Automobile and transportation equipment industry.doc

Document Sample
Automobile and transportation equipment industry.doc Powered By Docstoc

                                     This word document was downloaded from
                                     please remain this link information when you reproduce , copy, or use it.
                       <a href=''>word documents</a>

                                                                                                                                Franklin E. Mirer

General Profile
Distinct segments of the automobile and transportation equipment industry produce:

· cars and light trucks
· medium and heavy trucks
· buses
· farm and construction equipment
· industrial trucks
· motorcycles.

The characteristic assembly line for the finished vehicle is supported by separate manufacturing facilities for various parts and components. Vehicle
components may be manufactured within the parent enterprise or purchased from separate corporate entities. The industry is a century old.
Production in the North American, European and (since the Second World War) Japanese sectors of the industry became concentrated in a few
corporations which maintained branch assembly operations in South America, Africa and Asia for sales to those markets. International trade in
finished vehicles has increased since the 1970s, and trade in original equipment and replacement auto parts from facilities in the developing world is
increasingly important.

Manufacture of heavy trucks, buses and farm and construction equipment are distinct businesses from car production, although some auto producers
manufacture for both markets, and farm and construction equipment are also made by the same corporations. This line of products uses large diesel
engines rather than gasoline engines. Production rates are typically slower, volumes smaller and processes less mechanized.


Table 91.1.     Production processes for automobile production

Facility type                               Product and process

Ferrous foundry                             Castings for machining into engine blocks and heads, other components

Aluminium foundry and die cast              Engine blocks and heads, transmission casings, other cast components

Forging and heat treatment                  Pre-machined parts for engines, suspensions and transmissions

Stamping                                    Body panels and subassemblies

Engine                                      Machining of castings, assembly into finished product

Transmission                                Machining of castings and forgings, assembly into product

Glass                                       Windshields, side windows and backlights

Automotive parts                            Machining, stamping and assembly, including brakes, suspension parts, heating and air
                                            conditioning, pollution-control equipment, vehicle lighting

Electrical and electronic                   Ignition systems, radios, motors, controllers

Hardware and hard trim                      Polymer moulded exterior body panels, trim components
Soft trim                                   Seat cushions, built up seats, dashboard assemblies, interior body panels

Vehicle assembly                            Body shop, painting, chassis assembly, final assembly

Parts depots                                Warehousing, parts painting and assembly, packaging and shipping


The types of facilities, the production processes and the typical components in car production are shown in table 91.1. Figure 91.1 provides a flow
chart for the steps in automobile production. The standard industrial classifications that are found in this industry include: motor vehicles and car body
assembly, truck and bus body assembly, motor vehicle parts and accessories, iron and steel foundries, non-ferrous foundries, automotive stampings,
iron and steel forgings, engine electrical equipment, auto and apparel trimmings and others. The number of people employed in the manufacture of
parts exceeds that employed in assembly. These processes are supported by facilities for design of the vehicle, construction and maintenance of plant
and equipment, clerical and managerial functions and a dealer and repair function. In the United States, car dealers, service stations and wholesale
auto parts facilities employ about twice as many workers as the manufacturing functions.


Figure 91.1.    Flow chart for automobile production


The workforce is predominantly male. In the United States, for example, it is about 80% male. Female employment is higher in trim and other lighter
manufacturing processes. There is limited opportunity for job transfer from hourly work to clerical work or to technical and professional employment.
Assembly line supervisors do, however, often come from the production and maintenance units. About 20% of hourly employees are employed in the
skilled trades, although the fraction of employees in any particular facility who are in skilled trades varies greatly, from less than 10% in assembly
operations to almost 50% in stamping operations. Because of contractions in employment levels over the decade of the 1980s, the average age of the
workforce in the late 1990s exceeds 45 years, with hiring of new workers appearing only since 1994.

Major Sectors and Processes

Ferrous casting
Founding or metal casting involves the pouring of molten metal into a hollow inside a heat-resistant mould, which is the outside or negative shape of
the pattern of the desired metal object. The mould may contain a core to determine the dimensions of any internal cavity in the final metal object.
Foundry work consists of the following basic steps:

· making a pattern of the desired article from wood, metal, plastic or some other material
· making the mould by pouring sand and a binder around the pattern and compacting or setting it
· removing the pattern, inserting any core and assembling the mould
· melting and refining the metal in a furnace
· pouring the molten metal into the mould
· cooling the metal casting
· removing the mould and core from the metal casting by the “punch-out” process (for small castings) and by vibrating screens (shakeout) or hydro-
· removing extra metal (e.g., the metal in the sprue-the pathway for molten metal to enter the mould) and burnt-on sand from the finished casting
(fettling) by blasting with steel shot, hand chipping and grinding.

Ferrous foundries of the production type are a characteristic auto industry process. They are used in the automobile industry to produce engine
blocks, heads and other parts. There are two basic types of ferrous foundries: gray iron foundries and ductile iron foundries. Gray iron foundries use
scrap iron or pig iron (new ingots) to make standard iron castings. Ductile iron foundries add magnesium, cerium or other additives (often called ladle
additives) to the ladles of molten metal before pouring to make nodular or malleable iron castings. The different additives have little impact on
workplace exposures.

Typical automobile foundries use cupola or induction furnaces to melt the iron. A cupola furnace is a tall vertical furnace, open at the top, with hinged
doors at the bottom. It is charged from the top with alternate layers of coke, limestone and metal; the molten metal is removed at the bottom. An
induction furnace melts the metal by passing a high electric current through copper coils on the outside of the furnace. This induces an electric current
in the outer edge of the metal charge, which heats the metal due to the high electrical resistance of the metal charge. Melting progresses from the
outside of the charge to the inside.

In ferrous foundries, moulds are traditionally made from green sand (silica sand, coal dust, clay and organic binders), which is poured around the
pattern, which is usually in two parts, and then compacted. This can be done manually or mechanically on a conveyor belt in production foundries. The
pattern is then removed and the mould assembled mechanically or manually. The mould must have a sprue.

If the metal casting is to have a hollow interior, a core must be inserted into the mould. Cores can be made from thermosetting phenol-formaldehyde
resins (or similar resins) mixed with sand which is then heated (hot boxmethod) or from amine-cured urethane/sand mixtures which cure at room
temperature (cold boxmethod). The resin/sand mixture is poured into a core box which has a cavity in the desired shape of the core.

The products produced in gray iron castings are typically of a large size, such as engine blocks. The physical size increases the physical hazards on
the job and also presents more difficult dust control problems.

Atmospheric contaminants in foundry processes
Silica-containing dusts. Silica-containing dusts are found in finishing, in shakeout-knockout, in moulding, in core making and in sand system and melt
department maintenance activities. Air sampling studies during the 1970s typically found severalfold overexposures to silica, with the highest levels in
finishing. Exposures were higher in mechanized production foundries than job shops. Improved control measures including enclosure and exhaust of
sand systems and shakeout, mechanization and periodic industrial hygiene measurements have reduced levels. Standard ventilation designs are
available for most foundry operations. Exposures above current limits persist in finishing operations due to inadequate sand removal after shakeout
and silica burn-in on casting surfaces.

Carbon monoxide. Acutely dangerous carbon monoxide levels are encountered during cupola furnace maintenance and during upsets in process
ventilation in the melt department. Excessive levels can also be encountered in cooling tunnels. Carbon monoxide exposures have also been
associated with cupola melting and with the combustion of carbon material in green sand moulds. Exposure to sulphur dioxide of unknown origin can
also occur, perhaps from sulphur contaminants in the mould.

Metal fumes. Metal fumes are found in melting and pouring operations. It is necessary to use compensating hoods over pouring stations in order to
exhaust both metal fumes and combustion gases. Excessive exposures to lead fumes are occasionally encountered in iron foundries and are
pervasive in brass foundries; lead fumes in gray iron arise from lead contamination of the scrap iron starting materials.

Other chemical and physical hazards. Formaldehyde, amine vapours and isocyanate pyrolysis products can be found in coremaking and core burn-off
products. High-production coremaking is characteristic of the auto industry. Hot box phenol-formaldehyde coremaking replaced oil-sand cores in the
mid-1960s and brought substantial formaldehyde exposures, which, in turn, increased the risks of respiratory irritation, lung function abnormalities and
lung cancer. Protection requires local exhaust ventilation (LEV) at the core machine, core check stations and conveyor and low emission resins. When
the phenol-formaldehyde coremaking has been replaced by cold box amine-cured polyurethane systems, effective maintenance of seals at the core
box, and LEV where the cores are stored prior to insertion in the mould, are needed to protect employees against ocular effects of amine vapours.

Workers who are employed in these areas should undergo pre-placement and periodic medical examinations, including a chest x ray reviewed by an
expert reader, a lung function test and a symptoms questionnaire, which are essential to detect early signs of pneumoconiosis, chronic bronchitis and
emphysema. Periodic audiograms are needed, as hearing protection is often ineffective.

High levels of noise and vibration are encountered in processes such as furnace loading, mechanical de-coring, stripping and knockout of castings
and fettling with pneumatic tools.

Foundry processes are heat intensive. The radiant heat load in melting, pouring, shakeout, core knockout and sprue removal requires special
protective measures. Some of these measures include increased relief time (time away from the job), which is a common practice. Still extra relief
during hot, summer months is also commonly provided. Workers should be outfitted with heat-protective clothing and eye and face protection in order
to prevent the formation of cataracts. Climatized break areas near the work area improve the protective value of heat relief.

Aluminium casting
Aluminium casting (foundry and die-casting) is used to produce cylinder heads, transmission cases, engine blocks and other automotive parts. These
facilities typically cast the products in permanent moulds, with and without sand cores, although the lost foam process has been introduced. In the lost
foam process, the polystyrene foam pattern is not removed from the mould but is vaporized by the molten metal. Die casting involves the forcing of
molten metal under pressure into metal moulds or dies. It is used to make large numbers of small, precise parts. Die-casting is followed by trim
removal on a forge press and some finishing activities. Aluminium may be melted onsite or it can be delivered in molten form.

Hazards can arise because of significant pyrolysis of the core. Silica exposures may be found in permanent mould foundries where large cores are
present. Local exhaust on shakeout is needed to prevent hazardous levels of exposure.

Other non-ferrous casting
Other non-ferrous die casting and electroplating processes are used to produce the trim on automotive products, the hardware and the bumpers.
Electroplating is a process in which a metal is deposited onto another metal by an electrochemical process.

Bright metal trim traditionally was die-cast zinc, successively plated with copper, nickel and chrome, and then finished by polishing. Carburettor and
fuel-injector parts are also die cast. Manual extraction of parts from die-casting machines is increasingly being replaced by mechanical extraction, and
bright metal parts are being replaced by painted metal parts and plastic. Bumpers had been produced by pressing steel, followed by plating, but these
methods are increasingly being replaced by the use of polymer parts in passenger vehicles.

Electroplating with chrome, nickel, cadmium, copper and so on is normally carried out in separate workshops and involves exposure to, inhalation of
or contact with vapours from the acid plating baths. An increased incidence of cancer has been associated with both chromic acid and sulphuric acid
mists. These mists are also extremely corrosive to the skin and respiratory tract. Electroplating baths should be labelled as to contents and should be
fitted with special push-pull local exhaust systems. Anti-foaming surface tension agents should be added to the liquid in order to minimize mist
formation. Workers should wear eye and face protection, hand and arm protection and aprons. Workers need periodic health checks as well.

Inserting and removing components from open-surface tanks are very hazardous operations which are increasingly becoming more mechanized. The
buffing and polishing of plated components on felt belts or discs is strenuous and entails exposure to cotton, hemp and flax dust. This hazard can be
minimized by providing a fixture or by mechanizing with transfer-type polishing machines.

Forging and heat treatment
Hot forging and cold forging followed by heat treatment are used to produce engine, transmission and suspension parts and other components.

Historically, automotive forging involved heating iron billets (bars) in individual oil-fired furnaces set close to individually operated steam hammer
forges. In these drop hammer forges, the heated iron is placed in the bottom half of a metal die; the top half of the die is attached to the drop hammer.
The iron is formed into the desired size and shape by multiple impacts of the dropping hammer. Today, such processes are replaced by induction
heating of billets, which are worked in forging presses, which use pressure instead of impact to form the metal part, and drop hammer forges
(upsetters) or by cold forging followed by heat treatment.

The forging process is extremely noisy. Noise exposure can be abated by replacing oil furnaces with induction heating devices, and the steam
hammers with forging presses and upsetters. The process is also smoky. Oil smoke can be reduced by modernizing the furnace.

Forging and heat treatment are heat-intensive operations. Spot cooling using make-up air that circulates over workers in process areas is needed to
reduce heat stress.

High production machining of engine blocks, crankshafts, transmissions and other components is characteristic of the auto industry. Machining
processes are found within various parts manufacturing facilities and are the dominant process in engine, transmission and bearing production.
Components such as camshafts, gears, differential pinions and brake drums are produced in machining operations. One-person machining stations
are increasingly replaced by multiple station machines, machining cells and transfer lines which may be up to 200 metres in length. Soluble oils and
synthetic and semi-synthetic coolants increasingly predominate over straight oils.

Foreign body injuries are common in machining operations; increased mechanical material handling and personal protective equipment are key
preventive measures. Increased automation, particularly long transfer lines, increases the risk of severe acute trauma; improved machine guarding
and energy lockout are preventive programmes.

The highest level of control measures for coolant mist include full enclosure of machining stations and fluid circulation systems, local exhaust directed
outside or recirculated only through a high-efficiency filter, coolant system controls to reduce mist generation and coolant maintenance to control
micro-organisms. Addition of nitrite to amine-containing fluids must be prohibited due to risk of nitrosamine production. Oils with substantial
polynuclear aromatic hydrocarbon (PAH) content must not be used.

In case-hardening, tempering, nitrate salt baths and other metal heat-treatment processes using furnaces and controlled atmospheres, the
microclimate may be oppressive and various airborne toxic substances encountered (e.g., carbon monoxide, carbon dioxide, cyanides).

Machine attendants and workers handling swarf and centrifuging cutting oil prior to filtration and regeneration are exposed to the risk of dermatitis.
Exposed workers should be provided with oil-resistant aprons and encouraged to wash thoroughly at the end of each shift.

Grinding and tool sharpening may present a danger of hard metal disease (interstitial lung disease) unless cobalt exposure is measured and
controlled. Grinding wheels should be fitted with screens, and eye and face protection and respiratory protective equipment should be worn by

Machined parts are typically assembled into a finished component, with attendant ergonomic risks. In engine facilities engine testing and running-in
must be carried out at test stations fitted with equipment for removing exhaust gases (carbon monoxide, carbon dioxide, unburned hydrocarbons,
aldehydes, nitrogen oxides) and with noise-control facilities (booths with sound-absorbent walls, insulated bedplates). Noise levels may be as high as
100 to 105 dB with peaks at 600 to 800 Hz.

Pressing of sheet metal (steel) into body panels and other components, often combined with subassembly by welding, is done in large facilities with
large and small mechanical power presses. Individual load and unload presses were successively replaced by mechanical extraction devices and now
shuttle transfer mechanisms which can load as well, yielding fully automated press lines. Fabrication of subassemblies such as hoods and doors is
accomplished with resistance welding presses and is increasingly performed in cells with robot transfer of parts.

The main process is the pressing of steel sheet, strip and light sections on mechanical power presses ranging in capacity from roughly 20 to 2,000

Modern press safety requires effective machinery guarding, prohibition of hands in dies, safety controls including anti-tie down two-hand controls, part
revolution clutches and brake monitors, automatic feed and ejection systems, collection of press scrap and the use of personal protective equipment
such as aprons, foot and leg protection and hand and arm protection. Outmoded and hazardous full-revolution clutch machines and pull-back devices
must be eliminated. Handling rolled steel with cranes and loading of decoilers prior to blanking at the head of a press lines poses a severe safety

Press operators are exposed to substantial mist levels from drawing compounds which are similar in composition to machining fluids such as soluble
oils. Welding fumes are present in fabrication. Noise exposures are high in stamping. Control measures for noise include mufflers on air valves, lining
metal chutes with vibration-damping equipment, quieting parts carts, and isolation of presses; the point of operation of the press is not the main site of
noise generation.

Following pressing, the pieces are assembled into sub-groups such as hoods and doors using resistance welding presses. Chemical hazards include
welding fumes from primarily resistance welding and pyrolysis products of surface coatings, including drawing compound and sealers.

Plastic body panels and trim components
Metal trim parts such as chrome strips are being increasingly replaced by polymer materials. Hard body parts may be made from fibrous glass-
reinforced polyester polystyrene systems, acrylonitrile-butadiene-styrene (ABS) thermosetting systems or polyethylene. Polyurethane systems may be
high density for body parts, such as nose cones, or low-density foam for seats and interior padding.

Polyurethane foam moulding presents severe respiratory sensitization problems from inhalation of di-isocyanate monomer and possibly catalysts.
Complaints persist in operations which are in compliance with limits for toluene di-isocyanate (TDI). Methylene chloride exposures from gun flushing
can be substantial. Pouring stations need enclosure and LEV; spills of isocyanate should be minimized by safety devices and cleaned promptly by
trained crews. Fires in curing ovens are also a problem in these facilities. Seat manufacture has severe ergonomic stresses, which can be reduced by
fixtures, especially for stretching upholstery over cushions.

Styrene exposure from fibrous glass lay-up should be controlled by enclosing storage of mats and local exhaust. Dusts from grinding cured parts
contain fibrous glass and should also be controlled by ventilation.

Vehicle assembly
Assembly of components into the finished vehicle typically takes place on a mechanized conveyor involving upwards of a thousand employees per
shift, with additional support personnel. The largest segment of employees in the industry are in this process type.

A vehicle assembly plant is divided into distinct units: the body shop, which can include subassembly activities also found in a stamping; paint; chassis
assembly; cushion room (which can be outsourced); and final assembly. Paint processes have evolved toward lower-solvent, more reactive
formulations in recent years, with increasing use of robot and mechanical application. The body shop has become increasingly automated with
reduced arc welding and replacement of hand-operated spot-welding guns with robots.

Light truck assembly (vans, pickups, sport utility vehicles) is similar in process to car assembly. Heavy truck, farm and construction equipment
manufacture involves less mechanization and automation, longer cycle jobs, heavier physical labour, more arc welding and different paint systems.

The body shop of an assembly plant assembles the shell of the vehicle. Resistance welding machines may be transfer type, robotic or individually
operated. Suspended spot welding machines are heavy and cumbersome to manipulate even when fitted with a counterbalance system. Transfer
machines and robots have eliminated many manual jobs and removed workers from close, direct exposure to hot metal, sparks and combustion
products of the mineral oil which contaminates the sheet metal. However, increased automation carries increased risk of severe injury to maintenance
workers; energy lockout programmes and more elaborate and automatic machine guarding systems, including presence-sensing devices, are needed
in automated body shops. Arc welding is employed to a limited degree. During this work, employees are exposed to intense visible and ultraviolet
radiation and risk inhalation of combustion gases. LEV, protective screens and partitions, welding visors or goggles, gloves and aprons are needed for
arc welders.

The body shop has the greatest laceration and foreign body injury hazards.

In past years assembly techniques and body panel defect retouching processes entailed soldering with lead and tin alloys (also containing traces of
antimony). Soldering and especially the grinding away of excess solder produced a severe risk of lead poisoning, including fatal cases when the
process was introduced in the 1930s. Protective measures included an isolated solder grind booth, respirators supplying positive-pressure air for
solder grinders, hygiene facilities and lead-in-blood monitoring. Nevertheless, increased body burdens of lead and occasional cases of lead poisoning
among workers and families persisted into the 1970s. Lead body solder has been eliminated in US passenger vehicles. In addition, noise levels in
these processes may range up to 95 to 98 dB, with peaks at 600 to 800 Hz.

Automobile bodies from the body shop enter the paint shop on a conveyor where they are degreased, often by the manual application of solvents,
cleaned in a closed tunnel (bonderite) and undercoated. The undercoat is then rubbed down by hand with an oscillating tool using wet abrasive paper,
and the final layers of paint are applied and then cured in an oven. In paint shops, workers may inhale toluene, xylene, methylene chloride, mineral
spirits, naphtha, butyl and amyl acetate and methyl alcohol vapours from body, booth and paint gun cleaning. Spray painting is carried on in downdraft
booths with a continuously filtered air supply. Solvent vapour at painting stations is typically well controlled by down-draft ventilation, which is needed
for product quality. Inhalation of paint particulate was formerly less well controlled, and some paints in the past contained salts of chromium and lead.
In a well controlled booth, the workers should not have to wear respiratory protective equipment to achieve compliance with exposure limits. Many
voluntarily wear respirators for overspray. Recently introduced two-component polyurethane paints should be sprayed only when air-supplied helmets
are used with suitable booth re-entry times. Environmental regulations have spurred the development of high-solids paints with lower solvent content.
Newer resin systems may generate substantial formaldehyde exposure, and powdered paints now being introduced are epoxy formulations which may
be sensitizers. Recirculation of paint booth and oven exhaust from roof ventilating units into work areas outside the booth is a common complaint; this
problem can be prevented by exhaust stacks of sufficient height.

In the production of commercial vehicles (lorries (trucks), trams, trolley buses) and farm and construction equipment, manual spray painting is still
widely employed due to the large surfaces to be covered and the need for frequent retouching. Lead and chromate paints may still be employed in
these operations.

The painted body work is dried in hot air and infra-red ovens fitted with exhaust ventilation and then moves on to join the mechanical components in
the final assembly shop, where the body, engine and transmission are joined together and the upholstery and internal trim are fitted. It is here that
conveyor belt work is to be seen in its most highly developed version. Each worker carries out a series of tasks on each vehicle with cycle times of
about 1 minute. The conveyor system transports the bodies gradually along the assembly line. These processes demand constant vigilance and may
be highly monotonous and act as stressors on certain subjects. Although normally not imposing excessive metabolic lead, these processes virtually all
involve moderate to severe risk factors for musculoskeletal disorders.

The postures or movements the worker is obliged to adopt, such as when installing components inside the vehicle or working under the body (with
hands and forearms above head level) are the most readily abated hazards, although force and repetition must also be reduced to abate risk factors.
After final assembly the vehicle is tested, finished and dispatched. Inspection can be limited to roller tests on a roller bed (where ventilation of exhaust
fumes is important) or can include track trials on different types of surface, water and dust tightness trials and road trials outside the factory.

Parts depots
Parts depots are integral to distributing the finished product and supplying repair parts. Workers in these high-production warehouses use order
pickers to retrieve parts from elevated locations, with automated parts-delivery systems in three-shift operations. Manual handling of packaged parts is
common. Painting and other production processes may be found in parts depots.

Testing of prototypes
Testing of automobile prototypes is specialized to the industry. Test drivers are exposed to a variety of physiological stresses, such as violent
acceleration and deceleration, jolting and vibration, carbon monoxide and exhaust fumes, noise, work spells of prolonged duration and different
ambient and climatic conditions. Endurance drivers endure special stresses. Fatal vehicle accidents occur in this occupation.

Assembly of heavy trucks and farm and construction equipment
The processes in these industry sectors are essentially the same as in the assembly of cars and light trucks. Contrasts include: slower pace of
production, including non-assembly-line operations; more arc welding; riveting of truck cabs; movement of components by crane; use of chromate-
containing pigments; and diesel on drive-off at the end of the assembly line. These sectors include more producers relative to volume and are less
vertically integrated.

Manufacture of locomotives and rail cars
Distinct segments of railroad equipment manufacture include locomotives, passenger cars, freight cars and electric self-propelled passenger cars.
Compared to car and truck manufacture, assembly processes involve longer cycles; there is more reliance on cranes for material handling; and arc
welding is more heavily used. The large size of the products makes engineering control of spray paint operations difficult and creates situations where
workers are completely enclosed in the product while welding and spray painting.
Health Problems and Disease Patterns
Production processes are not unique to the auto industry, but often the scale of production and the high degree of integration and automation combine
to present special hazards to employees. Hazards to employees in this complex industry must be arrayed in three dimensions: process type, job
classification group and adverse outcome.

Adverse outcomes with distinct cause and prevention methods can be distinguished as: fatal and severe acute injuries; injuries generally; repeated
trauma disorders; short-onset chemical effects; occupational disease from long-term chemical exposure; service sector hazards (including infectious
disease and client- or customer-initiated violence); and work environment hazards such as psychosocial stress.

Job classification groups in the automobile industry can usefully be divided by divergent hazard spectra: skilled trades (maintenance, service,
fabrication and installation of production equipment); mechanical material handling (powered industrial truck and crane operators); production service
(including non-skilled maintenance and cleaners); fixed production (the largest grouping, including assemblers and machine operators); clerical and
technical; and executive and managerial.

Health and safety outcomes common to all processes
According to the US Bureau of Labor Statistics, the auto industry has one of the highest injury rates overall, with 1 in 3 employees hurt each year, 1 in
10 seriously enough to lose time from work. Lifetime risk of occupational fatality from acute traumatic injury is 1 in 2,000. Certain hazards are generally
characteristic of occupational groupings throughout the industry. Other hazards, particularly chemicals, are characteristic of specific production

Skilled trades and mechanical material-handling occupations are at high risk for fatal and severe acute traumatic injuries. The skilled trades are less
than 20% of the workforce, yet suffer 46% of fatal occupational injuries. Mechanical material-handling occupations suffer 18% of fatalities. The skilled-
trades fatalities largely occur during maintenance and service activities, with uncontrolled energy as the leading cause. Preventive measures include
energy lockout programmes, machine guarding, fall prevention and industrial truck and crane safety, all based on directed job safety analysis.

By contrast, fixed production occupations suffer higher rates of injuries generally and repeated trauma disorders, but are at reduced risk to fatal injury.
Musculoskeletal injuries, including repeated trauma disorders and closely related strains and sprains caused by overexertion or repetitive motion are
63% of disabling injuries in assembly facilities and about half the injuries in other process types. The chief preventive measures are ergonomics
programmes based on risk factor analysis and structured reduction in force, frequency and postural stresses of high-risk jobs.

Production service occupations and skilled trades face the majority of acute and high-level chemical hazards. Typically these exposures occur during
routine cleaning, response to spills and process upsets and in confined space entry during maintenance and service activities. Solvent exposures are
prominent among these hazardous situations. The long-term health consequences of these intermittent high exposures are not known. High
exposures to carcinogenic coal tar pitch volatiles are experienced by employees tarring wood block floors in many facilities or torching floor bolts in
stamping plants. Excess mortality from lung cancer has been observed in such groups. Preventive measures focus on confined space entry and
hazardous waste and emergency response programmes, although long-term prevention depends on process change to eliminate exposure.

Effects of chronic exposure to chemicals and some physical agents are most evident among fixed production workers, principally because these
groups can more feasibly be studied. Virtually all the process-specific adverse effects described above arise from exposures in compliance with
existing occupational exposure limits, so protection will depend on reduction of allowable limits. In the near term, best practices including well
designed and maintained exhaust systems serve to reduce exposures and risks.

Noise-induced hearing loss is pervasive in all segments of the industry.

All sectors of the workforce are subject to psychosocial stress, although these are more apparent in the clerical, technical, administrative support,
managerial and professional occupations because of their generally less intense exposure to other hazards. Nevertheless, job stress is likely more
intense among production and maintenance employees, and stress effects are likely greater. No effective means of reducing stresses from night work
and rotating shift work have been implemented, although shift preference agreements allow for some self selection, and shift premiums compensate
those employees assigned to off shifts. Acceptance of rotating shifts by the workforce is historical and cultural. Skilled trades and maintenance
employees work substantially more overtime and during holidays, vacations and shutdowns, compared to production employees. Typical work
schedules include two production shifts and a shorter maintenance shift; this provides flexibility for overtime in periods of increased production.

The discussion which follows groups chemical and some specific physical hazards by production type and addresses injury and ergonomic hazards by
job classification.

Foundries stand out among auto industry processes with a higher fatality rate, arising from molten metal spills and explosions, cupola maintenance,
including bottom drop, and carbon monoxide hazards during relining. Foundries report a higher fraction of foreign body, contusion and burn injuries
and a lower fraction of musculoskeletal disorders than other facilities. Foundries also have the highest noise exposure levels (Andjelkovich et al. 1990;
Andjelkovich et al. 1995; Koskela 1994; Koskela et al. 1976; Silverstein et al. 1986; Virtamo and Tossavainen 1976).

A recent review of mortality studies including the American auto industry showed that foundry workers experienced increased rates of deaths from
lung cancer in 14 of 15 studies (Egan-Baum, Miller and Waxweiller 1981; Mirer et al. 1985). Because high lung cancer rates are found among cleaning
room workers where the primary exposure is silica, it is likely that mixed silica-containing dust exposure is a major cause (IARC 1987, 1996), although
polynuclear aromatic hydrocarbon exposures are also found. Increased mortality from non-malignant respiratory disease was found in 8 of 11 studies.
Silicosis deaths were recorded as well. Clinical studies find x-ray changes characteristic of pneumoconiosis, lung function deficits characteristic of
obstruction and increased respiratory symptoms in modern production foundries with the highest levels of controls. These effects arose from exposure
conditions which prevailed from the 1960s onward and strongly indicate that health risks persist under current conditions as well.
Asbestos effects are found on x ray among foundry workers; victims include production as well as maintenance workers with identifiable asbestos

Machining operations
A recent review of mortality studies among workers in machining operations found apparent exposure-related increased stomach, oesophageal, rectal,
pancreatic and laryngeal cancer in multiple studies (Silverstein et al. 1988; Eisen et al. 1992). Known carcinogenic agents historically present in
coolants include polynuclear aromatic compounds, nitrosamines, chlorinated paraffins and formaldehyde. Present formulations contain reduced
amounts of these agents, and exposures to coolant particulate are reduced, but cancer risk may still occur with present exposures. Clinical studies
have documented occupational asthma, increased respiratory symptoms, cross-shift lung function drop and, in one case, legionnaire’s disease
associated with coolant mist exposure (DeCoufle 1978; Vena et al. 1985; Mallin, Berkeley and Young 1986; Park et al. 1988; Delzell et al. 1993).
Respiratory effects are more prominent with synthetics and soluble oils, which contain chemical irritants such as petroleum sulphonates, tall oils,
ethanolamines, formaldehyde and formaldehyde donor biocides, as well as bacterial products such as endotoxin. Skin disorders are still common
among machining workers, with greater problems reported for those exposed to synthetic fluids.

Pressed metal operations
The characteristic injury hazards in mechanical power presswork are crushing and amputation injuries, especially of the hands, due to trapping in the
press, and hand, foot and leg injuries, caused by scrap metal from the press.

Pressed metal facilities have twice the proportion of laceration injuries of auto industry facilities generally. Such operations have a higher proportion of
skilled workers than typical for the industry, especially if die construction is pursued onsite. Die change is an especially hazardous activity.

Mortality studies in the metal-stamping industry are limited. One such study found increased mortality from stomach cancer; another found increased
mortality from lung cancer among maintenance welders and millwrights exposed to coal tar pitch volatiles.

Hardware and electroplating
A mortality study of employees at an automotive hardware plant found excess mortality from lung cancer among workers in departments which
integrated zinc die-cast and electroplating. Chromic and sulphuric acid mist or die-cast smoke were likely causes.

Vehicle assembly
Injury rates, including cumulative trauma disorders (CTDs), are now the highest in assembly of all processes in the auto sector, due largely to the high
rate of musculoskeletal disorders from repetitive work or overexertion. Musculoskeletal disorders account for more than 60% of disabling injuries in
this sector.

Several mortality studies in assembly plants observed increased deaths from lung cancer. No specific process within the assembly sector has been
shown responsible, so this issue remains under investigation.

Testing of prototypes
Fatal vehicle accidents occur in this occupation.

Design work
The design staffs of auto companies have been the subject of health and safety concern. Prototype dies are made by first constructing the pattern of
wood, using extremely hard wood, laminates and particleboard. Plastic models are made by fibrous glass lay-up with polyester-polystyrene resins.
Metal models are essentially dies constructed by precision machining. Wood, plastic and metal model and pattern makers have been shown to suffer
excess incidence and mortality from colon and rectal cancer in repeated studies. A specific agent has not been identified.

Environmental and Public Health Issues
Environmental regulation aimed at stationary sources in the auto industry principally addresses volatile organic compounds from spray painting and
other surface coatings. Pressure to reduce solvent content of paints has actually changed the nature of the coatings used. These rules affect supplier
and parts plants as well as vehicle assembly. Foundries are regulated for air emissions of particulates and sulphur dioxide, while spent sand is treated
as hazardous waste.

               Vehicle emissions and vehicle safety are critical public health and safety issues regulated outside the occupational arena.

                                      This word document was downloaded from
                                      please remain this link information when you reproduce , copy, or use it.
                       <a href=''>word documents</a>

Shared By: