to increased pollutant removal, but this deviation of TOP leads to decreasing of adsorbed
dye per unit of adsorbent (qe), this phenomenon may relate to the use of surface area as unsaturated
form. The q e (mg/g) decreasing from 7.23 mg/g to 1.5 mg/g (figure 5-3).
       This result indicates that although mass elevation of adsorbent can provide large or available
surface area, but the adsorption pattern of the pollutant as unsaturated. Form leads to unfavorable
using of adsorbent.
       This phenomenon is the most important point for the design of economical and large scale
adsorption devices (Ehrampoush et al, 2011).




                          0             1              2           3            4



           Fig.(5-3): Effect of dosage of treatment orange peel (TOP) in adsorption process

5-5 Adsorption Isotherm
        Application of Langmuir and Freundlich models to the adsorption isotherm, showed that the
Freundlich and Langmuir isotherm models provided excellent satisfactory with the highest (R2) value
(0.995 and 0.978). The estimated values for the parameters of these and freundlich are shown in
figures (5-4) and (5-5) respectively

                        Table (5-1): characteristics of adsorption isotherm
                      Freundlich                                   Langmuir


     K(mg/g) (l/mg)^(1/n)              o.5          0.015                           b (l/mg)

     1/n                               1.0          33.3                      q max. (mg/g)

      0.995                           R^2           0.978                            R^2




                                                 166
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print),
ISSN 0976 – 6316(Online) Volume 5, Issue 3, March (2014), pp. 160-169 © IAEME




                                         Z




                   >


                           0                  0.5                   1          1.5
                                                      >
              Fig. (5-4): Adsorption isotherm of Freundlich model for RR3B onto
                                  treatment orange peel (TOP)




                                    Z




                               0        0.1               0.2           0.3    0.4


              Fig. (5-5): Adsorption isotherm of Langmuir model for RR3B onto
                                 treatment orange peel (TOP)

       The Freundlich and Langmuir isotherms are compared to each other for treatment orange peel
(TOP) experiment and are given in figure (5-6), from figure can be noticed that the adsorption
isotherm for RR3BF agreed with both Langmuir and Freundlich models.




                       
                       >
                       &



                                          0                     5         10         15
                                                                

              Fig.(5-6): Compared between Freundlich and Langmuir Isotherm

                                                    167
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print),
ISSN 0976 – 6316(Online) Volume 5, Issue 3, March (2014), pp. 160-169 © IAEME

REFERENCES

 1-    Abood W. M., (2012), "Removal of three textile reactive dyes (blue, red and yellow) by
       activated carbon and low cost adsorbents", phD. Thesis, university of Baghdad, College of
       Engineering.
 2-    A. G. EL-Said a, A. M. Gamalb., (2012), “Potential Application of Orange Peel As An Eco-
       Friendly adsorbent For Textile Dyeing Effluents”, Journal of Textile and apparel
       Techonology and Management, Vol., 7, Issue 3.
 3-    Arami M, Limaee NY., Mahmaadi NM., Tabrizi NS.,(2005), “Removal of Dyes From
       Colored Textile Waste Water By Orange Peel Adsorbent :Equlibrium And Kinetic studies ”,
       J. Colloid Interce Sci., 288, 371.
 4-    Ahmad A., Rafatullah M., Sulaiman O., Ibrahim M.H, HashimR., (2009), “Scavenging
       behavior of meranti sawdust in the removal of methylene blue from aqueous solution”
       Journal of hazardous material 170, 357-365.
 5-    Dembirn A., (2008), “Heavy Metal Adsorption For Color Out Agro – Based Waste Material”,
       Journal of Hazardous Material 157., Pp. 720 -229.
 6-    Diersing, Nancy (2009). "Water Quality: Frequently Asked Questions. "Florida Keys
       National Marine Sanctuary, Key West, FL.
 7-    Ehrampoush M.H., GhanizadehGh., Ghaneian M.T., (2011), ”Equilibrium and kinetics
       study of reactive red 123 dye removal from equeous solution by adsorption on eggshell”,
       j.Envion. Health .Sci .Eng ., Vol8, No. 2, pp. 101 – 108.
 8-    faust , S.D & ally, O.M ,1987 “process for water treatment, butterwarth.
 9-    FerdaGonen and D. SelenSerian, (2012), “Adsorption Study on Orange peel : Removal of
       Ni(II) Ions from aqueous Solution”, African Journal Of Biotechnology, Vol.11(5). Pp. 1250-
       1258.
 10-   Gurusamy Annaduriaa, Ruey –Shine Juangb , Duu-Jong Lee a., (2002), “Use Of Cellulose –
       Based Wastes For Adsorption Of Dyes From Aqueous Solutions ”,
 11-   Johnson, D.L., S.H. Ambrose, T.J. Bassett, M.L. Bowen, D.E. Crummey, J.S. Isaacson, D.N.
       Johnson, P. Lamb, M. Saul, and A.E. Winter-Nelson (1997). "Meanings of environmental
       terms. "Journal of Environmental Quality. 26: 581-589 .
 12-   PavanF.A., Mazzocato AC, Guchikem Y. (2008), “Remaval of Mathylene Blue Dye From
       Aqueous Solution By Adsorption using Yellow Passion Fruit Peel as Adsorbent”,
       BioresourTechnal, 99, 3162.
 13-   Reddy.S.S., Kataiach, B.Reddy, N. S. P., VelueM.m, (2006), “The Removal of the Compsity
       Reactive Dye From Dyeing Unit Effluent Using Swage Sludge D from Activated Carbon”,
       Turkish J. Eng. Env. Science 30, Pp. 370.
 14-   R.S. Mine and V.N. Bhusari ,(2012), “Removal Of Colour (Dyes ) From Textile Effluent By
       Adsorption Using Orange Peel And Banana Peel ” , International Journal Of Engineering
       Research ana Application (IJERA), Vol. 3 , Issue 3,Pp. 1997-2004.
 15-   Saad , S. A ;Daud , S. ; Kasim, F.H. &Saleh , M.N. , (2007), “ Dye Removal From Aqueous
       Solution By Using Chemical Treated Empty Fruit Bunch at Various PH ” , International
       Conference Of Sustainable Material ICOSM.
 16-   Sanchez Martin,J.,; Gonzatez Velasco,M.,; Baltran Heredia,J.; GrageraCarvajae,J. &
       Salguero Fernandez,J., (2009), “Novel Tannin Based Adsorbent in Removing Cationic Dye
       (Mathylene Blue) From Aqueous Solution , Kinetics and Equilibrium Studies ” , Journal of
       Hazardous Material, 174 (1-3), pp(9-16).
 17-   Schwarzenbach, R.P, Gschwend M.P. Imbaden, D.M., (2003), “Environmental Organic
       Chemistry”, Johan Wiley & Sons, Inc. Publication, Canada.


                                              168
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print),
ISSN 0976 – 6316(Online) Volume 5, Issue 3, March (2014), pp. 160-169 © IAEME

 18- Slejko, F.L., (1985), “Adsorption Technology”, Marel Dekker, New York.
 19- Suzuki, M., (1990), “Adsorption Engineering” Elesevier, Amsterdam.
 20- Tobin, J.M & Roux, J.C, (1998)” Mucrobiosorbent for chromium removal for tanning
     effiuent , water Res 32 (5) 1407-1416.
 21- Weber W.J., (1972), “Physico- Chemical Processes For Water Quality Control”, Wiley
     International Science, New York.
 22- Velmurugan. P, Rathinakumar.V, Dhinakaran.G, (2011)," Dye removal from aqueous
     solution using low cost adsorbent", International journal of environmental sciences volume 1,
     No 7, India.
 23- Hameed Hussein Alwan, “Adsorption Mechanism for Corrosion Inhibition of Carbon Steel
     on HCL Solution by Ampicillin Sodium Salt”, International Journal of Advanced Research in
     Engineering & Technology (IJARET), Volume 4, Issue 7, 2013, pp. 236 - 246, ISSN Print:
     0976-6480, ISSN Online: 0976-6499.
 24- P.Muthamilselvi, E.Poonguzhali and Dr. R.Karthikeyan, “Removal of Phenol from Aqueous
     Solutions by Adsorption”, International Journal of Advanced Research in Engineering &
     Technology (IJARET), Volume 3, Issue 2, 2012, pp. 280 - 288, ISSN Print: 0976-6480,
     ISSN Online: 0976-6499.
 25- Rasha Salah Mahdiz, “Removal of the Blue Methylene Dye from an Aqueous Solution by
     using Powdered Corn Cob”, International Journal of Civil Engineering & Technology
     (IJCIET), Volume 5, Issue 1, 2014, pp. 21 - 34, ISSN Print: 0976 – 6308, ISSN Online:
     0976 – 6316.




                                              169

				
DOCUMENT INFO
Shared By:
Categories:
Tags:
Stats:
views:0
posted:4/14/2014
language:Latin
pages:10