dvd 7455 cdp - Faculty by wuzhenguang


									Printers and Scanners

The Evolution of Printing and Scanning
    When the personal computer was first developed in the late 1970s, many people thought that we’d
    see the end of paper in the office. The rise of the PC was accompanied by a rise in the speed, print
    quality, and overall performance of printers to help produce outputs of computer data. Thus, as per-
    sonal computers enter their third decade, we realize that instead of abolishing paper, computers have
    made it easier to produce more and more complex output ranging from the simple reports that were
    the major use of the first dot-matrix printers to elaborate brochures and photos that might outlast the
    life of the users who print them (let alone their computers!).
    We’ve realized since the first PCs were developed in the late 1970s that the capability to produce a
    printed version (often called a hard copy) of a document is a primary function of a PC, and that a PC
    without access to a printer is only a shadow of the useful tool it can be. Printers and Internet access
    have become the two required accessories for the modern computer at home or work. Whether con-
    nected directly to the computer or accessed via a network, printers are essential. Network access to
    printers enables a single high-performance printer to serve many users, and printing can now take
    place remotely via the Internet.
    But what about the mounds of documents produced before the computer age, or produced in formats
    that aren’t PC-friendly? Scanners, once specialized devices found only in the art departments of major
    companies, have made their way onto corporate and SOHO (small office, home office) desks alike.
    Scanners enable printed text and image-based documents to be converted into digital form for print-
    out or storage. Because their use, features, and most common interfaces (parallel or USB) complement
    printers, they are also discussed in this chapter.
    As you will learn in this chapter, one size cannot fit all when it comes to printers or scanners. With a
    wide variety of technologies, features, speeds, intended tasks, and cost, you should be able to find a
    printer or scanner that meets your needs—whether you are a corporate buyer looking for a single
    device to serve a department, a “road warrior” looking for a portable unit, or a SOHO user looking for
    the best bang for the buck. This chapter examines the underlying concepts of all printer and scanner
    technologies, the basic types of printers and scanners available today and how they function, and
    how to install and troubleshoot a printer or scanner on your PC.

Printer Technology
    Three basic types of printer technologies are used with PCs, defined by the method in which the
    image is produced on the paper. These three technologies are as follows:
      I Laser. Laser printers function by creating an electrostatic image of an entire page on a photo-
        sensitive drum with a laser beam. When an ultrafine colored powder called toner is applied to
        the drum, it adheres only to the sensitized areas corresponding to the letters or images on the
        page. The drum spins and is pressed against a sheet of paper, transferring the toner to the page
        and creating the image. This technology is similar to that used by photocopiers, although differ-
        ences do exist in the details of image transfer and in the internal temperatures of the units.
          A similar technology is the LED printer pioneered by Oki Data and also produced by Lexmark.
          These printers replace the laser beam with a fixed array of light-emitting diodes (LEDs) for imag-
          ing but are otherwise similar in performance. See the section, “LED Page Printers,” later in this
      I Inkjet. Inkjet printers, as their name implies, have tiny nozzles that spray specially formulated
        ink onto a page. One method uses heated ink (as used by Canon’s BubbleJet line), and another
        method uses piezo-electric print heads (as in Epson’s Stylus line).

     I Dot matrix. Dot-matrix printers use an array of round-headed pins to press an inked ribbon
       against a page. The pins are arranged in a rectangular grid (called a matrix); different combina-
       tions of pins form the various characters and images. A few nonimpact printers also use a dot-
       matrix print head with heat-sensitive ribbons, but these printers are primarily for portable use.
       Although dot-matrix printers are largely absent from today’s offices, they are still merrily
       whizzing away in warehouses, stores, and other locations where their capability to print multi-
       part forms is valued.

  A fourth option, daisywheel, which created fully formed characters similar to typewriting, was popular in law offices dur-
  ing the early days of PCs but has been replaced by laser printers.

  In general, laser printers provide the best quality output, followed closely by inkjet, with dot-matrix
  printers coming in a distant third. Dot-matrix printers have become largely relegated to commercial
  applications requiring continuous feed and multipart forms. Inkjet printers have become important
  parts of SOHO printing because of their high print quality (rivaling less expensive lasers for text),
  color capabilities, versatility, and inclusion in many popular “all-in-one” printer-scanner-fax units. In
  addition, high-end units increasingly are found in corporate offices and graphic arts departments.
  Laser printers continue to be the best choice for text-based applications because of their speed, print
  quality, and low cost per page.
  Most printers use the same basic terminology to describe their features and capabilities. The following
  sections examine some of this technology, how (or if) it applies to the various printer types, and what
  you should look for when shopping for a printer.

Print Resolution
  The term resolution is used to describe the sharpness and clarity of the printed output. All these
  printer technologies create images by laying down a series of dots on the page. The size and number
  of these dots determine the printer’s resolution and the quality of the output. If you look at a page of
  text produced by a low-resolution dot-matrix printer, for example, the pattern of dots that forms the
  individual characters is immediately obvious to the naked eye. This is because the dots are relatively
  large and of a uniform size. On high-resolution laser printer output, however, the characters look
  solid because the dots are much smaller and often can be of varying sizes.
  Printer resolution is usually measured in dots per inch (dpi). This refers to the number of separate dots
  the printer can produce in a straight line 1'' long. Most printers function at the same resolution both
  horizontally and vertically, so a specification such as 1,200dpi implies a 1,200-dot×1,200-dot 1''
  square. A typical 1,200dpi printer can therefore print 1,440,000 dots in a square inch of space. Some
  printers, however, specify different resolutions in each direction, such as a photo printer with a reso-
  lution of 720dpi×2,880dpi, which means the printer can produce more than 2 million dots (!) per
  square inch (2,073,600 dots to be precise).
  Despite improvements in monitor resolution, printer resolution has increased far more. Thus, the res-
  olution of a printed page continues to be far higher than that of a typical PC monitor. The word reso-
  lution is used to quantify PC video displays, too—usually in terms of the number of pixels, such as
  800×600 or 1,024×768. By print standards, however, the typical PC video display has a resolution of
  only 72dpi–96dpi. By measuring the actual height and width of an image on your screen and compar-
  ing it to the image’s dimensions in pixels, you can determine the dpi for your display.
  For more information about video display resolution, see Chapter 15, “Video Hardware.”

    As a result, the claims of WYSIWYG (what you see is what you get) output by software and hardware
    manufacturers are valid only in the roughest sense. Even the lowest-resolution inkjet or laser printers
    produce output that is far superior to that of your screen display. Consider the following:
       I Most current SOHO-market laser printers have resolutions of 1,200dpi (when a single figure is
         given, the resolution is the same horizontally and vertically), although some vendors still sell
         600dpi or 600dpi×1,200dpi models.
       I Current SOHO-market inkjet printers have resolutions that range from 600dpi (black ink) to as
         high as 720dpi×2,880dpi or 1,200dpi×2,400dpi for full-color photo printing with special papers.

    The improved print resolutions of recent laser and inkjet printers have had two benefits: the virtual
    elimination of jagged diagonal lines in text and graphics and improved photographic reproduction.
    Resolutions of 600dpi and higher enable laser and inkjet printers in particular to create more detailed
    and finer-grained photo printouts. The newest photorealistic inkjet printers combine high resolutions
    with smaller ink droplets and special color printing techniques (often using six ink colors) to create
    prints that rival snapshot quality even when viewed at point-blank range.
    Laser printers with resolutions of 600dpi and above also achieve better photographic reproduction,
    but through different means. A true halftone, as seen in a newspaper photograph, uses dots of various
    sizes to reproduce gray levels. Early-model laser printers were incapable of varying the sizes of dots, so
    they divided the image to be printed into a grid and placed groups of pixels into each square of the
    grid (known as a halftone cell) to simulate the different-size dots of a true halftone. This method is still
    used today, and the higher resolution enables them to use smaller halftone cells to simulate half-
    toning, thus producing better quality photo printing.
    As you’ll see later, high printer resolutions for inkjet printers are also heavily media dependent; you
    can’t get the best print quality unless you use paper or other media made for high-resolution printing.

Resolution Enhancement
    The quality of the print output can also be increased without increasing the resolution by varying
    the size of the dots. This technique was originated by Hewlett-Packard and is called Resolution
    Enhancement Technology (RET). RET uses smaller dots to fill in the jagged edges created by larger dots.
    Because the dots are so small, the cumulative effect to the naked eye is a straight diagonal line. Other
    manufacturers have developed their own versions of this concept by using other names, such as edge
    enhancement. This type of enhancement is possible only for laser and inkjet printers. Because dot-
    matrix printers produce images by having pins physically strike the page (through an inked ribbon),
    they can’t use variable-size dots.
    Inkjet printers use variable-size ink droplets both for printing pure colors and dithering, which pro-
    duces colors—such as orange—that must be mixed from the cyan, magenta, and yellow inks used by
    the printer. The capability to mix colors and vary the size of droplets enables today’s best inkjet print-
    ers to achieve true photographic quality.

    In addition, many printers produce higher-resolution output by means of a process called
    interpolation. Printer resolution is not just a physical matter of how small the dots created by a laser or
    an inkjet can be; a higher-resolution image also means that the printer must process more data. A
    1,200dpi printer must process 1,440,000 dots per square inch, whereas a 600dpi printer processes only
    360,000 dots per square inch.
    In this example, the higher-resolution image, therefore, requires four times the memory of its lower-
    resolution counterpart and a great deal more processing and transfer time between the computer and

   the printer. Some comparisons between printers would involve even greater differences in amounts of
   data processed.
   Interpolation uses algorithms to add pixels between the original pixel data; this is similar to the
   process by which a scanner can produce scanned resolutions higher than its optical resolution sup-
   ports. When used by printers, interpolation provides a smoother output because of the extra pixels
   used in the image. Interpolation enables a printer designed to print at 600dpi to interpolate the image
   to 1,200dpi, even though it lacks the required memory and processing power for true 1,200dpi out-
   Although an interpolated 1,200dpi image is better than a 600dpi image without interpolation, a
   printer that operates at a true 1,200dpi resolution should produce noticeably better output than an
   interpolated 1,200dpi. In addition, it will probably cost somewhat more. It is important when you
   evaluate printers that you check to see whether the resolution specified by the manufacturer is inter-
   polated. Also, because interpolation techniques don’t always improve printouts, the user can usually
   disable this option in the printer’s properties sheet.

Paper Quality
   Whereas laser printers produce their images by fusing toner to the paper, inkjet printers place the ink
   on top of the paper. Although many general-purpose papers supposedly suitable for laser, copier, and
   inkjet printers are sold, using anything less than true inkjet paper degrades the actual print resolution.
   This is because inkjet paper should be smoother than laser/copier paper and promote rapid drying of
   ink. Paper that lacks these features has loose fibers that cause the ink to “wick,” causing a fuzzy
   appearance to inkjet printing. Photorealistic printing at resolutions above 720dpi, especially with
   older inkjet printers, often requires the use of photo-quality paper that is heavy, very smooth, and
   very fast drying. Many users’ disappointments with inkjet print quality stem from improper paper
   choices or incorrect matching of paper with printer modes. To make printing easier, most inkjet print-
   ers today allow the user to select a single paper type at print time. This option then selects the correct
   combination of resolution and printing techniques necessary for a top-quality print job. Although the
   latest high-performance inkjet printers offer plain-paper output at their highest resolutions if you
   select custom print output options, choosing inkjet paper still produces better quality output in most

Dot-Matrix Print Quality
   Dot-matrix printers are different from inkjet and laser printers in several fundamental ways. Most
   importantly, dot-matrix printers do not process an entire page’s worth of data at a time like lasers do
   or a line of information like inkjet printers do; instead, they work with streams of characters. The
   print resolution of a dot-matrix printer is based not on its memory or processing power, but rather on
   its mechanical capabilities. The grid of dots a dot-matrix printer uses to create characters is not a data
   set in a memory array or a pattern on a photosensitive drum; the grid is formed by a set of metal pins
   that physically strike the page in various combinations. The resolution of the printer is therefore
   determined by the quantity of its pins, which usually number either 9 or 24. Because it uses more
   pins to create characters of the same size, a 24-pin printer has pins that are necessarily smaller than
   those of a 9-pin printer, and the dots they create are smaller as well. As with the other printer types,
   smaller dots result in fewer jagged edges to the printed characters and a better appearance to the doc-
   ument overall. However, techniques such as resolution enhancement and interpolation do not apply
   to dot-matrix technology, making the resolution of the printer a far less important statistic. Beyond
   checking to see whether the printer has 9 or 24 pins, you will not see differences in print quality that
   are the result of print resolution technology.
   Instead, the freshness of the ribbon and the character set used by the printer are the biggest determi-
   nants of a dot-matrix printer’s print quality.

    Manufacturers once described 24-pin dot-matrix printers as producing “near letter quality” output. In an era of 600dpi
    and higher-resolution laser and inkjet printers, “near letter quality” is no longer accurate. Dot-matrix printers still have their
    place in the professional world, such as for printing multipart forms and carbon copies, but when it comes to printing let-
    ters and other general office documents, they lack the resolution necessary to produce a professional-looking product.
    Although any dot-matrix printer is vulnerable to print head damage (the “pins” are actually fine wires), 24-pin dot-matrix
    printers are particularly sensitive to incorrectly set head gaps and worn ribbons. These problems can cause the extra-fine
    wires to break, resulting in gaps in the printing. When evaluating dot-matrix printers for heavy-duty printing, find out what
    the replacement or repair costs of a print head will be.

Page Description Languages
    Both laser and inkjet printers are known as page printers because they assemble an entire page in mem-
    ory before committing it to paper; the laser printer assembles the page within its own memory,
    whereas most inkjet printers use the computer’s memory to assemble the page. Some high-end print-
    ers have large memory buffers onboard, but these are used to receive the documents after assembly by
    the computer. This is in contrast to dot-matrix printers, which are character based. When your PC
    communicates with a page printer, it does so using a specialized language called a page description lan-
    guage (PDL). A PDL is simply a means of coding every aspect of a printed document into a data stream
    that can be transmitted to the printer. After the PDL code arrives at the printer, internal firmware con-
    verts the code to the pattern of dots that are printed on the page. Currently, two PDLs are in use
    today that have become de facto standards in the computer industry: PCL and PostScript. These lan-
    guages are discussed in the following sections.
    Printers that do not support a PDL use escape code sequences to control the printer’s features in com-
    bination with standard ASCII text for the body of the document (see the section “Escape Codes,” later
    in this chapter). The printer driver loaded on your PC is responsible for producing print output that is
    understood by your printer, whether it uses escape codes or a PDL. No matter what the source of the
    document you are printing and no matter which format is used to store the original document, the
    data must be converted into a PDL data stream or an ASCII text stream with escape codes to be
    Regardless of the PDL or escape code sequence method used by a printer, its capability to print a rea-
    sonable facsimile of what’s on your screen or in your document depends on using the correct PDL or
    printer driver for your printer. Failing to switch to the new printer driver when you upgrade to a new
    printer will cause your new printer to spit out garbage instead of useful printouts if it uses a PDL dif-
    ferent from your old printer.

Printer Control Language
    Printer Control Language (PCL) is a page description language developed by Hewlett-Packard for use
    in its printers in the early 1980s. As a result of HP’s dominance in the printer market, PCL has become
    a standard that is emulated by many other printer manufacturers. Apart from the actual text being
    printed, PCL consists largely of commands designed to trigger various features and capabilities of the
    printer. These commands fall into four categories:

  I Control codes. Standard ASCII codes that represent a function rather than a character, such as
    Carriage Return (CR), Form Feed (FF), and Line Feed (LF).
  I PCL commands. Basically the same type of escape code sequences used by dot-matrix printers.
    These commands comprise the majority of a PCL file’s control code and include printer-specific
    equivalents to document parameters, such as page formatting and font selection.
  I HP-GL/2 (Hewlett-Packard Graphics Language) commands. Commands that are specific to the
    printing of vector graphics as part of a compound document. An HP-GL/2 command consists of
    a two-letter mnemonic that might be followed by one or more parameters that specify how the
    printer should process the command.
  I PJL (Printer Job Language) commands. Enable the printer to communicate with the PC bidirection-
    ally, exchange job status and printer identification information, and control the PDL the printer
    should use for a specific job and other printer control panel functions. PJL commands are lim-
    ited to job-level printer control and are not involved in the printing of individual documents.

PCL has evolved over the years as printer capabilities have improved. PCL versions 1 and 2 were used
by Hewlett-Packard inkjet and daisywheel impact printers in the early 1980s and could not be consid-
ered to be full-fledged page description languages. The first LaserJet printer released in 1984 used
PCL 3, and the latest models contain PCL 6. Table 1 lists the various versions of PCL, the major capa-
bilities added to each new version, and the HP laser printer models that use them.

Table 1    Hewlett-Packard Printer Control Language Versions
 Version         Date            Models                   Benefits

 PCL 3           May 1984        LaserJet,                Full page formatting; vector graphics.
                                 LaserJet Plus
 PCL 4           Nov. 1985       LaserJet Series II       Added typefaces; downloadable macros; support for
                                                          larger bitmapped fonts and graphics.
 PCL 4e          Sep. 1989       LaserJet IIP,            Compressed bitmap raster fonts; images.
                                 IIP Plus
 PCL 5           Mar. 1990       LaserJet III, IIID,      Scalable typefaces; outline fonts; (vector) graphics.
                                 IIIP, IIIsi, HP-GL/2
 PCL 5e          Oct. 1992       LaserJet 4, 4M, 4L,      600dpi support; bidirectional communication
                                 4ML, 4P, 4MP, 4 Plus,    between printer and PC; additional fonts for
                                 4M Plus, 5P, 5MP,        Microsoft Windows.
                                 5L, 5L-FS, 5Lxtra, 6L,
                                 6Lxi, 6Lse, 6P, 6MP,
                                 6Psi, 6Pse and newer
 PCL 5c          Oct. 1994       Color LaserJet,          Color extensions.
                                 Color LaserJet 5,
                                 5M, Color LaserJet
 PCL 6           Apr. 1996       LaserJet 5, 5se,         Redesigned, object-oriented graphics handlers for
                                 LaserJet 6, 6Pse,        faster printing and font synthesis for better document
                                 6Psi, 6MP, 2200,         fidelity; enhanced graphics commands; multipage
                                 4050, 5000 series        printing on one sheet; watermark; smaller file sizes.
                                 and newer,               LaserJet 6 series printers refer to PCL 6 as “PCL XL.”
                                 LaserJet 6P, 6MP

    Although PCL is wholly owned and developed by Hewlett-Packard, the company’s long-term domi-
    nance in the printer market has made it a de facto standard. Many other companies manufacture
    printers that use PCL and often advertise these printers as being compatible with a specific
    Hewlett-Packard model.

    Most HP inkjet printers use stripped-down versions of PCL; see the particular printer’s documentation for information on
    which PCL features it supports.

    PostScript is a page description language developed by Adobe and first introduced in the Apple
    LaserWriter printer in 1985. PostScript possessed capabilities at its inception, such as scalable type and
    vector graphics support, that were only added to PCL years later. For this reason, PostScript quickly
    became and still remains the industry standard for desktop publishing and graphics work. Adobe
    licenses the PostScript language to many printer manufacturers, including those that make the high-
    resolution image setters used by service bureaus to produce camera-ready output for the offset print-
    ing processes used by newspaper, magazine, and book printers.
    PostScript does not use escape code sequences like PCL does; it is more like a standard programming
    language. PostScript is called an object-oriented language because images are sent to the printer as
    geometrical objects rather than bitmaps. This means that to produce type using a particular font, the
    printer driver specifies a font outline and a specific size. The font outline is a template for the creation
    of the font’s characters at any size. The printer actually generates the images of the characters from
    the outline, rather than calling on a stored bitmap of each character at each size. This type of image
    that is generated specifically for use on a particular page is called a vector graphic—as opposed to a
    bitmap graphic, which arrives at the printer as a fully formed dot pattern. PCL did not have the capa-
    bility to print scalable type until version 5 was introduced in 1990.
    When it comes to printing fonts, outlines simplify the process by enabling printers to be equipped
    with more internal fonts that can be printed at any size. Bitmapped fonts, on the other hand, usually
    must be downloaded to the printer from the PC. When graphic images are involved, the difference
    between a vector-based object and a bitmap often can be seen in the printed output. Because a vector
    image is actually generated inside the printer, its quality is based on the printer’s capabilities. Printing
    a vector image on a 600dpi printer produces a much better quality product than printing the same
    image on a 300dpi printer. A bitmap image, on the other hand, generates the same output on either
    At first, modifications to the PostScript language were based on the evolving capabilities of the Apple
    laser printers, which were its primary outlet. These minor modifications eventually became numerous
    enough for Adobe to release a new baseline version of the language called PostScript Level 2 in 1992.
    The evolution continued, and PostScript 3, the most recent version of PostScript, was introduced in
    1997. These updates improved the speed and performance of PostScript printers and accommodated
    their physical changes, such as increased amounts of memory and added paper trays, but they did not
    introduce revolutionary new features the way the PCL updates did. PostScript had its most powerful
    features from the very beginning, and the succeeding revisions of the language remain backward com-

    PostScript provides the basis for the PDF (Portable Document Format) files you can create with Adobe Acrobat, and
    PostScript level 3 can print PDF files directly, without the need for an application to process the print job.

   For more information about PostScript’s standard and optional features and uses, see Adobe’s Web

   For users who want to retrofit the graphics power of PostScript to an existing printer but can’t get a hardware upgrade,
   many Raster Image Processing (RIP) programs are available that provide for PostScript imaging on common SOHO and
   office laser and inkjet printers. These programs serve two purposes: They improve printed output, and they enable a user
   with a low-cost color or monochrome inkjet or laser printer to use that printer as an accurate preview device for preparing
   PostScript files for output by a high-end typesetter.
   Leading low-cost RIPs for popular brands of inkjet printers include
       I Zenographic’s SuperPrint (www.zeno.com)
       I Iproof’s PowerRIP 2000 (www.iproofsystems.com)
       I Epson’s ESR-Stylus RIP Software driver (www.epson.com)
   For other RIPs, see the comparison chart (a bit dated, but still useful) available at www.islandartcards.com/epson/

PDL Support
   When you are evaluating printers, the decision as to which PDL to use should be based primarily on
   your interaction with other parties, their documents, and their printers.
   If you are concerned about printing for personal or company use only, you can either use a PCL-
   compatible or PostScript laser printer for text or use a high-quality color inkjet printer for color
   images. To minimize the reformatting of documents you have already created, when you upgrade I’d
   recommend that you upgrade to a later model of the same printer family if you are happy with the
   print quality and features of your current printer. Because both PCL and PostScript are quite compara-
   ble in their text-handling capabilities today, you will get excellent printed output with either type of
   PDL, or with a high-quality inkjet printer using inkjet paper.
   However, the situation is quite different if you are creating documents for use by others (such as pre-
   press work for service bureaus or proofs for graphic designers). In these cases, PostScript rules. Because
   PostScript is the dominant standard in the world of professional graphics, printing, and publishing,
   you should create these types of documents with PostScript in mind.
   You also might come across documents on the Internet and in other places that are provided in the
   PostScript format. For a long time, a PostScript output file (usually with a .ps extension) was the most
   convenient, platform-independent format for distributing a document containing graphical content.
   Any user with a PostScript printer, regardless of the computing platform, can simply copy a PostScript
   (.ps) file to the printer and produce a hard copy of the document, including all the graphics and fonts
   found in the original.
   Although the practice of releasing raw PostScript files is far less frequent now that platform-
   independent formats, such as Adobe Acrobat (.pdf format), are available, this can still be a valid rea-
   son for having a PostScript printer available or for using a PostScript interpreter (RIP) with a non-
   PostScript printer (see the preceding note). Keep in mind, though, that a raw PostScript file can’t be
   viewed. However, you can convert PostScript .ps files into Acrobat-compatible .pdf files with the
   Aladdin Ghostscript program for Windows, Unix, VMS, Linux, MS-DOS, OS/2, and Macintosh. For
   more information about Ghostscript, go to www.cs.wisc.edu/~ghost/.

     Both PCL and PostScript are available in a variety of printers. The Macintosh printing platform is
     designed around PostScript, which is standard equipment in all Apple’s laser printers. Obviously,
     because Hewlett-Packard developed the PCL standard, all its printers use that PDL by default.
     However, most of the HP laser printers are available in a version with PostScript as well. In addition,
     some HP laser printers can accept a special add-on module that provides the printer with PostScript
     support. Very few inkjet printer models contain a PostScript interpreter, though, and those few are
     usually B-size (11''×17'' paper) or larger units designed for graphic-arts prepress work.

     Different HP printers use different levels of PCL. You also should know that printers that nominally use the same level of PCL
     might vary in their implementations of PCL commands. Search HP’s Web site for details about an HP printer model’s use of
     PCL and whether it can be upgraded to use PostScript.

     Many other manufacturers also use PCL or PostScript (or both), which they have either licensed from
     HP or Adobe or emulated themselves for their printers. The question of whether a printer has gen-
     uine, licensed versions of its PDLs can be very important. Numerous instances have occurred through-
     out the history of these PDLs in which unauthorized or poorly emulated versions of PCL and
     PostScript have been foisted on the public as the real thing. In the mid-1980s, the term “LaserJet Plus
     Emulation” came to have as little meaning as “Hayes compatible” did for modems. Nowadays, most
     of the PCL (usually version 5) emulations used in other manufacturers’ printers are quite good, but
     PostScript is a far more complex language and is more difficult to emulate. You still can find discrep-
     ancies between an emulated version of a PDL and the real thing that result in visible differences in
     the printed output.
     Here again, the PDL emulation issue largely depends on your interactions with other users. If you
     have a printer with an emulated version of PostScript and a printer driver that accurately addresses
     that emulated printer firmware, it matters little if the language does not conform precisely to the
     Adobe specifications. If you are sending your PostScript output to a service bureau for printing on an
     image setter, however, the discrepancies between an emulated PostScript and the real thing can make
     a vast difference.
     Whenever possible, you should purchase a printer that uses the genuine PDL licensed from its creator.
     A minimum of PCL 5 or PostScript Level 2 is preferable.
     Many laser printers support both PCL and PostScript, and you should check to see how a printer han-
     dles mixed jobs using various PDLs. The best printers detect the PDL of each job as it arrives in the
     printer and automatically switch to the appropriate language. If a printer does not have this feature,
     you might have to send a command with each print job triggering the mode change. For a single user
     on a standalone system, this is not much of a problem. For a printer connected to a network, know-
     ing for sure the order in which jobs are printed is often difficult unless someone constantly monitors
     the print queue. In addition, manual mode changes can be difficult to organize.

Escape Codes
     Virtually all laser printers and most inkjet printers support at least one page description language, but
     some printers (especially dot-matrix) do not, and in this case the printer driver usually communicates
     with the printer using escape code sequences. Similar to the PCL commands described earlier, escape
     codes are control sequences used to activate the features of a particular printer. Escape codes are so
     named because the ASCII value for the Esc key (decimal 027) is used as the first character of the code
     to signal to the printer that what follows is an instruction code and not a textual element of the doc-
     ument being printed.

  On a dot-matrix printer, you might be able to select various resolutions, fonts, and speeds, depending
  on the printer’s capabilities. The printer driver you install on your PC is designed to generate the
  appropriate escape codes based on the options you specify in your application and your printer driver
  configuration. If your printer driver can’t generate the codes you desire, you usually can set a particu-
  lar font, size, and enhancement for an entire document through the printer’s control panel or control
  Escape codes are not as standardized as PDLs; you might see different printers use different codes for
  the same function. Epson, for example, has long been a market leader in the dot-matrix printer indus-
  try, and its escape codes have come to be accepted by some other manufacturers. However, the accep-
  tance of the codes has not been general enough for them to be called an industry standard.
  Epson’s escape code standards are ESC/P for their older dot-matrix printers and ESC/P2 for newer dot-
  matrix printers and most inkjet printer models. ESC/P was the original Epson version and didn’t sup-
  port built-in scalable fonts. ESC/P2 does support built-in scalable fonts found in Epson’s newer
  dot-matrix and inkjet printers and works well with Windows.

  Some low-cost inkjet and laser printers don’t use either “classic” PDL (PostScript or HP-PCL) but
  instead use the computer to render the page for printing. These printers are called host-based printers.
  Some variations on host-based printing include printers that use the Windows GDI (graphics device
  interface) engine to image the page (GDI printers) and Hewlett-Packard’s line of Printing Performance
  Architecture (PPA) printers. In theory, these printers have some advantages:
    I Low cost. Because the computer has already rendered the page, the printer doesn’t need to
      include a PDL, reducing the printer price.
    I Faster computer means faster printing. Because most of the printing work is being done by the
      host computer, speeding up the computer by adding RAM, increasing processor speed, or using
      IEEE-1284 bidirectional printer connections (EPP/ECP ports and cables) can improve printing
      speed. In 1996 tests by PC Magazine, the improvements ranged from a modest 5% to 87%, with
      complex images showing a bigger improvement than simple text-only print jobs.
    I Flexible architecture with PPA. Hewlett-Packard’s PPA, depending on the printer, might have virtu-
      ally all printer functions performed in the computer (for economy) or might move some fea-
      tures into the printer (for performance).

  Although host-based printing has its advantages, it also has several key disadvantages:
    I No direct connection equals no printing. Host-based printers must be tied directly to the host for
      printing because all they do is produce the finished image. This “gotcha” becomes apparent
      when your new SOHO or departmental network can’t print because the printers no longer have
      a true host to work with. This affects both GDI-based printers and HP’s PPA product line. The
      need for a host prevents these printers from working with network print servers, such as HP’s
      JetDirect series. This also can be an issue with sharing a printer via peer networking.
    I Problems with printing from non-Windows applications. Depending on how the host-based printer
      is designed, it might not be capable of printing from any operating system other than
      Windows. Some printers can print from a DOS box—an MS-DOS session that runs within
      Windows. You can find Linux support for host-based printers, but the drivers, as is typical with
      Linux support, are not provided by the printer vendors. For example, Linux drivers for HP’s PPA
      line of inkjet printers are available at http://pnm2ppa.sourceforge.net/.
    I Lower performance levels. Many vendors of host-based printers have built these printers for casual
      users. Although the print resolutions of a host-based printer might equal that of a printer with a
      true PDL, print speeds are often slower.

     The more flexible your printing needs, the less likely it is that a host-based printer can meet them. If
     you plan to use nothing but Windows or Macintosh as an environment, a host-based printer might
     suffice. Choose carefully. In some cases, a printer might work as a Windows GDI-based printer when
     you use the USB port to connect it to the computer but be compatible with other operating systems
     when you use its parallel port.

     If you are looking for a printer that will work with both Windows and Linux, don’t buy anything until you check out the
     Linux printer-compatibility database located at www.linuxprinting.org.
     You’ll also find news about Linux printer support and links to leading Linux printer drivers, such as Ghostscript, stp, and
     You will find that host-based printers are more difficult to use with Linux than printers that use a true PDL.
     HP’s current line of USB-based inkjet printers has abandoned PPA for HP PCL3e, which makes printer support for non-
     Windows operating systems a much simpler proposition.

Printer Memory
     Printers have memory chips in them just as PCs do, and laser and inkjet printers usually have a
     processor as well, making the printer a computer unto itself—albeit a highly specialized one. Printers
     can use their internal memory for several purposes: as a buffer to hold print job data while it is being
     fed to the actual print engine; as a workspace to hold data during the processing of images, fonts, and
     commands; and as permanent and semipermanent storage for outline fonts and other data.
     For a page printer (laser or LED), the amount of memory onboard is an extremely important gauge of
     its capabilities. The printer must be capable of assembling a bitmap image of an entire page to print it,
     and the graphic images and fonts that are used on that page all take up memory. Even vector graphics
     and outline fonts must be processed into bitmaps before they can be printed. The larger the graphics
     on the page and the more fonts used, the more memory is required. This is in addition to the mem-
     ory necessary to store the PDL interpreter and the printer’s permanent fonts.
     You might find that your printer has sufficient memory to print an average page of mixed text and
     graphics but not enough to print a full-page graphic or a page with many fonts. The result of this
     might be a graphic split in half over two pages (a problem sometimes referred to as guillotining), miss-
     ing fonts, or even no output at all. Fortunately, most printers can accept additional memory to extend
     their capabilities.
     Expansion memory for printers can come in many forms. Some printers use standard memory mod-
     ules, such as SIMMs or DIMMs, whereas others use proprietary designs. In either case, you can pur-
     chase memory from the printer manufacturer at an inflated price, or, in most cases, you can buy
     either standard or proprietary modules from a major third-party memory vendor such as Crucial.com
     (which sells Micron memory). As with a PC, extra memory installed in a printer is almost never
     wasted. In addition to the capability of processing larger graphics and more fonts, printers might be
     capable of using extra memory to process the data for one page while printing another and to buffer
     larger amounts of data received from the PC.

     Because many laser printers use data-compression techniques to print graphics with a small amount of memory, some laser
     printers print graphics-rich pages much more quickly after a memory upgrade. This is because the printer needs to spend
     less time calculating whether the page will fit into memory and little or no time compressing the data to fit.

  If you add memory to your laser printer, be sure to check the driver properties for the laser printer to ensure that the addi-
  tional memory has been detected so your software will take advantage of it. In some cases, you might need to adjust the
  memory size listed on the printer properties sheet manually. See your printer manual for details.
  If your printer works in both PCL and PostScript modes, be sure to check the maximum memory sizes needed for each
  mode before you purchase a memory upgrade. Some dual-mode printers support much more memory in PostScript mode
  (which is more memory-intensive than PCL) than in PCL mode.

  A printer with additional memory can accept more data from the PC at one time. Depending on your
  PC’s operating system and its printer driver configuration, this can result in a noticeable difference in
  your system’s performance. When you print a document in a DOS application, you can’t proceed with
  your work (in most cases) until the entire print job has been transmitted to the printer. Multitasking
  operating systems, such as Windows, usually can print in the background, enabling work to proceed
  as the PC processes the print job. However, performance still might suffer until the print job is com-
  pleted. The larger the printer’s memory buffer, the faster the print job data leaves the PC, returning
  the PC to its normal operation.
  Simply learning how much memory is installed in the printer you plan to buy is insufficient to make
  an intelligent purchasing decision. You also must be aware of how much memory is used by the PDLs
  and resident fonts and how much is left free for print job data. Different PDLs, page sizes, and resolu-
  tions require different amounts of memory. As an example, for a 300dpi letter size (8 1/2''×11'') printer
  using PCL, 12MB is a great deal of memory. For a 600dpi tabloid size (11''×17'') PostScript printer, it is
  barely enough. Check with the printer manufacturer and the application software developer for mem-
  ory guidelines, but keep in mind that one of the best upgrades for a laser printer—as well as for a
  computer—is more RAM.
  The SIMM module sockets on some printers, notably some HP LaserJet models, can be used for more
  than memory expansion. HP offers PostScript or PostScript emulation upgrades for certain models
  that are packaged as a memory module. Unlike memory modules, which can be purchased from third-
  party vendors, PostScript upgrades must be purchased from the vendor itself.

  The issue of memory expansion is applicable primarily to page printers such as lasers. Most dot-matrix and inkjet printers
  receive data from the PC as a stream of ASCII characters, and because they do not have to assemble an entire page at
  a time, they can maintain a much smaller buffer, usually only a few kilobytes. Even graphic images are processed by the
  PC and transmitted to the printer as a bit stream, so augmenting a dot-matrix printer’s memory is rarely possible.
  Some large-format inkjet printers, such as HP’s DesignJet and Epson’s Stylus Pro 5500 series, offer memory expansion for
  holding multiple-copy print jobs, but this is uncommon on normal SOHO and office inkjet printers using letter-size paper.

  Fonts are one of the most commonly used and most entertaining printer features. Having quality
  fonts and using them correctly can make the difference between a professional-looking document and
  an amateurish one. The term font refers to a particular typeface in a particular typestyle at a particular
  size. A typeface is a design for a set of alphanumeric characters in which the letters, numbers, and
  symbols all work well together to form an attractive and readable presentation. Thousands of type-
  faces are available, with many new designs being produced all the time. Some basic typefaces included
  with the Windows operating systems are Times New Roman, Arial, and Courier. A typestyle is a varia-
  tion on a typeface, such as bold or italic. A typeface might have only one style, or it might have a

     dozen or more. You can compare various typefaces to each other on a Windows PC by opening the
     \Windows\Fonts folder and opening two or more typefaces. Each typeface appears in a preview win-
     dow (see Figure 1).

     Figure 1 Examples of previewing three TrueType scalable typefaces: monospaced (Century Schoolbook
     Monospace BT; upper left), sans-serif (Lucida Sans Regular; lower center), and serif (Bookman Old Style;
     upper right).

     Typefaces often are classified by characteristics they have in common. For example, Times New
     Roman is known as a serif typeface because all its characters have little decorative strokes that are
     known as serifs. A typeface such as Arial, which lacks these strokes, is called a sans-serif typeface.
     Frequently, sans-serif typefaces include an oblique rather than a true italic typestyle. Courier is called
     a monospaced typeface because all its letters occupy the same width on the page, as on a typewriter. In
     contrast, Arial and Times New Roman are both proportional typefaces because the characters are
     designed to fit together based on their widths. The letter i in a proportional typeface occupies less
     horizontal space on the page than the letter w, as seen in Figure 1.
     Technically, the term font refers to a typeface at a particular size, usually measured in points (72
     points equal 1''). 10-point Courier and 12-point Courier would be considered two separate fonts. This
     is because in traditional printing and in the first PC printers, each size of a particular typeface was a
     separate entity. On an old-time printing press, each character on a page was printed by a separate
     wood or metal slug that would be pressed against the paper to make an impression. Slugs of different
     sizes were needed to produce different-sized characters. In the same way, printers originally used
     bitmaps to create type. In this printing technique, every character of a typeface exists as a separate
     pattern of dots ready to be sent to the printer. In essence, each character existed as an individual, tiny
     graphic. To print the same typeface at various sizes requires individual graphics for each size. These
     are called bitmap fonts.

Today, printers nearly always use scalable fonts. This is a technology in which a typeface requires only
a single outline for each character to produce type of any size. The printer retains the outline in mem-
ory and generates bitmaps of the text characters at the size required for each job. The bitmaps are
stored in a temporary font cache, but only for the duration of the job. The printer also can rotate a
scalable font to any angle, whereas bitmaps can be rotated only in 90° increments. Outline fonts take
up less memory space in the printer and provide a wider range of variations for each typeface. Also,
because they use what amounts to a vector graphic technology, scalable fonts can take advantage of
the printer’s full resolution, whereas bitmap fonts look the same at any resolution. The drawback to
scalable fonts is that they require more processing power from the print engine, but when compared
to the advantages they offer, this is a small sacrifice.

Although bitmap fonts are seldom used today for normal business documents, some professionals prefer them for certain
high-resolution printing tasks because they can be customized to suit a particular need. Bitmap fonts are also sometimes
used by graphical operating systems for screen displays because scalable fonts do not look good at the low resolution of
the typical monitor; Windows 9x, for example, uses the MS Sans Serif bitmap font in various sizes for its menus and
onscreen icon displays. However, a technology called antialiasing, which uses pixels of varying shades of gray (instead
of just black and white) to smooth out jagged lines, has largely replaced the use of bitmap fonts on screen displays for
text entry. Popularized by Adobe Type Manager (with Type 1 fonts), antialiasing has become more widespread for
Windows users thanks to the font smoothing features in the Microsoft Plus! add-on for Windows 95 and the built-in font
smoothing in Windows 98 and newer versions (Me, 2000, and XP). Windows XP provides both traditional antialiasing
for CRTs and a new method (ClearType) developed by Microsoft that is optimized for LCD displays. Because antialiasing
occasionally can cause problems due to incompatibilities with a few display drivers, it can be turned off.

As a result of this evolution in technology, the terms font and typeface have come to be confused. In
the old days, when you purchased a typeface, you would receive the same character set in a variety of
sizes, with each size being called a font. Today, when you purchase a typeface, you receive only a sin-
gle outline font that your printer can scale to any size; depending on the vendor, you typically get the
font in several typestyles, such as Roman, Bold, Italic, and Bold Italic.
Before TrueType scalable fonts were common, bitmap fonts were commonly used on laser printers.
Many LaserJet and compatible printers, such as the HP LaserJet II and LaserJet III, were designed to
handle removable font cartridges. Virtually all laser printers also could use bitmap fonts on a disk that
needed to be downloaded to the laser printer’s memory.
Today, scalable type is all but universal, and although printers usually are equipped with a selection of
font outlines permanently stored in memory, this is more for reasons of speed and convenience than
necessity. The printer driver on your PC can automatically download font outlines to the printer as
necessary or generate scalable type just as your printer can. Technologies such as the TrueType fonts
found on both Windows and Macintosh systems can provide you with access to hundreds of type-
faces in many styles and at almost any size. Another benefit of scalable type is that a TrueType font
can be used on any printer that supports graphics, not just laser printers. Thus, laser, LED page, and
inkjet printers can print a document using the same TrueType fonts and produce pages that look very
See the section “Driver Problems,” later in this chapter, for more information.
Although all outline fonts function in basically the same way, various types of scalable fonts are avail-
able. PostScript was the original scalable font technology, and Adobe has built up a library of type-
faces over the years that is without peer in the digital type industry. Most PostScript printers are

     equipped with a collection of 39 or more basic fonts stored internally, but you can choose from thou-
     sands of others by browsing Adobe’s online services or its Type On Call CD-ROM. In either case, after
     you purchase these PostScript Type 1 font outlines, you install them on your computer along with a
     utility called Adobe Type Manager, which is responsible for downloading the appropriate font outlines
     to your printer as necessary. PostScript Type 3 font outlines were once widely used, but they produce
     poor results and should be avoided. Type 3 outlines lack the “hinting” necessary to getting top-
     quality results from a single font outline at any size. This “hinting” feature is used by Type 1 and
     TrueType fonts.

     Adobe Type Manager also can be used with non-PostScript printers, allowing laser and inkjet printers to access the wide
     world of Type 1 fonts.

     The other major scalable font technology in use today is TrueType. Developed about six years after
     PostScript, TrueType is the result of a joint project between Apple and Microsoft. Both companies
     wanted to integrate a PostScript-style scalable font engine into their respective operating systems, but
     neither of them wanted to delegate the control over an important element of its OS to a third-party
     company, such as Adobe. Microsoft Windows versions 9x, Me, 2000, and XP make viewing your exist-
     ing TrueType fonts and comparing fonts to each other easy by using the Windows Explorer’s special
     menus in the Fonts folder, as previously seen in Figure 1.
     Although substantial technical differences exist in the way their font outlines are created, PostScript
     and TrueType function in much the same way. The primary advantage of TrueType is that it is already
     integrated into the Windows and Macintosh operating systems and does not require external soft-
     ware, such as Adobe Type Manager. Most type foundries now produce their fonts in both PostScript
     Type 1 and TrueType versions, and any difference between the two in the final product is usually
     quite difficult to spot.
     As with PostScript, many printers include an internal collection of TrueType fonts that the operating
     system makes available to your applications. You should consider the number of fonts supplied with
     your printer primarily as a bonus when you evaluate various products. Any typeface provided as an
     internal TrueType font in your printer can just as easily be produced using a software version,
     although you might have to purchase it separately.

     Thousands of TrueType and PostScript Type 1 fonts are available today at a wide range of prices. Many fonts are avail-
     able free for the downloading from the Internet or on bargain CD-ROMs, whereas others (such as those offered by
     Adobe) are quite expensive by comparison. Be aware that profound differences can exist in the quality of these fonts, and
     although it is not always true that more expensive is better, a great many more cheap bad fonts exist than expensive bad
     Before you decide you need to buy new fonts, take a look at the fonts bundled with office suites and graphics programs.
     If you didn’t install these fonts when you installed the program, look at the font samples with the documentation. You might
     find that you already have all the fonts you need (and then some!). Another benefit of these fonts is that their quality is usu-
     ally very high because the fonts are often created by major vendors such as Adobe, Bitstream, and others. You also might
     find font-management software is included with your favorite software, enabling you to more easily keep track of the fonts
     you want to use.

Printer Drivers
    As with many peripherals, printers are highly reliant on a driver installed on the PC. The printer dri-
    ver provides the software interface between the printer and your application or operating system. The
    primary function of the driver is to inform the PC about the capabilities of the printer, such as the
    PDLs it uses, the types of paper it handles, and the fonts installed. When you print a document in an
    application, the print options you select are supplied by the printer driver, although they appear to be
    part of the application.
    In DOS, printer drivers were integrated into individual applications. A few major software packages,
    such as WordPerfect 5.x, provided drivers for a full range of printers, but most included only a few
    generic drivers. If you still use DOS applications, you’ll find that driver development for printers was
    discontinued years ago for most programs. At times like these, the best thing to do is to select a driver
    that supports the same PDL revision as your printer. For example, a LaserJet III driver uses PCL 5,
    which will support almost all subsequent LaserJet models, even if it does not use all the printer’s fea-
    tures. A DOS application that doesn’t have a driver for your exact printer model might not be capable
    of taking advantage of all your printer’s capabilities. However, the ability to print at all from your old
    DOS application might well outweigh the lack of support for special features.
    In all versions of Windows, you install the printer driver as part of the operating system, not in the
    individual applications. The Windows product includes drivers for a range of printers, and individual
    drivers are almost always available from the printer manufacturer’s online services. Note that the dri-
    vers included with Windows are usually developed by the manufacturer of the printer—not by
    Microsoft—and are included in the Windows package for the sake of convenience.
    Although the printer manufacturer develops the drivers for any printer model used with Windows,
    significant differences might exist between the printer drivers included with Windows and those that
    are shipped with the printer or available online. Drivers included with Windows normally provide
    access to a printer’s basic features, whereas the enhanced drivers provided by the manufacturer on
    CD-ROMs included with the printer or via download might include deluxe color-matching, enhanced
    spooling, improved dialog boxes, or other benefits. Be sure to try both types of drivers to see which
    one works best for you. Check the printer manufacturer’s Web site for the latest version of the driver.
    Note that in some cases, printer manufacturers no longer support older printers with enhanced dri-
    vers, forcing you to use the ones supplied with Windows.
    Before you try to use an older inkjet printer in particular with the newest versions of Windows (Me
    and XP), make sure drivers are available. Windows Me can use most Windows 9x drivers for devices,
    whereas Windows XP can sometimes use Windows 2000 drivers. Unfortunately, some relatively recent
    printers are not supported by Windows Me or Windows XP and won’t work with older drivers under
    these operating systems, which means you might need to buy a new printer. Fortunately, printer per-
    formance keeps increasing, even as printer prices drop, so replacing a desktop inkjet printer isn’t a
    major expense—although it can be a major annoyance.

PostScript Printer Descriptions
    Whereas printers that use PCL or escape sequences all have completely separate Windows drivers,
    PostScript printers use a single generic driver to support the PDL. For all versions of Windows, this
    driver is called PSCRIPT.DRV. To support the various capabilities of individual printers, the driver uses
    plug-in modules called PostScript Printer Descriptions (PPDs). The PPD provides information on the
    specific mechanical capabilities of the printer, such as paper trays and sizes, whereas the language sup-
    port is provided by the PostScript driver. To support multiple PostScript printers in Windows, you
    install additional PPDs to the existing driver architecture.

     In addition to the module included with Windows, a PostScript driver called AdobePS also is freely
     available from Adobe, the owners of the PostScript language. If you have a printer that uses true
     Adobe PostScript, this driver is recommended because it provides more complete support for the lan-
     guage and all its capabilities. Although the PostScript driver is provided by Microsoft or Adobe, you
     typically obtain new PPDs from the manufacturer of your printer.

How Printers Operate
     Each of the three main printer types uses a different method to create images on a page, as well as a
     different substance: powdered toner, liquid ink, or a fabric ribbon. The following sections examine
     how each type of printer creates images on the page.

Laser Printers
     The process of printing a document on a laser printer consists of the following stages:
        I Communications
        I Processing
        I Formatting
        I Rasterizing
        I Laser scanning
        I Toner application
        I Toner fusing

     Various printers perform these procedures in various ways, but the steps are fundamentally the same.
     Less expensive printers, for example, might rely on the PC to perform more of the processing tasks,
     whereas others have the internal hardware to do the processing themselves.

     The first step in the printing process is to get the print job data from the PC to the printer. PCs tradi-
     tionally use the parallel port to communicate with a printer, although some printers can use a serial
     port. Network printers often bypass these ports entirely and use an internal Ethernet adapter to con-
     nect directly to the network cable. The newest SOHO and office printers offer USB connections, either
     as their only port or along with a parallel port. For information about parallel and USB ports, see
     Chapter 17, “I/O Interfaces from Serial and Parallel to IEEE-1394 and USB.”
     Communications between the printer and PC obviously consist largely of print job data sent from the
     computer to the printer. However, communications flow in the other direction, as well. The printer
     also sends signals back to the PC for the purpose of flow control—that is, to inform the computer
     when to stop sending data and when to resume. These signals also can indicate error conditions, such
     as paper out. The printer typically has an internal memory buffer that is smaller than the average
     print job and that can handle only a certain amount of data at a time. As pages are actually printed,
     the printer purges data from its buffer and signals the PC to continue transmitting. This is commonly
     called handshaking. The handshaking protocols used for this communication depend on the port used
     to connect the printer to the PC.

   The amount of data a printer can hold varies widely, and you read earlier in this chapter how you
   often can enlarge the buffer by installing additional memory. Some printers even contain internal
   hard disk drives and can store large amounts of print data and collections of fonts. The process of
   temporarily storing multiple print jobs as they await processing is known as print spooling. Spooling
   can also take place in the computer or on the network, using the client PC or the print server’s hard
   drive to store print jobs.
   Almost all printers today support even more advanced communications with a PC, enabling a user to
   interrogate the printer for its current status using a software application and even to configure para-
   meters that previously were accessible only from the control panel on the printer. This type of com-
   munication requires that the PC have a bidirectional, an ECP, or an EPP port and the appropriate
   cable IEEE-1284 parallel cable or be connected via the USB port. If the printer is shared through a
   switchbox, the extension cables and switchbox must also be IEEE-1284 compliant. Bidirectional
   modes enable the printer to transmit more advanced status information, such as ink levels, toner lev-
   els, and error messages.

   If you are not getting ink or toner level messages or other status reports from a parallel printer that is supposed to provide
   this information, check the following:
       I Make sure that EPP or ECP support (check printer documentation for which to use) is enabled in the port setup. On
         most systems, the parallel port is controlled through the system BIOS. Restart your computer and enter the system
         BIOS to verify that the correct setting is present.
       I Make sure you are using an IEEE-1284 parallel printer cable. Many inexpensive cables still sold in stores do not
         support IEEE-1284 modes, such as EPP and ECP, and leftover cables you previously used with a dot-matrix or
         other printer probably don't either. Some printers come bundled with an IEEE-1284 cable, but if you must buy
         one, expect to pay $10–$30 for one, depending on brand and length. I recommend the 10-foot cable because
         it gives you more flexibility than the 6-foot cable for printer placement.

   After the printer receives the data from the PC, it begins the process of interpreting the code. Most
   laser printers are really computers in themselves, containing a microprocessor and a memory array
   that functions much like the equivalent components in your PC. This part of the printer is often
   called the controller or interpreter and includes the firmware supporting the page description languages
   the printer uses.
   The first step of the interpretation process is the examination of the incoming data to distinguish the
   control commands from the actual content of the document. The printer’s processor reads the code
   and evaluates the commands it finds, organizing those that are to be part of the formatting process
   and executing others that require physical adjustments to the printer configuration, such as paper
   tray selection and simplex (single-sided) or duplex (double-sided) printing. Some printers also convert
   the document formatting commands into a specialized code that streamlines the formatting process
   to come, whereas others leave these commands in their raw form.

   A common error after changing printers is failing to set the new printer as the default printer. This often leads to sending
   the wrong printer commands to the new printer, resulting in many sheets of paper covered with gibberish because
   the printer doesn’t understand the (incorrect) commands being sent to it. This is also a concern when using a
   two-printer-to-one-PC switchbox.

     The formatting phase of the data interpretation process involves the interpretation of the commands
     that dictate how the content is to be placed on the page. Again, this is a process that can differ
     depending on the processing capabilities of the printer. With low-end printers, the PC does much of
     the formatting, sending highly specific instructions to the printer that describe the exact placement of
     every character on the page. More capable printers perform these formatting tasks themselves, and
     you might be surprised to find just how much work your printer does in this respect.
     Your application might display your document in a WYSIWYG format that looks very similar to the
     printed output, but this is not necessarily how the printer driver sends the document data to the
     printer. In most cases, the printer actually lays out the document all over again by interpreting a
     series of commands that dictate parameters such as the paper size, location of the margins, and line
     spacing. The controller then places the text and graphics on the page within these guidelines, often
     performing complex procedures (such as text justification) within the printer.
     The formatting process also includes the processing of outline fonts and vector graphics to convert
     them into bitmaps. In response to a command specifying the use of a particular font at a particular
     size, for example, the controller accesses the font outline and generates a set of character bitmaps at
     the correct size. These bitmaps are stored in a temporary font cache where the controller can access
     them as needed while laying out the text on the page.

     The result of the formatting process is a detailed set of commands defining the exact placement of
     every character and graphic on each page of the document. In the final stage of the data interpreta-
     tion process, the controller processes the formatting commands to produce the pattern of tiny dots
     that will be applied to the page. This process is called rasterization. The array of dots typically is stored
     in a page buffer while it awaits the actual printing process.
     The efficiency of this buffering process depends on the amount of memory in the printer and the res-
     olution of the print job. On a monochrome printer, each dot requires 1 bit of memory, so for a letter-
     size page at 600dpi, the memory requirement is 4,207,500 bytes—more than 4MB ([(8.5×11)×600 ]/8).
     Some printers have sufficient memory to buffer an entire page while the formatting of the next page
     proceeds. Others, however, might lack enough memory to store even one full page and use what are
     called band buffers instead.
     Printers that use band buffers divide a page into several horizontal strips, or bands. The controller ras-
     terizes one band’s worth of data at a time and sends it to the print engine, clearing the buffer for the
     next band. This way, the printer can process a page gradually, with the entire array coming together
     only on the photosensitive drum in the print engine. The band buffer method is cheaper than a full-
     page buffer because it uses less memory, but it is also slower and more prone to errors. In recent years,
     the price of memory has dropped so much that band buffers are rarely used in laser printers.
     Band buffers are used primarily by inkjet printers, which convert each line of text or graphics into a

     Some printer drivers enable you to control whether graphics are sent to the printer in vector or raster form. In general, vec-
     tor graphics provide better speed, but if you experience problems with the placement of the graphics on the page, you
     can switch to the raster option. Most printer drivers that offer this feature place the control on the Graphics page of the
     printer’s Properties dialog box. However, some drivers might place the control elsewhere or not provide it at all.

   A common reason for switching to raster graphics is when a multilayer graphic doesn’t print properly. This can be a prob-
   lem with PCL 5 laser printers and some presentation programs, such as Microsoft PowerPoint or Lotus Freelance Graphics.

Laser Scanning
   After the rasterized image of a page is created by the controller and stored in memory, the processing
   of that page passes to the print engine—the physical part of the printing process. Print engine is a col-
   lective term used to refer to the actual imaging technology in the printer, including the laser scanning
   assembly, photoreceptor, toner container, developer unit, corotrons, discharge lamp, fuser, and paper
   transport mechanisms. These components often are treated as a collective unit because the print
   engine is essentially the same hardware that is used in copy machines. Most printer manufacturers
   build their products around a print engine they obtain from another manufacturer, such as Canon. A
   PC printer differs from a copy machine primarily in its data-acquisition and processing procedures. A
   copier has a built-in scanner, whereas a printer receives and processes digital data from the PC. After
   the raster image reaches the print engine, however, the procedure that produces the actual document
   is very similar.
   Figure 2 illustrates the laser writing process.

                                               Rotating mirror

                               Laser beam
                                                                 Laser beam (writes page to drum
                                                                 by discharging portions of drum surface)

           ABC       Laser
                                Developer (spreads toner
                                     across drum)
                                                                                        Charger corotron (corona wire)
                                                                                        (applies charge to drum)

                                                                  Drum                  Discharge lamp (erases drum surface)

                             Transfer corotron                        Detrac              Fuser rollers (melts toner to paper)
                             (transfer corona)                        corotron
                             (applies charge to paper)                (cancels charge
                                                                      on paper)

   Figure 2      The stages of laser imaging with a typical laser printer are shown here.

   The laser assembly in a laser printer, sometimes called a raster output scanner (ROS), is used to create
   an electrostatic pattern of dots on a photosensitive drum (called the photoreceptor) that corresponds
   to the image stored in the page buffer. The laser assembly consists of the laser, a rotating mirror, and a
   lens. The laser always remains stationary. To create the pattern of dots across the horizontal width of
   the drum, the mirror rotates laterally, and the lens adjusts to focus the beam so the dots on the outer
   edges of the drum are not distorted by having been farther from the light source. The vertical motion
   is provided by the slow and steady turning of the drum.

     Because the drum is sensitive to any form of light, it should not be exposed to room light or daylight for extended periods
     of time. Some printers have a protective mechanism that shields the drum from exposure to light whenever you open the
     printer’s service compartment. Even when this is the case, however, you should leave the compartment open only long
     enough to service the printer or change the toner cartridge.

     The photoreceptor drum, which in some printers might actually be a belt, is coated with a smooth
     material that holds an electrostatic charge that can be discharged on specific areas of its surface by
     exposure to light. The initial charge over the entire surface of the drum can be applied by either a
     charger corotron or conditioning rollers. A corotron is a wire carrying a very high voltage that causes the
     air immediately around it to ionize. This ionization charges the drum’s surface and also produces
     ozone, the source of the smell that is characteristic of laser printers. Most recent laser printers use
     charged rollers instead of corotrons specifically to avoid the production of ozone.

     Some laser printer manufacturers, such as HP, refer to coronas instead of corotrons. They perform the same functions.

     Ozone is a noxious and corrosive gas that should be avoided in closed, unventilated spaces. Although ozone is used to
     deodorize air and purify water, working in close proximity to laser printers for extended periods of time without a sufficient
     fresh air supply can cause health problems.
     Many older laser printers have replaceable ozone filters that should be changed after several thousand pages have been
     printed. Check your printer documentation to determine when and if the ozone filter should be changed. Use the self-test
     feature on the printer to print a page showing the number of pages the printer has produced to help you determine how
     many more pages you can print before you should change the filter (or whether you’re overdue).
     HP’s Web site has detailed information on which of its laser printers require ozone filter changes and the relevant part

     The drum is sensitive to any type of light, but a laser can produce fine enough dots to support the
     high resolutions required for professional-looking documents. Every spot the laser light touches on
     the drum is electrically discharged, leaving the pattern of the page’s characters and images on its sur-
     face. The laser in a printer discharges the areas of the drum corresponding to the black parts of the
     page—that is, the characters and images that comprise the document’s content. This is known as
     write-black printing. By contrast, copiers discharge the background areas of the page—a process called
     write-white printing.

Toner Application
     As the photoreceptor drum rotates, the portion of its surface the laser has discharged next passes by
     the developer unit (see Figure 3). The developer is a roller coated with fine magnetic particles that
     function as a “brush” for the toner. Toner is an extremely fine, black plastic powder that actually
     forms the image on the printed page. As the developer roller rotates, it passes by the toner container
     and picks up an even coating of the particles on its magnetic surface. This same developer roller is
     located next to the photoreceptor drum. When its surface passes by the roller, the toner particles are
     attracted to the areas that have been discharged by the laser, thus forming the image of the page on
     the drum using the toner particles as a color medium.

 As the drum continues its slow rotation, it next passes close to the surface of the paper. The printer
 has an entirely separate mechanism for extracting one sheet of paper at a time from the supply tray
 and passing it through the print engine so that its flat surface passes underneath the drum (without
 actually touching it) at the same speed that the drum is rotating. Beneath the sheet of paper is
 another corotron (called the transfer corotron) that charges the paper, causing it to attract the toner
 particles from the drum in the exact pattern of the document image. After the toner is transferred to
 the page, the continued rotation of the drum causes it to pass by a discharge lamp (usually a row of
 LEDs) that “erases” the image of the page by completely discharging the surface of the drum. By this
 time, the drum has completed a full revolution, and the entire charging and discharging process can
 begin again for the next page of the document.

                                 Laser Scanning Unit

                                                             Charge corotron
              Laser                                                                         lamp





                                          Transfer                              Detrac
                                          corotron                             corotron

 Figure 3 A laser printer’s print engine largely revolves around a photoreceptor drum that receives the doc-
 ument image from the laser and applies it to the page as it slowly rotates.

 As you might imagine, these processes leave little margin for error when it comes to the proximity of
 the components involved. The drum must pass very close to the corotrons, the developer roller, and
 the paper surface for the toner to be applied properly. For this reason, many print engines (including
 Canon and HP) combine these components into a single integrated cartridge that you replace every
 time you replenish the printer’s toner supply. This increases the price of the toner cartridge, but it also
 enables you to easily replace the most sensitive parts of the printer on a regular basis, thus keeping
 the printer in good repair.

Toner Fusing
     After the toner is transferred from the photoreceptor drum to the page, the page continues its journey
     through the printer by passing over yet another corotron, called the detrac corotron. This corotron
     essentially cancels the charge that was originally applied by the transfer corotron just before the appli-
     cation of the toner. This is necessary because an electrostatically charged piece of paper tends to stick
     to anything it contacts, such as the printer’s paper-handling rollers or other pieces of paper.
     At this point in the printing process, you have a sheet of paper with toner sitting on it in the pattern
     of the printed page. The toner is still in its powdered form, and because the page is no longer stati-
     cally charged, nothing is holding it in place except gravity. A slight breeze or tremor can ruin the
     image at this point. To permanently fuse the toner to the page, it passes through a pair of rollers
     heated to 400°F or more (see Figure 4). This heat causes the plastic toner particles to melt and adhere
     to the fibers of the paper. At this point, the printing process is complete, and the page exits the
     printer. It is the nature of the toner and the fusing process that causes the characters of a laser-printed
     document to have a raised feel and appearance to them that is very attractive, whereas an inked page
     feels perfectly flat.

                                        Upper Teflon Roller

                                 Heater Halogen                       Toner applied in
                                                                      powder form

                             Lower Pressure Roller

     Figure 4 Laser printing produces an attractive “embossed” appearance because the toner is fused to the
     surface of the paper. Extremely rough paper can cause imaging problems, although laser printers can handle
     many more types of paper than inkjet printers can.

LED Page Printers
     LED page printers, pioneered by Oki Data and produced by Oki Data and Lexmark, represent an excel-
     lent alternative to a “true” laser printer. Both technologies use a rotating drum and copier-like fusing
     mechanism to create high-quality printing. The difference is that LED page printers use an LED (light-
     emitting diode) array, rather than a laser beam, to place the image data on the imaging drum (see
     Figure 5). This difference in imaging provides three advantages:
        I A straight-through paper path
        I A longer warranty on the print head compared to laser printers
        I Faster color printing because all colors can be placed in a single pass, compared to the four-pass
          method that must be used by color laser printers (one color per pass)

     From the standpoint of print quality and speed, LED page printers produce quality comparable to sim-
     ilar laser printers. In essence, LED page printers are “laserless laser printers.”

                                LED array
                            Focusing lens

                                                 ar S                                     Toner


  Figure 5     LED printers use a light-emitting diode array to place the image on the imaging drum.

  Whether you print black-and-white text or graphics with a typical LED page or laser printer, similarly rated printers produce
  an identical page at about the same time. The same is not true for color, however. Why?
  LED page printers are capable of printing all four colors in a single pass of the drum. Laser printers, on the other hand,
  must apply cyan, yellow, magenta, and black colors with separate passes. After the first color is applied, the paper
  passes through the mechanism again for the second color, and so forth. Thus, a color LED page printer has the same max-
  imum speed rating for both color and black-and-white printing, whereas laser-based color printers print black four times
  faster than color pages because only one pass is required for black.

Inkjet Printers
  The data interpretation stages of the inkjet printing process are fundamentally similar to those of a
  laser printer. The main difference is that, because many inkjets tend to occupy the low end of the
  printer market, they are less likely to have the powerful processors and large amounts of memory
  found in lasers. You are therefore likely to find more inkjet printers on the market with relatively
  small memory buffers that rely on the PC for the majority of their processing activities. These printers
  can print graphics using band buffers instead of full-page buffers. Higher-end inkjets, however, can
  have virtually the same processing capabilities and memory capacities as laser printers. Because most
  low-end inkjet printers rely on the computer for much of the processing, slow computers are likely to
  print pages more slowly with a given printer than a faster computer will.
  The primary difference between an inkjet printer and a laser printer, however, is the way the image is
  applied to the page. Inkjet printing technology is far simpler than laser printing, requires fewer and
  less expensive parts, uses less power, and takes up much less space. Instead of an elaborate process by
  which toner is applied to a drum and then transferred from the drum to the page, inkjet printers use
  tiny nozzles to spray liquid ink directly onto the paper in the same dot patterns used by laser printers.
  Inkjet printers print one band of text and graphic data at a time as the printer receives it, as opposed
  to the page-oriented laser and LED printer, which must receive the entire page before printing. For
  these reasons, inkjet technology is more easily adapted for use in portable printers.

     Two basic types of inkjet printing are in use today: thermal and piezo (discussed in the following sec-
     tions). These terms describe the technology used to force the ink out of the cartridge through the noz-
     zles. The inkjet cartridge typically consists of a reservoir for the liquid ink and the tiny (as small as
     1 micron) nozzles through which the ink is expelled onto the page. The number of nozzles is depen-
     dent on the printer’s resolution; configurations using up to 256 nozzles per color are common. Some
     printers provide more nozzles in their black-printing cartridges to improve printing speed. Color
     inkjet printers use four or more reservoirs with different-colored inks (cyan, magenta, yellow, and
     black are the most common; light cyan and light magenta are added for six-color printing by some
     printers for better photo quality). By mixing the different-colored inks, the printer can produce virtu-
     ally any color. Traditionally, inkjet printers have used a single replaceable cartridge to hold the three
     basic colors: cyan, magenta, and yellow. However, more and more printers are using a separate ink
     cartridge for each color, enabling you to replace only the color that has run out.

Thermal Inkjet Printing
     Thermal inkjet printers function by superheating the ink in the cartridge to approximately 400°. This
     causes vapor bubbles to form inside the cartridge and rise to the top of the reservoir. The pressure
     from the vapor forces ink out of the cartridge through the nozzles in tiny droplets that form the dots
     on the page. The vacuum caused by the expelled ink draws more ink down into the nozzles, making a
     constant stream of droplets as needed.
     The thermal type of inkjet printing was the first to be developed and is still the most popular. Because
     of the vapor bubbles that form in the cartridge, Canon began calling its inkjet printers BubbleJet, a
     name that has become almost synonymous with this technology. This method is also used by
     Hewlett-Packard and most others. Because of the high heat used by this method, printers that use
     thermal inkjet printing normally use an ink cartridge that also contains the print head, or, as in the
     case of Canon BubbleJet printers, a removable and replaceable print head with a removable ink car-
     tridge insert.

Piezo Inkjet Printing
     Piezo inkjet printing is a newer technology than thermal printing, and it presents distinct advantages.
     Instead of heat, these printers apply an electric charge to piezo-electric crystals inside the cartridge
     nozzles. These crystals change their shapes as a result of the electric current, forcing the ink out
     through the nozzles.
     Removing the high temperatures from the inkjet printing process presents two important advantages.
     First, the selection of inks that can withstand 400° heat is very limited; piezo technology enables
     printers to use ink formulations that are better suited to the printing process and less prone to smear-
     ing, which is a traditional problem with inkjet printing. Second, spray nozzles that are not exposed to
     extreme heat can last far longer than traditional thermal cartridges. Epson pioneered the use of piezo
     inkjet printing; this method also is used by Lexmark.

Improving the Quality of Inkjet Printing
     The early inkjet printers from companies such as Canon, Hewlett-Packard, and Epson could print at a
     maximum resolution of only 300dpi–360dpi. Since the mid-1990s, though, resolutions have climbed
     to 600dpi and beyond. Today’s cheapest inkjet printers typically have print resolutions of at least
     600dpi–720dpi, and the newest high-performance printers feature resolutions as high as
     1,200×2,400dpi or 720dpi×2,880 for color printing.

Several developments have made these very visible improvements in print quality possible:
  I Improved ink nozzles. By reducing the size of the ink nozzles, a smaller dot is possible, improving
    the look of both black text printing and color images. For example, Canon’s BJC-8200 intro-
    duced a star-shaped nozzle capable of producing a truly round dot with more precise ink place-
    ment to further improve print quality (see Figure 6). Some recent printers also use a staggered
    two-column print head for each color, using one column of nozzles for lower-resolution photo
    printing and adding the second column of nozzles for high-resolution printing by filling in the
    gaps between the nozzles in the first column.

Figure 6 Canon’s BJC-8200 uses a star-shaped nozzle to improve the placement and shape of droplets for
improved resolution and better print quality.

   I Multicolor layering. HP inkjet printers use two forms of a process referred to as Photo REt:
        • Photo REtII. It places 16 dots of ink in various colors into a single dot; conventional inkjet
          printers can place only 8 colors into a single dot.
        • Photo REtIII. It is used on most current HP inkjet printer models and uses a five-picoliter
          droplet and 29 colors of ink in a single dot to print as many as 3,500 color combinations
          per dot using 136 nozzles per each of the three colors in the color cartridge.

   I Reduced ink volume. Even though some inkjet printers of 1997–98 featured print resolutions
     comparable to today’s inkjet printers, current models often provide better-looking print quality
     because they use less ink per droplet, which is measured in picoliters. The Epson Stylus Photo
     890, for example, has the same 1,440×720dpi print resolution as the earlier Epson Stylus Photo
     EX, but the Photo 890 uses only 4 picoliters of ink per droplet, compared with the Photo EX’s
     11 picoliters per droplet. Other models from Lexmark, Epson, Canon, and Hewlett-Packard have
     ink volumes ranging from 7 picoliters to as low as 3 picoliters per droplet, creating pages that
     can dry more quickly as well as display finer print details than older printers. An equivalent
     amount of ink also lasts longer and brings the cost per page down for newer printers when
     compared with older printers that use more ink per printed page.
   I Improved printer-control software. Getting the best results with inkjet printers can be confusing
     because of the wide variety of options for paper type, image type, and print resolutions.
     Enhanced printer drivers supplied with the newest inkjet printers provide better control with
     less possibility of error in printing. Rather than selecting from a variety of print resolutions and
     paper types, these printer drivers often provide a few preselected combinations, as well as pro-
     vide customization for users with special needs.

       I Improved image durability. Whereas most inkjet printers use dye-based inks, which create rela-
         tively short-lived printouts, Epson has pioneered the use of pigment-based inks (DuraBrite) in
         its latest SOHO-market C-series printers and its professional 2000P and 5500 printers. When
         pigment-based inks are combined with Epson archival paper, print life in excess of 200 years is

Inkjet Limitations
     The latest inkjet printers can provide features once found only on laser printers:
       I Full-duplex printing (printing on both sides of the paper) is available with the Hewlett-Packard DeskJet
         990Cse and HP PhotoSmart P1115 (must be purchased as an option).
       I Rated black-ink text print speeds exceeding 10ppm, and as high as 20ppm, are available from the best
         printer models from HP, Epson, Canon, and Lexmark. Although actual real-world performance is far
         less, today’s inkjet printers are definitely a lot faster than their predecessors.

     These features make inkjet printers, with their combination of black-and-white and color print capa-
     bilities, better choices than ever before for more and more SOHO and corporate office users. However,
     the biggest problem remains the need for specially coated or designed papers and transparency stocks
     to avoid smearing and achieve the high-quality results the printers are designed to produce.
     Special inkjet papers can prevent this problem, but they are more expensive and offer far less variety
     than the laser printer papers on the market.
     Inkjet printers also must use special transparency stock with a roughened (sandpaper-like) surface to
     promote proper ink drying. The extra cost of special paper and other print media, along with the rela-
     tively high cost and limited print life of inkjet cartridges, makes them a high cost-per-page type of
     printing. Figure 7 illustrates Canon’s four-layer paper, which is ideal for inkjet printing.

                                                                           Ink-absorbent layer

                                                                           Middle reflective

                                                                           Base paper

                                                                           Black-coated layer

     Figure 7 Special papers, such as Canon’s four-layer inkjet photo-quality paper shown here, are essential to
     getting the best possible print quality from today’s high-resolution inkjet printers. Match the paper to the
     resolution you use for printing and use paper made by the printer maker for best results.

Portable Printers
     Portable printers typically use one of three imaging technologies:
        I Direct thermal output
        I Thermal inkjet
        I Piezo-electric inkjet

  The Pentax PocketJet series uses direct thermal output at 200dpi–300dpi onto specially prepared
  single-sheet heavyweight thermal paper. According to Pentax, its thermal paper printouts are actually
  about half the cost of ribbon-based, thermal-transfer printers such as the now-discontinued Citizen
  PN-series printers and are about 50% faster per page. Pentax PocketJets are designed for portable use
  and require hand-feeding of multiple-sheet print jobs.
  Portable printers made by Canon and Brother represent a miniaturization of normal desktop inkjet
  printers and enable resolutions up to 720dpi with an ink cartridge life of hundreds of pages. Canon’s
  portable printers use the same thermal inkjet print head technology used by their desktop and multi-
  function inkjet printers, whereas Brother uses the piezo-electric technology originally created by
  Although portable printers offer high print quality similar to their desktop siblings of a similar tech-
  nology, they must make compromises in other areas to reach the desired goals of light weight (under
  5 lbs.) and compact size. They typically feature limited paper-handling with small-capacity paper trays
  or sometimes manual feed only. They also often use only a single ink cartridge, requiring a swap to
  print in color. A rechargeable battery might be included, or the printer might use a PC card (PCMCIA)
  interface for both power and data transfer. Other typical features include infrared printing and
  optional scanning heads (which replace the normal print head). Although portable printers can’t
  compete in features or speed with desktop printers, they enable travelers to deliver high-quality print-
  outs anywhere.

All-In-One/Multifunction Devices
  If you are short of space and money, an all-in-one or multifunction device that combines print, scan,
  copy, and sometimes fax features might seem like a desirable alternative to purchasing two or more
  separate devices. You’ll certainly save some money by doing so; you can buy a typical inkjet-based
  printer/copier/scanner for as little as $150 (which is little more than a good inkjet printer costs by
  What might you lose when you put all your digital eggs in one basket by using a multifunction
    I Lower print speed. The print mechanisms found in low-cost all-in-one units can run at speeds sig-
      nificantly slower than those found in most inkjet printers from the same vendor. Laser-based
      all-in-one units often come closer to keeping up with the printer-only siblings.
    I Less sophisticated print features. The print mechanism in an inkjet-based all-in-one unit also
      might lack the latest high-resolution and color-layering print features found in the standalone
      inkjet printers. Laser-based all-in-one units often match their printer-only siblings’ resolutions
      and output options, though.
    I Lower scan resolutions. Whether you choose a sheet-fed model or one of the increasingly popular
      flatbed all-in-one models, you are often limited to 600dpi scans. These are acceptable for scan-
      ning full-size documents but are a limiting factor if you want to enlarge small photos, docu-
      ments, or details from photos.
    I No redundancy. Although convenient, putting fax, printing, and scanning capabilities into one
      device means that if the unit fails or sustains damage, you lose the ability to perform any of it
      functions. With a separate fax machine, printer, and scanner, if one of these devices were to
      cease functioning, the others wouldn’t go down with it.

  Because models change frequently, you should compare the printing and scanning features of any
  multifunction device you are considering to printers and scanners from the same vendor. Keep in
  mind that if you also need a copier and fax machine, most (but not all) multifunction devices also

     feature these options, and you might find that a multifunction device will be used primarily for those
     tasks with just occasional use as a printer or scanner.

Dot-Matrix Printers
     Dot-matrix printers were, at one time, the most popular type of printer on the market because they
     were small, inexpensive to buy and run, and fairly reliable. However, as the price of laser printers
     steadily dropped and inkjet printers that offered far superior output quality at virtually the same price
     came to market, the market for dot-matrix printers contracted dramatically. Although they continue
     to perform certain tasks quite well, dot-matrix printers generally are too noisy, offer mediocre print
     quality, and have poor paper handling for single-sheet paper.
     Unlike lasers and most inkjets, dot-matrix printers do not process documents a page at a time.
     Instead, they work primarily with a stream of ASCII characters up to a line at a time and therefore
     require very small memory buffers. As a result, their speed is measured in characters per second (cps)
     instead of pages per minute. In addition, very little processing is performed in the printer when com-
     pared to a laser printer. Dot-matrix printers do not use complex page description languages such as
     PCL and PostScript. The data stream from the computer contains escape sequences used to set basic
     printer parameters, such as page size and print quality, but any complex processing required is per-
     formed by the PC.
     Dot-matrix printers work by advancing paper vertically around a rubberized roller, called a platen, one
     line at a time. At the same time, a print head travels back and forth horizontally on a metal bar. The
     print head contains a matrix of metal pins (usually either 9 or 24) that it extends in various combina-
     tions to make a physical impression on the paper. Between the pins and paper is an inked ribbon,
     similar to that used in a typewriter. The pins pressing through the ribbon onto the page make a series
     of small dots, forming typographic characters on the page; for this reason, dot-matrix printers are
     sometimes referred to as impact printers. Dot-matrix printers also usually have rudimentary graphical
     capabilities, enabling them to produce low-resolution bitmaps using their limited memory as a band
     Dot-matrix printers typically are associated with continuous sheet paper, driven by pinholes on the
     edges. However, most models can also handle single sheets, although rarely with the accuracy found
     in most laser or inkjet printers. Because they are impact printers, meaning that actual physical contact
     occurs between the print head and the paper, dot-matrix printers can do one thing that lasers and
     inkjets can’t: print multipart forms and carbon copies. Many printers enable you to adjust the pres-
     sure of the impact to support various numbers of copies. Dot-matrix printers are rarely used for corre-
     spondence and general office printing anymore. Instead, they have found their place in commercial
     applications, such as for banks, hotels, auto and appliance parts stores, and warehouses.

Color Printing
     A number of competing technologies are available for color printing aside from the nearly universal
     inkjet printers found at home and the office. Other technologies include color laser and LED printers,
     solid-ink printers, and dye-sublimation printers. Color printing, once limited to only expensive
     graphic arts use, now spans the entire price range of printers—from slow inkjet printers under $100 to
     high-speed, 1,200dpi PostScript laser, LED, and solid-ink printers that cost $2,500 or more. This sec-
     tion covers the various color printing technologies in detail to help you decide whether you need
     more than an ordinary inkjet printer provides for color output.
     Several types of color printers are available; most of them are adaptations of existing monochrome
     technologies. In most cases, color printers function by using the same printing medium in several col-
     ors (usually four). Thus, a color inkjet printer or color solid-ink printer uses four or more colored inks,
     and a color laser uses toner in four colors. As in process color offset printing, virtually any color can

be created by combining cyan, magenta, yellow, and black in various proportions. This is called the
CMYK color model and is referred to as four-color printing. In the past, some very inexpensive inkjet
printers used only three colors, eliminating the black. These printers create a simulated black (often
called process black) by combining the maximum proportions of the other three colors, but the result
is far less effective than a true black medium, as well as costly. If you still are using a single-cartridge
inkjet printer, you’ll find that even the cheapest of today’s dual-cartridge models produces better print
quality for both black and color images without the hassle of flipping ink cartridges in and out of the
printer. Because a true black is available at all times, you also will save money by needing to replace
the color cartridge far less frequently. Depending on the color medium, various processes exist for
combining the four colors (see Figure 8). Most color printers can’t actually mix the four colors to
achieve the desired result as you would mix paint. Instead, the printer applies the four colors very
close to one another in the correct proportion to achieve the desired result. For example, an inkjet
printer works by creating an interlaced pattern of dots, with each dot using one of the four inks. This
is known as bilevel printing. The proportion of dots of each color and the pattern in which they’re
interlaced dictates the final color. This process of mixing different-colored dots to form another color
is called dithering. The process is similar to the display on your color monitor that creates the color for
each pixel by placing red, green, and blue dots of varying intensities very close to one another.

               Drum            Yellow                                    then
                                              or                                To paper

                                              or        Intermediate
                                                      transfer surface

                                                      Direct to paper

Figure 8 Color laser and LED printers transfer the ink (left) to a photoconductor surface (top center)
before it can be transferred to paper. Because four colors are used, this process requires four passes to print a
single page with laser printers, but LED printers can print all four colors with a single pass. Color inkjet
printers spray the colored inks directly onto the paper surface (bottom center), printing all colors in a single
pass. In either case, the printer must control the placement of primary colors to accurately reproduce the
original document.

In most cases, dithering is only a moderately successful color process. The resolution of some color
printers is not high enough to prevent you from seeing the individually colored dots if you look care-
fully. The cumulative effect is of a solid color when seen from a distance, but close up, the dithering
pattern can be discernible to the naked eye. Some methods of overcoming these limitations include
HP’s use of color layering, Epson and Canon’s use of variable-sized ink droplets (similar to laser
printer “font smoothing” technologies), Xerox/Tektronix’s use of solid ink with superfine pitch, many
vendors’ use of six ink colors instead of just four for photo printers (increasing print resolution into
the 1,000dpi or higher range), and the development of photo-optimized high-gloss paper. These tech-
nologies are found on most mid-range ($150 and up) inkjet printers and can produce stunningly good
Printing in color necessarily complicates the language the printer uses to communicate with the PC.
Only the PostScript page description language has supported color from its inception. A version of
PCL 5 with extensions to accommodate color, called PCL 5c, was introduced by Hewlett-Packard in
1994 and is still used by HP on its color LaserJet printers. Most inkjet printer manufacturers, however,

     have their own proprietary color printing technologies, usually employing the printer driver to per-
     form the additional processing required within the PC.
     Obviously, many applications are available for color printing, but the true test of any color printer is
     photographic reproduction. Dithered color that is acceptable for use in a bar chart, for example,
     might be totally inappropriate for printing photographs. Although the first high-resolution color
     inkjet and laser printers produced decent-looking photos only when the output was viewed from a
     distance, color inkjet printers in the $250 and up range are now capable of honestly claiming near-
     continuous-tone photo quality because of the technical developments mentioned in earlier sections.
     Need even better quality? If you are looking strictly for snapshot printing, consider the low-cost ($300
     and up) dye-sublimation printers available from many of the same vendors that produce digital cam-
     eras and DV camcorders.
     If you’re a graphic artist who needs high-quality proofing, consider large-format inkjet, laser, LED, or
     solid-ink printers that provide full-color output at 800dpi or above and have PostScript RIPs included.
     The leader in print quality by many accounts continues to be the Xerox/Tektronix solid-ink-
     technology printers (originally developed by Tektronix and now sold by Xerox).

Color Inkjet Printers
     Inkjet printers use a fairly simple technology that is easy to adapt to color use and initially is the most
     inexpensive. In fact, every inkjet printer on the market today is capable of printing in color. The most
     typical arrangement is for the printer to use two cartridges: one containing black ink only and one
     containing the other three colors (cyan, yellow, and magenta). The advantage of this arrangement is
     that you have fewer individual ink containers to replace, but the disadvantage is that when any one
     of the color reservoirs is empty, you have to replace the entire three-color cartridge, thus driving up
     the cost. Some printers (such as a few of the HP DeskJet and Canon BubbleJet models) also accept a
     second three-color cartridge in place of the black one or allow six separate ink cartridges, providing a
     six-color printing solution that achieves better results in photographic printing. Some mid-range and
     high-end color inkjet printers use a separate tank for each color, which enables more economy in
     color use, especially for people who use a single color frequently.
     Inkjet printers can have problems with various types of papers. The ink must dry quickly on the paper
     to keep from smearing. Standard inexpensive copy paper is relatively porous, which enables quick
     drying, but it also causes the ink to be wicked along the paper fibers. This expands dot size, making
     the image less sharp and dulling the colors. Inkjets have just the opposite problem when printing
     transparencies or even coated papers. Because of their hard and smooth surfaces, the image can easily
     smudge before it has a chance to dry. Normally for the best results, you need special paper for an
     inkjet printer.
     Inkjet printers can be sensitive to environmental conditions. For example, if conditions are very dry
     and usage is low, some ink can dry in the print nozzles, clogging them and resulting in missing colors
     and terrible-looking print jobs. On the other hand, humid conditions can slow ink drying, which can
     lead to smudging, dot blooming, and feathering. Also, if the paper curls due to high or low humidity,
     it can make contact with the print head, smudging the print. I recommend that you clean the heads
     using the inkjet printer’s own cleaning feature before you start a print job on high-quality media,
     especially if you haven’t printed for several days with that printer.
     Another problem with inkjet printers relates to the ink levels. When the ink runs low, it causes sput-
     tering, resulting in fuzzy text and images. Compounding this, the ink level can be difficult to accu-
     rately gauge in an ink cartridge. On some inkjet printers, pages will continue to print even though
     one or more inks have been exhausted. This can cause a significant amount of waste when it occurs
     in the middle of a large print job. Many newer models have improved their ink-level sensors, but it

  still pays to keep an eye on a long, multipage print job if you haven’t replaced the ink cartridges for
  Inkjet printers vary widely in their capabilities and prices. Very low-end models typically operate at
  600dpi–720dpi, support only letter-sized paper, and print color at only 3ppm–4ppm. Some of the
  newest models in the under-$100 category have only a USB port, which can prevent you from using
  the printer if you still use Windows 95. Some late releases of Windows 95 have USB support, but most
  vendors require Windows 98 or later. As you move up the price scale, resolutions and speeds increase;
  parallel, USB, IEEE-1394, and network interface options are added to some models, and printers might
  be capable of using larger page sizes. One specialized breed of printer that often uses inkjet technol-
  ogy is designed to print poster-sized images on paper up to 36'' wide.
  Some of the latest inkjet printers have added features, such as
    I Duplex printing
    I Flash memory slots for instant printing of digital camera photos
    I Print heads that can be interchanged with scanning heads
    I Archival ink for extended printout life when special papers are used

  Use the printer selection criteria section later in this chapter to help you focus on the most important
  features you need.

Color Laser Printers
  Color laser printers are a relatively recent development when compared to the other technologies dis-
  cussed here. The technology is the same as that of a monochrome laser printer, except that it has four
  toners in different colors. Unlike the other types of color printers, which apply all the colors at the
  same time, many color lasers actually print each color on the page individually. Because the printer
  has only a single photoreceptor drum, the entire print engine cycle repeats four times for each page,
  applying the colored toners on top of each other.
  This method greatly complicates the printer’s paper handling. In a monochrome printer, the page
  passes beneath the photoreceptor drum at a speed equal to the drum’s rotation so the toner can be
  applied evenly onto the page. In a color printer, however, the page must reverse so that it can pass
  under the drum four times. In addition, the page must be in precisely the same position for each pass
  (registration) so the individual dots of different colors fall directly on top of one another.
  Toner levels can affect the quality of output from laser printers. Just as with monochrome lasers or
  copiers, a gradual degradation of quality occurs—or variations in print density—over the life of a
  toner cartridge. This becomes most noticeable as the toner runs out and is compounded in a color
  laser by the fact that four toner cartridges are used.
  Color lasers can suffer from registration problems because the same piece of paper has to make four
  passes. If any misalignment occurs, the colors will be slightly smeared or smudged. Textured paper
  types also can pose problems. If the paper has a textured or rough surface, such as classic laid bond,
  toner is deposited in both the high and low spots, but the fuser rollers might not exert sufficient pres-
  sure to reach the depressions. As a result, the toner can remain a powder in those places and can be
  brushed off during normal handling.
  To overcome the speed and registration problems of conventional color laser printers, the LED page
  printer mechanism (using light-emitting diodes instead of a laser) pioneered in desktop printers by
  Oki Data is now being used by both Oki Data and Lexmark in some color page-printer models.
  Printers using LEDs can print color pages at the same speed as monochrome pages because they can

     place all four colors in a single pass. Some lasers mix the toner on the drum by applying each toner in
     turn, after which all four colors are laid onto the paper at once. This eases the paper-handling difficul-
     ties but presents other problems when applying the toner to the drum. In either case, the result is
     four toner colors mixed on the page and passing through the fuser assembly at once. This technique
     provides results that are vastly superior to dithered inks and other media. However, color laser print-
     ers are still very expensive, with PostScript-compatible models starting at $2,000–$3,000. Also, because
     the drum must rotate four times for each page, these printers are significantly slower than mono-
     chrome lasers. Although new developments in host-based color laser printers designed for Windows
     have dropped the price of some models below $1,300, host-based printers generally are unsuitable for
     elaborate graphics printing.
     In addition to the relatively high initial costs of color laser printers, the type and costs of consum-
     ables and accessories should also be considered before acquiring a color laser printer.

Environmental Issues with Color Laser Printers
     Humid or dry conditions can affect laser output as well. As the paper passes through the laser printer,
     it receives a static charge so the oppositely charged toner can adhere to it. If the static charge on the
     paper is too great due to low humidity, the toner can spread or splatter when transferred to the paper.
     On the other hand, if the humidity is high and the paper won’t hold a charge, the toner might not
     transfer to the page effectively, resulting in uneven print.

Solid-Ink Printers
     I’ve become somewhat jaded in this business; it takes something really astounding to get me excited.
     Well, excited is exactly how I felt when I discovered the secret to truly usable and functional color
     printing—that is, color printing that would have the speed and low cost of monochrome and yet be
     capable of printing in full color as easily as black and white, with none of the standard color draw-
     backs of inkjet or color laser printers. The secret I’m referring to is solid-ink printing, developed origi-
     nally by Tektronix and now owned by Xerox.
     Solid-ink printing was first developed by Tektronix in 1992, and although one or two other compa-
     nies played with the technology, Tektronix is the only company that remained committed to making
     it work. In 1998 and 1999, it completely revised its product line and came out with some revolution-
     ary products. It received 35 patents on its latest product, the Phaser 850 printer family. So revolution-
     ary is its designs that it caught the attention of Xerox, which purchased the color printer division of
     Tektronix just to get the technology and patent portfolio. As it stands, Xerox is currently the only
     source for this type of printer. With an initial cost less than that of most color laser printers (about
     $2,000 to start for the 1,200dpi Phaser 860) and the low cost of the consumables, solid-ink is not only
     the best color printing technology I’ve seen, but weighing cost versus benefits, it’s by far the most

How Solid-Ink Printers Work
     Solid-ink technology uses blocks of wax that are dropped into a loading tray and melted internally in
     the printer. When printing, the colored inks are sprayed onto a drum and then transferred to the
     page, much like a monochrome laser would work. The main difference between solid-ink and color
     laser, though, is that with solid-ink only one drum is used and all the colors are applied simultane-
     ously to the drum with a special print head. The result is printing that is fully four times faster than
     color laser, with printing that looks incredibly smooth and saturated—due to the natural blending of
     the colors as they are applied.
     Not only is the solid-ink printer four times faster than a color laser when printing in color, but it
     is also faster when initiating the print job. A typical color laser, such as the HP 4500, takes

    approximately 36 seconds to print the first page, whether you are printing in monochrome or color.
    Conversely, the solid-ink Xerox Phaser 860 takes about 10 seconds for the first page to print. Part of
    this is because of the use of a high-speed, 250MHz PowerPC processor inside the printer, which is
    faster than most other printers on the market.

Print Quality
    Although solid-ink is technically a dot-level technology just like laser or even inkjet, the resolution is
    incredibly fine (1,200dpi), and the natural blending of the melted ink renders beautifully saturated
    and vibrant colors with virtually no trace of dithering. The printing has an almost raised quality to it,
    similar to how some business cards are printed in raised ink. This is because the ink is actually wax,
    which is not just coating the paper but becomes embedded in it. The printed result is durable and
    impervious to water (unlike inkjet printing). Heat can be a concern, but the ink melts at a relatively
    high temperature of 165°F, which wouldn’t be experienced under normal circumstances. Still, you
    might be careful about leaving print jobs in a locked car in the summer, where temperatures that high
    are common.
    To see how revolutionary solid-ink printing really is, you must compare it to the other color printing
    technologies. In virtually every area solid-ink has them all beat. Take speed, for example. A color laser
    printer is four times slower than a monochrome laser for the simple reason that four complete laser
    mechanisms exist inside the printer and the paper must travel through all of them to pick up the vari-
    ous colors. This means that most color lasers, such as the HP 4500 series, end up with a 4-page-per-
    minute (ppm) output rate. By comparison, the Xerox Phaser 850 has an astounding 14ppm output
    rate, in color, which is the same speed in monochrome and the same speed as a monochrome laser.
    That’s true color printing at the same speed as monochrome. You can request an information pack
    that includes page samples from the Xerox Web site.

Low Costs for Consumable and Maintenance Items
    One of the biggest benefits of solid-ink printing is that of consumables, or rather the lack of them. A
    solid-ink printer can print 45,000 pages nonstop before it needs any attention. The only part that
    needs to be replaced at that time is a very low-cost maintenance roller, which can be replaced in less
    than one minute with no tools. Because you can add solid ink sticks even while the printer is run-
    ning, you can print for almost two years without ever having a single print job interrupted.
    By comparison, the average number of pages a color laser printer can print before it requires some
    form of attention (new imaging kit, transfer kit, toner cartridge, fuser, and so on) is only about 1,250
    pages. That would occur every two or three weeks in a typical office environment. Not only are the
    consumables less costly for the solid-ink printer, but Xerox and Tektronix offer black ink for free dur-
    ing the life of the printer. Thus there is no penalty for printing monochrome; in fact, you could say
    monochrome printing is subsidized.
    Consider that an average office prints about 50,000 pages every two years. To print 100,000 pages (or
    four years’ worth of printing), a typical color laser will consume 100 expensive toner cartridges ($100
    each), 20 imaging kits ($75 each), 2 transfer kits ($150 each), and 1 fuser ($200). To print the same
    number of pages on a solid-ink printer uses only 85 blocks of ink ($50 per block, except black ink,
    which is free for the life of the printer), and 2 maintenance rollers ($130 each). This makes the total
    cost of consumables less than half that of a color laser, and with far less maintenance and print stop-
    pages or problems along the way.
    Not only does the solid-ink printer have very little in the way of consumables compared to a color
    laser or even an inkjet, but the ink blocks are 100% biodegradable and even edible, although I don’t
    think they taste very good. Seriously, though, very little is wasted with solid-ink technology, and the
    wax ink blocks are no more harmful to the environment than crayons. Also, no toner cartridges have

     to be thrown away or sent back for refilling. If any color runs out, the printer simply stops and waits
     for you to drop in another block. The last page printed before the ink runs out will look as good as
     the first page printed after the ink is replenished. There is simply no degradation in quality no matter
     what the status of the ink.
     Unlike lasers, no registration problems occur with solid-ink. Because the color is applied to the drum
     in one pass, the registration is perfect every time. Inkjets have problems with various types of papers,
     whereas solid-ink prints the same regardless of paper type. In other words, you can use cheap paper
     without bleeding, smudging, or dull color output. The latest Xerox model, the Phaser 860, uses an
     improved ink stick (ColorStix II) that improves the feel of the printed page and provides better print
     quality on all types of paper, smoother transitions and fills, and sharper images.
     Temperature and humidity levels have little or no effect on solid-ink print quality. Solid-ink prints are
     not affected by contact with moisture.
     Over the years I’ve tried inkjet and color laser printers, and neither of them were workable for me as a
     sole printer. I still had to maintain a laser printer for black-and-white printing. With solid-ink tech-
     nology, I now have the first printer I’ve seen that can serve as the sole printer in an office, handling
     both color and black-and-white with the same speed and efficiency. Check with Xerox at http://
     www.xerox.com for more information on solid-ink printing and the printer models available.

Dye-Sublimation Printers
     Dye sublimation, also called thermal dye transfer, is a printing technique that uses ribbons containing
     four colored dyes the printer heats directly into a gas. This way, the four colors are mixed before the
     printer applies them to the paper. These printers can produce 256 hues for each of the four colors,
     which combine into a palette totaling 16.7 million colors. This results in continuous tone (that is,
     undithered) images that come very close to photographic quality.
     Dye-sublimation printers produce excellent output, but they suffer in almost every other way. They
     are slow and costly, both to buy and to run. They also require a special paper type that is quite expen-
     sive, as are the ribbon cartridges they use. However, dye-sublimation technology is quite compatible
     with thermal wax-transfer printing; the two differ primarily in the color medium they use. Several
     manufacturers make dual-mode printers that can use both thermal wax transfer, which is less expen-
     sive, and dye sublimation. This enables you to use the cheaper thermal wax mode for proofing and
     everyday printing, saving the dye-sublimation mode for the final product and other special uses.
     One of the pioneers of this technology, Fargo Electronics, has turned its attention to card printers, but
     many other vendors—including Alps, Fuji, Kodak Digital Science, Mitsubishi, Olympus, and others—
     have introduced dye-sublimation printers for uses ranging from inexpensive snapshot printing to
     high-end graphic arts. Typical print resolution is around 300dpi, and some models can print directly
     from digital flash memory cards. Because some models are battery powered (with an optional AC
     adapter), you can use them along with your digital camera for a twenty-first-century version of
     instant photography. Some vendors also sell portable models that work only with their own digital
     cameras, such as Canon’s CP-10 for the Canon PowerShot A10/A20 and Digital ELPH series.

Thermal Wax-Transfer Printers
     Thermal wax-transfer printers use wax-based inks, similar to the Tektronix/Xerox solid-ink technol-
     ogy, but at a much lower resolution and quality. They apply the ink directly to the page like an inkjet,
     not to a drum like a laser does. The process is faster than dye sublimation but is still much slower
     than even a color laser. The low resolution (generally 300dpi) means the dots are very coarse and col-
     ors are dithered rather than smooth. The print quality suffers as a result when compared to continu-
     ous tone output, but it is generally better than the output from inkjets.

  In printers that offer both dye-sublimation and thermal wax-transfer options, the thermal wax-
  transfer is used for proofing and the dye-sublimation mode is used for final results.

Choosing the Right Color Printer for the Job
  Unless you are faced with a very tight budget, you have a wide variety of choices you can make when
  it’s time to select a color printer. What type of color printer you choose should be determined by how
  critical you are about the color quality, how long you want the output to last, how fast you want the
  output, and whether the output will be considered the final result or is being used as a proof for eval-
  uation before a higher-performance printer or typesetter is used to produce the final page.
  SOHO users who use color sparingly and print just a few color pages a week can use any of the cur-
  rent inkjet printers with resolutions at 600dpi or above, either in a standalone version or as part of a
  multifunction/all-in-one device.
  If you are an amateur photographer, you might want to consider a specialized inkjet photo printer
  with a resolution of at least 1,440×720dpi or 1,200dpi or higher. Even though most of these printers
  can be used for text work as well, they are optimized for photos. Some of them use six, rather than
  just four, ink colors. If you are looking strictly for snapshot-sized (4''×5'') output, choose from the low-
  cost (under $500) 300dpi dye-sublimation printers made by Olympus, Canon, and others. If you are
  willing to spend $200–$1,000 or more, you can choose from a variety of specialized models, including
  features such as these:
     I PC Card and Compact Flash slots for direct import of digital photos into the printer, so you can
       print without a computer
     I Duplex operation for double-sided color printing
     I Archival-quality photo printing using specially formulated inks and archival paper
     I Wide-format printers
     I Printers with network and IEEE-1394 interfaces

  Most of the choices listed here use inkjet technology, but a few dye-sublimation printers that achieve
  true continuous-tone results are available starting around $300. If you are a graphics professional,
  very few of the color printers under $1,000 will be suitable for you because most models either lack
  built-in PostScript RIP features or are too slow for producing proofs in a high-volume production envi-
  ronment. Most inkjet printers that sell for prices above $1,000 are suitable for graphics pros, but the
  high cost of consumables (ink and paper) for these models makes color laser, LED, or solid-ink print-
  ers (most of which have PostScript built in) a suitable alternative for many users.

  In the world of color printing, low-cost is a highly relative term. To a professional graphic artist or designer, a $2,000
  color inkjet or $5,000 color laser printer is a low-cost alternative to the enormously expensive printing systems used by ser-
  vice bureaus. As you learned earlier in this chapter, you can purchase high-quality, low-cost color inkjet printers in the
  $150–$300 range.

The Effect of the Cost Per Page on Color Printing
  Should you use separate black and full-color printers? Despite the huge improvements in both color
  inkjet and color laser printers in the past few years, the answer is still “yes” in most cases. If you are a
  SOHO user, for example, using a single color inkjet printer for both full-color and black-text output
  could cost you much more per year than if you used a monochrome laser printer for text output.

     For example, a November 2000 PC Magazine study of print costs per page found that the average cost
     per page of an inkjet printer for color and black ink ranged from as little as 7 cents per page to as
     much as 31 cents per page (based on 5% coverage of the page for color prints and 8% of the page for
     black text). If a user printed just 25 black-text pages and 25 color prints per week, the ink cost at
     7 cents per page would reach about $190 per year, whereas ink costs at 31 cents per page would
     exceed $800 per year! This is enough to pay for a SOHO-market laser printer—twice. Low-cost printers
     tend to have higher cost-per-page figures because of the small capacity of their ink tanks.
     For the best bang for the buck in a SOHO environment, I recommend that you use a mid-range
     ($150–$300) inkjet printer for color work and a laser printer for black text. Laser printers typically
     have a toner cost of well below 1 cent per page, less expensive paper when compared to inkjet print-
     ers, and better (and faster!) black-text quality, even when compared to inkjet printers with higher dpi
     How expensive to operate are 1,200dpi color laser printers, such as the Xerox Phaser 860? For a
     black-and-white business letter (3% page coverage), this printer costs just a half-cent per page. For
     example, with 15% of the page covered with text and limited color illustrations, the Phaser 860 costs
     just 6.3 cents per page. For a typical color flyer with 24% page coverage, the Phaser 860 costs just 11.3
     cents per page. These values compare favorably with inkjet printers and don’t take into account the
     much faster speed of color laser printing. Although color lasers can cost 10 times as much as mid-
     range inkjet printers, their operating costs are much lower than the average.
     One variable not figured in the previous discussion can substantially change the cost-per-page picture:
     the cost of paper.
     The typical monochrome laser printer has a miniscule cost per page, even when paper is considered.
     Ordinary copy paper selling for under $4/ream produces very sharp and satisfactory results in opera-
     tion because the fuser bonds the toner to the paper. Similarly, color laser printers also can use ordi-
     nary paper for text, although more expensive coated paper at costs of about 90 cents per sheet is
     recommended for best results in color page proofing or final production.
     Inkjet printers require better paper to reach their rated resolutions. Why? As you learned earlier,
     inkjets spray the ink onto the paper, where it dries to make the image. The rough surface of typical
     copy paper—although no barrier to acceptable operation with laser printers—greatly reduces the effec-
     tive visual resolution of an inkjet printer because the ink wicks through loose fibers on the surface of
     the paper.
     At a minimum, smooth papers designed for inkjet printers (and costing a buck or two more per ream
     than copy paper) should be used even in high-speed “plain paper” printing modes for best results.
     If you decide to print your own photos (and avoid a trip to the photo counter at your local store for
     reprints), be prepared for sticker shock. Although many grades of so-called “photo paper” are available
     for inkjet printers, the newest 2,400dpi and 2,800×720dpi printers need the finest-quality glossy
     photo stock for best results at costs of as much as $1.75–$2 per full-page sheet. If your printer isn’t
     designed to handle snapshot-size paper, I recommend that you buy the 8.5''×11'' paper that has
     punchouts for two 4''×6'' or 5''×7'' prints; you print two pictures per page either using your standard
     graphics or page-layout program or using special color-printing software supplied by some vendors. If
     you plan to print more than a few pages per month, consider carefully how much your printer costs,
     how much your media costs, and how much your ink or toner costs per page before you decide which
     color printer to buy.

Choosing a Printer Type
  With so many printers to choose from, going to the store or e-store to find the best one for your
  needs can be confusing. This section helps you focus on the best choices for you and your company
  or family.
  When you’re buying a printer, you’re really buying a combination of the following factors:
    I Output quality
    I Output speed
    I Versatility
    I Flexibility
    I Economy
    I Reliability

  Always keep in mind that your printer makes an impression on those who receive the output. Make it
  a good impression!
  Because the print quality is really the bottom line when it comes to printing, use the checklists that
  follow to help you decide on two or three models. Then, compare prices, availability of supplies, cost
  per page, and print quality to help you get the best models for your needs. Most printer manufactur-
  ers allow you to request print samples from their Web sites, enabling you to see actual output, even if
  your local stores don’t have the model set up for a live demonstration.
  Use the following feature checklists to help you focus on the most important features. Three check-
  lists are presented: one for SOHO users, one for network users, and one for mobile users.

SOHO Users
  SOHO (small office, home office) users often must use a single printer as a jack-of-all-trades. The fol-
  lowing checklists will help you buy a printer that comes as close as possible to “mastering” your
  small-office or home-office domain.
  For inkjet printers, I recommend that you purchase a printer with the following features:
    I At least two ink cartridges (one for black and one for color). This enables you to print true black and
      full-color without changing ink cartridges.
    I A print resolution of 720×1,440dpi, 1,200dpi or above.
    I A rated speed of at least 12ppm (pages per minute) for black and 8ppm for color text. Actual speeds
      will be less.
    I A parallel or USB port. I prefer having both ports in case I want to use the printer with Windows
      NT 4.0, older versions of Windows 95, or DOS applications (none of which have USB support).
      Linux support for USB varies with the distribution you use.
    I Compatibility with your operating system. Check the printer vendor’s Web site for drivers. If you
      are planning to use the printer with Linux, check the Web for drivers that support your pre-
      ferred distribution (“distro” in Linux-speak) because most printer vendors still don’t support
      Linux with their own drivers.

     Desirable options include
       I 1,200×2,400dpi or 720×2,880dpi.
       I Separate ink cartridges for each color.
       I Photorealistic features, such as six-color output and color-layering. This can improve photo appear-
       I Flash memory slots. These are useful for digital photographers.
       I High-speed black ink cartridges (if it’s your only printer). These have more nozzles for faster print-
       I Duplexing capability. Printing on both sides of the paper makes creating double-sided originals
         very simple and saves paper.
       I Pigmented ink. If you’re using the printer for photos and are serious about long-term durability,
         matching pigmented ink with archival paper can help you create prints that can outlast regular
         photographic prints.

     For laser printers, I recommend that you purchase a printer with the following features:
       I A true print resolution of 1,200dpi or above.
       I 12ppm or higher print speeds.
       I PCL 5 or above (true or a good emulation).
       I At least 4MB of RAM or above. This should be installed at the factory or be field-upgradable.
       I A parallel or USB port. I prefer having both ports in case I want to use the printer with Windows
         NT 4.0, older versions of Windows 95, or DOS applications (none of which have USB support).
         Linux support for USB varies with the distribution you use.

     Desirable options include
       I High-capacity paper trays. This enables you to print large jobs without constantly reloading the
       I Optional straight-through paper path. Makes printing heavier paper stock, business cards, labels,
         and envelopes more reliable.

Network Users
     A printer that will be shared among many users needs more horsepower and more features than a
     printer meant for a single user. Some features from the SOHO checklist are repeated here, but the
     emphasis is on helping you get a printer that’s meant to be shared among all types of users.
     For inkjet printers, I recommend that you purchase a printer with the following features:
       I Separate ink cartridges for each color. This enables you to replace only the color that runs out.
       I A print resolution of 720×1,440dpi, 1,200dpi, or above.
       I A speed of at least 15ppm for black and 10ppm for color.
       I A parallel port or USB port and an Ethernet port (standard or optional).
       I True PDL or escape-sequence printer control. The printer should not be host based (it should not
         use Windows GDI or HP PPA technology).

  If the printer is designed for use only with Windows, it’s usually not networkable.

     I Can be networked.
     I Supports all networks and operating systems used in the office.

  Desirable options include
     I Photorealistic features (if you print photos).
     I High-speed black ink cartridges for extra speed.
     I Envelope feeder.
     I Duplexing capability. Printing on both sides of the paper makes creating double-sided originals
       very simple and saves paper.

  For laser printers, I recommend that you purchase a printer with the following features:
     I A true print resolution of 1,200dpi or above
     I 15ppm or higher print speeds
     I PCL 5 or above (true or a good emulation)
     I Support for all networks and operating systems in your office
     I At least 8MB of RAM or above (installed at the factory or field-upgradable)
     I A USB port and an Ethernet port (standard or optional)
     I High-capacity paper trays

  Desirable options include
     I Modular paper trays for adding extra capacity.
     I Envelope feeder.
     I Duplexing capability. Printing on both sides of the paper makes creating double-sided originals
       simple and saves paper.

Mobile Users
  Mobile printer users have limited platform choices because only thermal or small inkjet printers are
  available. However, a checklist can still provide valuable guidance:
     I Same PDL or escape-sequence control as used by office printers to make field printing similar to
       office printing.
     I Parallel interface with optional PC Card or USB (preferred) for portability between systems.
     I Multiple-sheet paper feed to improve reliability of printing.
     I Readily available ribbons, ink cartridges, or thermal paper (check your favorite office supply
       chain to see whether you can get spares at any of their locations).
     I Print quality is more important than speed.
     I 12 minimum speed for laser-based models.
     I Copier that can run whether computer is on or off.
     I Fax features.

Installing Printer Support
     As soon as you connect a typical printer with a PDL or escape-sequence controls onboard to your PC’s
     parallel or serial port, it is capable of receiving and processing ASCII text input. Even before you
     install a driver, you can issue a simple DOS command, such as the following:
     dir > LPT1

     The greater-than sign in this command redirects the directory listing to the PC’s parallel port. A
     printer connected to that port will receive and print the listing using the printer’s default page format.
     If the printer connected to your PC processes data a page at a time, you must manually eject the cur-
     rent page to see the printed results. This is because the echo command does not include the form feed
     escape sequence that causes the printer to eject the page.
     You also can redirect a text file to the printer port using a command such as the following:
     copy readme.txt > LPT1

     These commands prove that the PC’s parallel or serial port provides a fully functional interface to the
     printer, but to exercise any further control over the print job, you must install a printer driver.
     However, if you are troubleshooting a system problem that prevents you from loading the Windows
     printer drivers, this capability can be useful for printing documentation files or other documents.

     These simple tests will not work with most host-based printers. A few can perform these DOS-based tests from within a
     DOS session running under Windows (a “DOS box”), but most require that printer drivers be installed first.
     PostScript-only printers must receive PostScript commands to print. A simple printer test that does work with PostScript print-
     ers is part of the venerable Microsoft MSD utility shipped with MS-DOS and Windows 3.1 and is found on the Windows
     95/98/Me CD-ROM. A dual-mode printer with both PostScript and PCL modes will use the PCL mode for this print test if
     PCL is the default mode.

DOS Drivers
     Many DOS programs use no printer drivers, relying instead on the capabilities of the printer and the
     ASCII characters that represent control codes (such as carriage return and line feed). Larger applica-
     tions, however, such as word processors and spreadsheets, typically do include drivers for specific
     printers. Normally, the driver selection is part of the program’s installation process.
     Only a few DOS applications provide driver support for a large selection of printers. WordPerfect, for
     example, traditionally took pride in its comprehensive printer support, but most applications tend to
     include a few generic drivers that enable you to specify your printer only in the most general sense.
     There have been virtually no new MS-DOS programs in several years, meaning that you will probably
     have a difficult time finding support for a new-model printer even in a product such as WordPerfect.
     If you have a laser printer that is not specified in the application’s list of drivers, you should be able
     to use a driver supporting the same version of the page description language your printer uses. A
     LaserJet III driver, for example, will function with any of the LaserJet III variants—such as the IIId and
     the IIIsi—because they all use PCL 5. The same driver also should work with the LaserJet 4 and 5 lines
     if necessary because the versions of PCL these printers use are backward compatible with PCL 5.
     These more generic drivers might not support all your printer’s paper trays and the other features
     that distinguish the various models. For example, you will not be able to print at 600dpi on your

  LaserJet 5 printer with a PCL 5 (not PCL 5e) driver. However, you should be able to expect reasonably
  good results with this type of driver support.
  If you have an inkjet printer, you might need to use it in an emulation mode, treating it as a very
  quiet dot-matrix printer. Check the emulations recommended.

  DOS printing support, once a given except for PostScript-only printers, is becoming a missing feature, especially with low-
  cost laser and inkjet printers. Some models offer printing from within a “DOS box” under Windows, but this is of no help
  if you need to print BIOS setup screens or need to print from a DOS program without Windows in the background. The
  lack of DOS support in new printers is a good reason to keep older inkjet or dot-matrix printers that use a true PDL or
  escape-code sequence programming around for utility jobs.

Windows Drivers
  Printer drivers in Windows differ from those in DOS in two ways:
     I The printer drivers are part of the operating system, so a Windows printer driver supports every
       Windows application.
     I You can get printer drivers for your specific model from the printer manufacturer rather than
       waiting on an application software developer.

  Windows 3.1, Windows 9x/Me, Windows NT, Windows 2000, and Windows XP might use different
  drivers to support the same printer, and the interface you use to add printer support might be differ-
  ent in each operating system, but the process of installing a driver is fundamentally the same:
     1. Select a printer manufacturer.
     2. Select the model of printer.
     3. Select the port (serial, parallel, network, or USB).

  This process is performed through the Printers icon in the Control Panel.

Using the Printers Icon in the Control Panel
  All the Windows operating systems have a Printers icon in the Control Panel. This is the central loca-
  tion for all driver-configuration activities, including
     I Local printer driver installation
     I Network printer driver installation
     I Printer testing
     I Alternative drivers for a given printer
     I Viewing and setting of printer properties
     I Printer diagnostics and utilities (many inkjet printers have head-alignment or cleaning features
       located on the properties sheet)

  If you have a printer that offers a choice of PDLs, you can install a driver for each of the supported
  languages (typically PostScript and PCL) and select either one when you print a document. Experience
  will teach you that each language has its strengths and when to use a particular language. Normally,
  PCL is better for text-heavy documents, whereas PostScript is better for elaborate graphics, especially
  those created with programs such as Adobe Illustrator and CorelDRAW.

     If you have a network client installed on your system, you can install drivers for the printers you reg-
     ularly access on the network. The Printers Control Panel enables you to browse the network by using
     your client and to select the objects representing your network printers.
     You also might encounter situations in which it is convenient to “print” a document to an imaginary
     printer. If, for example, you have to submit a desktop publishing document for prepress work, you
     can install the appropriate driver for their image setter on your PC and save the print job data to a file
     instead of sending it out through a parallel or serial port.
     The PDL code created by a printer driver is simply ASCII text, and as such, you can store it as a nor-
     mal file on your PC. All Windows and most DOS printer drivers enable you to select an output desti-
     nation of FILE as an alternative to a parallel or serial port. When you actually print a document, the
     system prompts you for the name and location of the output file to be created.
     You can then transport the print file to a system with the appropriate printer by using a disk, a
     modem, or any other standard medium. After the file is there, you can simply direct it out the appro-
     priate printer port by using the COPY command shown earlier. Because the printer driver has already
     processed the job, you do not need to have the application that created the document or the printer
     driver installed on the system. All the commands are in the output file, and you simply must get the
     file to the printer. With Windows, you also can drag-and-drop the output file to the appropriate
     printer icon or right-click the file and select Send To (printer name) to print the document.
     If you need plain-text output from a program that lacks a File, Save command but allows printed out-
     put, you should set up a text-only printer (Generic-Text only in Windows) as one of your printer
     choices and set its port to FILE. “Print” a report to this “printer” and you create a plain-text ASCII file
     you can use with a word-processing program.

Windows Driver Installation
     32-bit Windows versions (9x through XP) include a wizard for installing printer drivers that walks you
     through the entire process. When you click the Add Printer icon in the Printers Control Panel, the
     wizard first asks whether you are installing a printer connected to the local machine or to the net-
     work. You then select the manufacturer of your printer and the specific model.
     Current Windows operating systems include a comprehensive selection of printer drivers, but they
     also include a Have Disk button that enables you to install drivers you have obtained from the manu-
     facturer of your printer or from other sources.
     After selecting the printer type, you specify the port to which the printer is attached. The available
     COM and LPT ports installed on your system are listed. The FILE option enables you to save print jobs
     to disk files.
     The wizard also asks whether you intend to use the printer with DOS applications. If you answer yes,
     the wizard configures your system to redirect all output sent to the LPT1 printer port to the printer
     driver. This is necessary when you are configuring a network printer because DOS applications usually
     do not have support for network printing.
     After you specify whether you want to make the new printer your default Windows printer, the wiz-
     ard creates a new icon in the Printers Control Panel. This makes the printer available to all your
     Windows applications and provides access to the printer’s Properties dialog box, which you can use to
     configure the driver and manipulate your print jobs.

   If you want the best performance and most features for your printer, either use the printer driver provided by the manufac-
   turer on the setup CD-ROM or disks or download it from the manufacturer’s Web site. The driver provided on the
   Windows CD-ROM is often very limited in its features and might prevent you from getting the most out of your printer.

USB Printer Drivers for Windows 98/Me/2000/XP
   Microsoft provides the following USB printer driver files with these versions of Windows:
      I Usbprint.sys
      I Usbmon.dll

   Ideally, all USB printers will use these drivers along with any additional drivers provided by the
   printer vendor to support a particular printer. If you install a new USB printer and your existing USB
   printer stops working, your existing USB printer most likely used its own drivers rather than these dri-
   vers. Contact the printer vendor for an updated driver that uses these files.

Driver Signing
   In an attempt to control the quality of device drivers for Windows, Windows 98/Me/2000/XP checks
   device drivers during installation for a digital signature indicating that the device driver has been
   approved by Microsoft’s Windows Hardware Quality Labs (WHQL). Unsigned drivers for printers and
   most other hardware classes can be installed in place of digitally signed drivers, but the user is warned
   that the driver hasn’t been digitally signed by WHQL. Drivers installed from the Windows CD-ROM
   that either are used to support devices installed in a new system or are installed by Windows Update
   are digitally signed, but drivers downloaded directly from the device manufacturer might not be, espe-
   cially when first introduced.
   Microsoft provides various ways for vendors to receive digital signatures for their device drivers; there-
   fore, over time, the use of unsigned drivers is likely to diminish.

Windows Driver Configuration
   The Properties dialog box for a particular printer typically contains numerous settings apart from
   those for selecting the port the printer is to use. The features and appearance of this dialog box
   depend on the printer driver you have installed; however, in most cases it enables you to select items
   such as the size and orientation of the paper the printer will use, the tray in which the paper is
   loaded, and the number of copies of each page to print.
   Many printer drivers provide settings that enable you to adjust the way the driver handles print ele-
   ments, such as fonts and graphics. A typical Graphics page such as that for the HP LaserJet 5P driver
   might contain the following parameters:
      I Resolution. Enables you to select from the print resolutions supported by the printer. A lower res-
        olution provides faster printing and uses less printer memory. This setting doesn’t affect text
        quality on most recent laser printers; the text will still print at the printer’s maximum resolu-
        tion (600dpi on this model).
      I Dithering. Enables you to select various types of dithering for the shades of gray or colors pro-
        duced by your printer. The various dithering types provide different results depending on the
        nature of the image and the resolution at which you are running the printer.

     You might find that choosing “coarse dithering” for graphics that will be photocopied later actually produces a better qual-
     ity copy than “fine dithering.” This is because normal (nondigital) copiers tend to smear the dots making up the photo-
     graphic image. If you plan to photocopy your original for distribution, always make a test copy and evaluate it before you
     make your high-volume copy run. You might need to adjust your printer options and reprint the original to get acceptable
     results by varying dither, darkness, contrast, and other options. If you use a digital copier, you might find that fine dithering
     produces better results.

        I Intensity. Enables you to control how dark the graphic images in your documents should be
        I Graphics mode. Enables you to select whether the driver should send graphic images to the
          printer as vectors to be rasterized by the printer or should rasterize the images in the computer
          and send the resulting bitmaps to the printer. If you’re printing complex slides from a program
          such as Lotus Freelance Graphics to an HP LaserJet printer, you might find that the layers
          become “transparent” if you use the default vector graphics setting but print as intended with
          the bitmap setting.

     If you’re planning to use the printer to produce multiple copies of pages with vector graphics from presentation or draw-
     type software, such as Freelance Graphics, Microsoft PowerPoint, CorelDRAW, or Adobe Illustrator, do a single-copy test
     print first to see whether you have problems before running your high-volume print job.

     Many printer drivers include a Fonts page that lets you control how the driver treats the TrueType
     fonts in the documents you print. The usual options are as follows:
        I Download TrueType Fonts As Outline Soft Fonts. Causes the driver to send the fonts to the printer
          as vector outlines so the printer can rasterize them into bitmaps of the proper size. This option
          generally provides the fastest performance.
        I Download TrueType Fonts As Bitmap Soft Fonts. Causes the driver to rasterize the fonts in the com-
          puter and send the resulting bitmaps to the printer. This option is slightly slower than sending
          the font outlines but uses less printer memory.
        I Print TrueType As Graphics. Causes the driver to rasterize the fonts into bitmaps and send them
          to the printer as graphic images. This is the slowest of the three options, but it enables you to
          overlap text and graphics without blending them.

     The Device options provided by many printer drivers enable you to specify values for the following
        I Print Quality. Enables you to select the level of text quality for your documents. Lower qualities
          print faster but have a coarser appearance.
        I Printer Memory. Enables you to specify how much memory is installed in the printer. The setting
          displays the amount of memory that ships with the printer, but if you install additional mem-
          ory, be sure to modify this setting if Windows doesn’t detect the additional memory. This set-
          ting is used by the Printer Memory Tracking feature (see the following option) to calculate
          compression and the likelihood of the print job being completed successfully.
        I Printer Memory Tracking. Enables you to control how aggressively the printer driver will use the
          amount of memory configured in the printer memory parameter. When it processes a print job,

          the driver computes the amount of printer memory needed and compares it to the amount
          installed in the printer. If the job requires a great deal more memory than the printer has, it will
          abort the job and generate an error message. When the amount of memory required is close to
          the amount installed, this setting determines whether the driver will attempt to send the job to
          the printer, at the risk of incurring an out-of-memory error, or behave conservatively by abort-
          ing the job.

   Inkjet printers often feature a Main page that enables you to specify resolution, paper type (plain,
   photo-quality, transparency), resolution, ink (black or colors), and color adjustments. The Utility page
   enables you to clean the nozzles, align the nozzles, and check for clogged nozzles on many models.

   If you use an inkjet printer (or use the fold-down straight-through paper path on some laser printers), your pages are
   stacked in reverse order. Some printers offer an Ordered Printing or Reverse Print Order option that enables you to print a
   multipage document last page first. This produces a properly stacked document in the printer output tray.
   Make sure you enable this feature in either the printer properties sheet or with the printer setup in your application, but not
   in both places. Enable it in both places, and they cancel out each other.

Printer Sharing via a Network
   Windows 9x/Me/NT/2000/XP all enable you to share local printers with other users on a Windows
   network. To do this, you must explicitly create a share representing the printer from the Sharing page
   of its Properties dialog box. On this page, you specify a NetBIOS name that will become the share
   name for the printer and a password if you want to limit access to certain users.
   After you have created the share, the printer appears to other users on the network just like a shared
   drive. To access the printer, a network user must install the appropriate driver for the printer and
   specify the name of the share instead of a local printer port. To avoid having to type out the path,
   you can drag an icon representing a network printer from the Network Neighborhood and drop it
   onto the Add New Printer icon in the Printers Control Panel. After this, you need only select the
   appropriate driver and answer the default printer and printer test page questions to complete the
   printer installation.

   Before you try to network your printer, be sure it’s network compatible. Many low-cost printers today are host based and
   can’t be shared over a network. Check with the printer vendor for details.

   You also can share your printer with non-Windows users if you set up a TCP/IP network and if the
   other computers (such as Mac or Linux) have compatible drivers for your printer. This is much easier
   if you can use a PostScript-compatible printer on the network.

Remote Drivers
   Windows NT 4.0, Windows 2000, and Windows XP Professional differ from Windows 9x, Windows
   Me, and Windows XP Home in that they can store and distribute the printer drivers for multiple oper-
   ating systems. When you share a printer in Windows NT/2000/XP Professional, the dialog box con-
   tains an Alternate Drivers selector that enables you to choose the other versions of Windows
   operating systems used by the other computers on your network.

     After the wizard installs the driver for the Windows NT/2000/XP Professional system, it prompts you
     for the appropriate media containing the drivers for the other operating systems you’ve selected. This
     way, when a client selects that Windows NT/2000/XP Professional printer share, it automatically
     downloads the proper driver from the Windows NT/2000/XP Professional system and installs it, pre-
     venting the user from having to identify the printer manufacturer and model.

Print Sharing via Switchboxes
     As an alternative to networking, a variety of printer-sharing devices are available at low cost. The easi-
     est, cheapest way to share a single printer with two to four computers nearby is with an auto-sensing
     switchbox, available from cable makers such as Belkin and many others.
     Printer switchboxes have an output plug to which the cable to the printer is connected and two or
     more input plugs to which the cables from the computers are connected. Computers are typically
     connected to the box by 25-pin straight-through cables, and the connection from the box to the
     printer uses a standard DB-25 to Centronics printer cable.

Manual Switchboxes
     Simple switchboxes use a rotary switch to determine which computer has control of the printer.
     Although these units are still on the market, they’re not recommended for use with laser or inkjet
     printers or nonprinter parallel devices because these devices can be damaged by the switching process
     and the boxes usually lack IEEE-1284 bidirectional features.

Autosensing Switchboxes
     Autosensing switchboxes are powered by either an external power pack or the data cables; they continu-
     ously switch from one port to the next until a print job is sensed. At that point, the box locks on to
     the print job until the printer has been sent the last page. For use with MS-DOS printing (which often
     can’t wait for the switchbox to scan the port), many of these boxes also provide the capability for the
     desired port to be set manually. Most recent models support bidirectional IEEE-1284 modes, such as
     EPP and ECP. Autosensing switchboxes that support IEEE-1284 modes work with most modern laser
     and inkjet printers; they also enable sharing of peripherals, such as scanners, tape backups, and other
     parallel-port devices. IEEE-1284-compliant autosensing switchboxes are available from Belkin and
     many other vendors. Many of these devices are reversible, enabling a single computer to access multi-
     ple printers from a single parallel port.
     Many HP LaserJet models have some form of modular I/O (MIO) slot that can be used for printer
     sharing. Most print sharing product vendors use this slot for network print server devices, but a few
     vendors such as IEC (www.iec-usa.com) still offer print sharing based on converting fast parallel out-
     put into slower RS-232 serial output over RJ-11 telephone cables for long-distance printing by multi-
     ple computers. The Aerocomm (www.aerocomm.com) GoPrint series, available in three models, uses
     wireless transmission to share up to eight parallel printers of various types among as many as 128
     computers at distances up to 200 feet.

Support for Other Operating Systems
     If your office contains a mixture of Macintoshes and PCs, make sure the printer offers Macintosh sup-
     port. Many “personal” printers are basically host based, requiring Windows to function. Users of the
     increasingly popular Linux operating system also must shop carefully because Linux support is still
     primarily provided by the Linux software vendors, not by the printer makers themselves. For example,
     Red Hat’s popular version of Linux supports PostScript printers natively but uses a PostScript-type
     interpreter called Ghostscript to support certain non-PostScript models. Look for the hardware com-
     patibility list at Red Hat’s Web site. Also, see Upgrading and Repairing PCs, Linux Edition, published by

Preventative Maintenance
  Printers are traditionally one of the most annoying devices to troubleshoot for computer professionals
  because they are prone to many mechanical problems that PCs and other networking devices are not
  prone to. Variability in the quality of consumables and improper handling by users can exacerbate
  these problems, resulting in printers that require more attention and maintenance than other devices.
  As with PCs, preventative maintenance for printers is largely based on common sense. If you keep the
  unit clean and treat it properly, it will last longer and produce better quality output than if you don’t.
  Keep the exterior of your printer clean and free of smudges by wiping it with a soft cloth dampened
  with water.

Laser and Inkjet Printers
  For laser printers, the best preventative maintenance regimen results from purchasing a printer that
  uses toner cartridges with photoreceptor and developer assemblies. These components regularly come
  in contact with the toner, so replacing them on a regular basis ensures that these vital parts are clean
  and undamaged. If your printer does not use this type of cartridge, you should take extra care to clean
  the inside of the printer whenever you replenish the toner, following the manufacturer’s recommen-
  dations. Some printers include a special brush or other tool for this purpose.

  It is particularly important to follow the manufacturer’s recommendations regarding safety whenever you are working inside
  a laser printer. Apart from the obvious danger caused by live electrical connections, be aware that some components are
  very delicate and can be damaged either by rough handling (such as the developer unit and the corotrons or corona
  wires) or by excessive exposure to light (such as the photoreceptor). In addition, the printer’s fusing mechanism is designed
  to heat up to 400°F or more and might remain very hot for some time after you unplug the unit. Always allow the printer
  to cool down for at least 15 minutes before performing any internal maintenance that brings you near the fusing rollers.

  Most inkjet cartridges contain new nozzles and a new ink supply, which prevents problems caused by
  nozzles that have become clogged with dried ink. Similar to lasers, thermal inkjet printers also rely on
  a powerful heat source, so you should take precautions before touching the internal components.
  Low-cost inkjet cleaning kits can be purchased to help keep your inkjet printer free of ink build-up.
  Some work with a specially textured cleaning sheet you spray with the cleaning fluid provided with
  the kit and then run through the printer by printing a few words. These work with all brands and are
  particularly useful with piezo-electric inkjet printers, such as those made by Epson, because these
  printers do not allow the user to remove the print head. Others let you clean the print head after you
  remove it from the printer; these work with Canon and HP models.
  To avoid inkjet problems, be sure you turn off the printer with its own power switch, not the surge
  protector or power director! The printer’s own power switch initiates a controlled shutdown of the
  printer, including capping the print heads to keep them from drying out. If you turn off the power
  externally (with a surge protector, for example), the print heads might dry out because they’re
  exposed to the air, which eventually clogs them beyond user adjustment.
  Minor clogging of inkjet cartridges can sometimes be cured by using the printer’s diagnostics routines,
  accessible either through push buttons on the printer or through the printer’s property sheets in

Dot-Matrix Printers
     Dot-matrix printers are more prone to collecting dirt and dust than are any other type of printer. This
     is due both to the physical contact between the inked ribbon and print head and to the use of contin-
     uous feed paper. As the printer runs, a fabric ribbon turns within its cartridge to keep a freshly inked
     surface in front of the print head. This lateral movement of the ribbon, combined with the continu-
     ous high-speed back-and-forth motion of the pins within the print head, tends to produce an ink-
     saturated lint that can clog the print heads and smudge the printed characters. Film ribbons can help
     reduce these problems and provide better print quality but at the cost of a shorter ribbon life.
     Continuous feed paper presents another problem. This paper has perforated borders on both edges
     with holes the printer uses to pull the paper through the printer. Depending on the quality of the
     paper you purchase, some of the dots punched out to produce the holes might be left in the pad of
     paper. As the paper passes through the printer, these dots can be left behind and eventually can inter-
     fere with the paper handling mechanism. Keep dot-matrix printers clean by removing the dots and
     dusting with canned air or a vacuum cleaner and swabbing the print heads regularly with alcohol.

Choosing the Best Paper
     Both laser and inkjet printers use cut-sheet paper almost exclusively (some inkjet printers can use
     paper rolls for banner printing) and are therefore prone to paper handling problems, such as paper
     jams and clumping (multiple sheets feeding simultaneously). You can minimize these problems by
     ensuring that you use paper intended for your printer type. This is especially true when you are print-
     ing on unusual media, such as heavy card stock, adhesive labels, or transparencies.

     If you want to run heavier-than-usual paper or card stock through a laser printer, see whether you can set the printer to use
     a straight-through paper path. On some models this requires you to flip down a special feed tray on the front of the printer
     and open a rear-mounted output tray in place of the normal feed tray and top-mounted output tray. A straight-through
     paper path minimizes the chances of jams and is also recommended for label and transparency stock.
     Before you buy heavy paper or card stock for your printer, check the manual for the recommended and maximum weight
     (thickness) you can use. With inkjet printers, you will also need to adjust the head gap to avoid smearing printed output.

     Printer manufacturers usually specify a range of paper weights the printer is designed to support, and
     exceeding these can affect the quality of your results. Even more dangerous, using labels or trans-
     parencies that are not designed for laser use in a laser printer can be catastrophic. These media usually
     are not capable of withstanding the heat generated by the fusing process and might actually melt
     inside the printer, causing severe or irreparable damage.
     You also should take precautions when storing your printer paper supply. Damp paper is one of the
     chief causes of paper jams, clumping, and bad toner coverage. Always store your paper in a cool, dry
     place—with the reams lying flat—and do not open a package until you are ready to use the paper.
     When you load paper into your printer, it’s always a good idea to riffle through the pad first. This
     helps the individual pages to separate when the printer extracts them from the paper tray.

Common Printing Problems
     You can avoid many printing problems with regular preventative maintenance procedures, but occa-
     sionally you will still find that the output from your printer is not up to its usual standards or that
     the printer is not functioning at all. When you are faced with a printing problem, determining
     whether the problem originates in your application, the computer’s printer driver, or the printer hard-
     ware can be difficult.

  In many cases, you can apply standard troubleshooting methodology to printing problems. For exam-
  ple, if you experience the same printing problem when you generate a test page from the printer’s
  control panel as when you print a document from your PC, you can rule out the computer, driver,
  and printer connection as the source of the problem and begin examining the printer. If you experi-
  ence the same printing problem with various drivers, you can probably rule out the driver as the
  cause (unless the manufacturer produced several versions of the driver with the same bug).
  Consistency is also an important factor when troubleshooting printer problems. If one page in ten
  exhibits the problem, you can generally rule out software as the cause and begin looking at the hard-
  ware, such as the connecting cable and printer.
  The following sections examine some of the most commonly seen printer problems, categorizing
  them according to the source of the problem. However, these categories must be taken loosely because
  some of the problems can have several causes.
  It’s important to understand that none of the procedures described in the following sections should
  take the place of the maintenance and troubleshooting instructions provided with your printer. Your
  printer might use components and designs that differ substantially from those described in this chap-
  ter, and the manufacturer should always be the ultimate authority for hardware maintenance and
  problem-solving procedures.

Printer Hardware Problems
  Problems with the printer usually result from the consumables, such as toner and paper. If the toner
  cartridge is nearly empty or the printer’s internal components become encrusted with loose toner, the
  quality of the print output can degrade in various ways. In the same way, paper that is damp, bent,
  wrinkled, or inserted into the tray improperly can cause myriad problems. You should always check
  the following elements before assuming that the printer’s internal hardware is at fault:
    I Fuzzy print. On a laser printer, characters that are suddenly fuzzy or unclear are probably the
      result of using paper that is slightly damp. On an inkjet printer, fuzzy or smeary characters can
      result when you use various types of paper not specifically intended for inkjet printing or when
      you have the head gap adjusted incorrectly. This also can occur if a problem exists with the
      connection between the print cartridge and cradle. Try reinstalling the print cartridge.
    I Variable print density. If you find that some areas of the page are darker than others when using
      a laser printer, the problem is probably due to the distribution of the toner on the photorecep-
      tor. The most common cause for this is uneven dispensation of the toner as its container emp-
      ties. Removing the toner cartridge and shaking it from side to side redistributes the toner and
      should cause it to flow evenly. You can also use this technique to get a few more pages out of a
      toner cartridge after the printer has registered a “toner low” error. If your printer consistently
      produces pages with the same varied print density, the problem could be the printer’s location.
      If the unit is not resting on a level surface, the toner can shift to one side of the cartridge,
      affecting the distribution of the toner on the page. Your printer also might have a light leak
      that is causing one area of the photoreceptor to be exposed to more ambient light than others.
      Moving the printer away from a bright light source can sometimes remedy this problem.
    I Dirty or damaged corotrons. A laser printer’s corotrons (corona wires) apply electrostatic charges
      to the photoreceptor and paper. If the transfer corotron (which charges the paper) has clumps
      of toner or paper fragments on it, it can apply an uneven charge to the paper, and you might
      see faint or fuzzy white lines running vertically down your printed pages. All-black or all-white
      pages can be caused by a broken charger or transfer corotron, respectively. A toner cartridge that
      contains the photoreceptor drum typically includes the charger corotron as well, so replacing
      the cartridge can remedy some of these problems. You also can (gently!) clean a dirty corotron
      with a lint-free foam swab or other material recommended by the manufacturer. If you use a

        cotton swab, be sure not to leave cotton fibers behind on the wires. The transfer corotron is
        usually built into the printer (and not the cartridge) and will require professional servicing if it
        is broken. These components are made of fragile wires, so be very careful when you clean them.
        Some low-cost printers use rollers instead of corona wires.
     I Sharp vertical white lines. A sharp white line extending vertically down the entire length of your
       laser-printed pages that does not go away when you shake the toner cartridge is probably
       caused by dirt or debris in the developer unit that is preventing the unit from evenly distribut-
       ing the toner onto the photoreceptor. Again, if the toner cartridge includes the developer unit,
       replacing it is the simplest fix. If not, your printer might have a mechanism that enables you to
       remove the developer roller for cleaning or even a tool designed to remove dirt from the roller
       while it is in place. You also might be able to clean the roller by slipping the corner of a sheet of
       paper down the slots between the roller and the metal blades on either side of it.
     I Regularly spaced spots. If your laser-printed pages have a spot or spots that are consistently left
       unprinted, the cause might be a scratch or other flaw in the photoreceptor drum or a build-up
       of toner on the fusing roller. You can often tell the difference between these two problems by
       the distance between the spots on the page. If the spots occur less than 3'' apart (vertically), the
       problem is probably caused by the fusing roller. Because the photoreceptor drum has a larger
       diameter than the fusing roller, the spots it produces would be farther apart or perhaps only one
       on a page. Replacing a toner cartridge that contains the photoreceptor drum and the fuser
       cleaning pad (an oil-impregnated pad that presses against the fuser roller to remove excess
       toner) should solve either of these problems. Otherwise, you probably will have to replace the
       drum assembly or the fuser cleaning pad separately. Some printers require professional servicing
       to replace the photoreceptor drum. To be sure where the problem lies, check the printer ven-
       dor’s Web site or the printer documentation for the circumferences of the fusing roller, photo-
       receptor drum, and other rollers in the printer and where they leave marks on the paper.
     I Gray print or gray background. As the photoreceptor drum in a laser printer wears, it begins to
       hold less of a charge and less toner adheres to the drum, resulting in printing that is gray rather
       than black. On printers that include the drum as part of the toner cartridge, this is not usually a
       problem because the drum is changed frequently. Printers that use the drum for longer periods
       of time often have a print density control that enables you to gradually increase the amount of
       toner dispensed by the developer unit as the drum wears. Eventually, however, you will have to
       replace the drum; at that point, you must lower the print density back to its original setting, or
       you might find that your prints have a gray background because the developer is applying too
       much toner to the photoreceptor drum.
     I Loose toner. If the pages emerging from your laser printer have toner on them that you can rub
       or brush off, they have not been properly fused. Usually, this means the fuser is not reaching
       the temperature necessary to completely melt the toner and fuse it to the page. A problem of
       this type nearly always requires professional service.
     I Solid vertical black line. A vertical black line running down the entire length of several consecu-
       tive pages is a sign that your laser printer’s toner cartridge might be nearly empty. Shaking the
       cartridge can usually eliminate the problem, but eventually you will have to replace it.
     I Frequent paper jams. Paper handling can be a delicate part of the printer mechanism, which is
       affected by several elements. Printer jams can result when paper is loaded incorrectly into the
       feed tray, when the paper is damp or wrinkled, or when you use the wrong type of paper.
       Occasional jams are normal, but frequent jamming can indicate you are using paper stock that
       is too heavy or is textured in such a way as to be improper for laser printing. Jams also can
       result when the printer is not resting on a level surface.

         Envelope handling is often the weak spot in paper handling, especially with older laser printers
         or low-cost inkjet printers. Because of envelopes’ uneven thickness, they tend to produce a high
         percentage of jams. Even if your printer is designed to handle multiple envelopes, consider feed-
         ing them one at a time if you have problems, or use alternative addressing means, such as clear
     I Blank pages appear between printed pages. Paper that is damp, wrinkled, or too tightly compressed
       can cause two or more sheets to run through the printer at one time. To prevent this, store your
       paper in a cool, dry place; don’t stack the reams too high; and riffle through the stack of paper
       before you insert it in the feed tray. This also can be caused by different paper types or sizes
       loaded in the IN tray at the same time.

  Before you look for a paper problem, be sure to check the printer setup. Some printers, especially on networks, are set to
  use a blank page to separate print jobs.

     I Memory overflow/printer overrun errors. These errors indicate that the job you sent to the printer
       was too complex or consisted of more data than its buffers could handle. This can be caused by
       the use of too many fonts, text that is too dense, or graphics that are too complex. You can
       resolve this problem by simplifying your document, reducing the graphics resolution, or
       installing more memory in the printer. You also can try adjusting the page-protection setting in
       your printer driver (see the previous option).

Connection Problems
     I Gibberish. If your printer produces page after page of seemingly random “garbage” characters,
       the problem is probably that the printer has failed to recognize the PDL used by the print job.
       For example, a PostScript print job must begin with the two characters %!. If the printer fails to
       receive these characters, all the remaining data in the job prints as ASCII. This type of problem
       is usually the result of some sort of communications failure between the PC and printer. Check
       that the cable connections are secure and the cable is not damaged. If the problem occurs con-
       sistently, it might be the result of an improperly configured port in the PC, particularly if you
       are using a serial port. Check the port’s parameters in the operating system. A serial port should
       be configured to use 8 data bits, 1 stop bit, and no parity (N-8-1).
         Using the wrong printer driver also causes gibberish printing. If you had an inkjet printer as
         your default and switched to a laser printer but failed to set the laser printer as the default, your
         print jobs would produce garbage printing unless you specifically sent jobs to the laser printer.
         Similarly, failing to flip a switchbox to use the intended printer also causes this type of printing
         error. Thus, many of these printing problems are due to operator error. Whenever you change to
         a new printer, be sure you set it as the default. Also, to avoid printer-switch errors, consider
         adding a second parallel port for the other printer, or use USB-compatible printers if your sys-
         tem is compatible with them.
     I Printer not available error. When Windows does not receive a response from a printer over the
       designated port, it switches the driver to offline mode, which enables you to print jobs and
       store them in the print spooler until the printer is available. The printer might be unavailable
       because the parallel or serial port is incorrectly configured; the printer cable is faulty; or the
       printer is turned off, is offline, or is malfunctioning. A malfunctioning port can be caused by an
       IRQ conflict (LPT1 uses IRQ 7, and COM 1 and COM 2 use IRQs 4 and 3, by default). In the
       case of a serial port, incorrect start/stop/parity bit settings could be the culprit. A switchbox that
       is supposed to automatically scan for print jobs but has been set to manual mode or has been

           turned off also can cause this error. If you try to print to a network printer that is unavailable,
           the print spooler sets the printer to offline mode. After you connect with the network printer,
           open the printer queue and manually restart the print jobs (if Windows doesn’t send them to
           the printer for you).
        I Printer does not notify Windows when it is out of paper, is jammed, or has some other problem. This
          indicates a communications problem between the printer and PC. Check the printer cable and
          its connections at both ends. Some manufacturers recommend that you use a cable that com-
          plies with the IEEE-1284 standard.

     IEEE-1284 cables don’t work in their advanced EPP/ECP modes unless your printer port is also set for an IEEE-1284
     mode (EPP, ECP, or EPP/ECP). Check your system documentation for details.

        I Intermittent or failed communications or a partial print job followed by gibberish. Interruptions in the
          communication between the computer and printer can cause data to be lost in transit, resulting
          in partial print jobs or no print output at all. Aside from a faulty cable, these problems can
          result from the use of additional hardware between the printer port and printer. Switchboxes
          used to share a printer among several computers and peripherals that share the parallel port
          with the printer (such as CD-ROM drives) are particularly prone to causing problems such as
        I Port is busy error or printer goes offline. These errors can occur when an ECP printer port sends
          data to a printer at a rate faster than it can handle. You can remedy the problem by using the
          Windows System Control Panel to load the standard printer port driver instead of the ECP dri-
        I Error-reporting methods. Some models of the HP LaserJet printers (such as the LaserJet II and III)
          report errors with a numerical code displayed on their LCD status panels. Other models use a
          series of blinking lights on the system to report errors. Note the error number or blinking light
          pattern and check the printer manual or online source to determine the problem and its resolu-

Driver Problems
     The best way to determine whether a printer driver is causing a particular problem is to stop using it.
     If a problem printing from a Windows application disappears when you print a directory listing by
     issuing the DIR > LPT1 command from the DOS prompt, you can safely say that you need to install a
     new printer driver. Other driver problems include the following:
        I Form feed light comes on, but nothing prints. This indicates that the printer has less than a full
          page of data in its buffer and that the computer has failed to send a form feed command to
          eject the page. This is a common occurrence when you print from a DOS prompt or application
          without the benefit of a printer driver or use the Print Screen key from DOS or within your
          BIOS setup screens, but it also can be the result of a malfunctioning driver. Some drivers (partic-
          ularly PostScript drivers) provide an option to send an extra form feed at the end of every print
          job. Otherwise, you must eject the page manually from the printer’s control panel.
        I Incorrect fonts printing. Virtually all laser printers have a selection of fonts built into the printer,
          and by default, most drivers use these fonts in place of similar TrueType or PostScript Type 1
          fonts installed on the computer. Sometimes, noticeable differences can exist between the two
          fonts, however, and the printed text might not look exactly like that on the screen. Slight size
          discrepancies between the fonts can also cause the page breaks in the printed output to differ
          from those on the screen.

  Because different printers use TrueType or Type 1 fonts differently, you should select the printer your document will be
  printed with before you save the document. After you select the printer, you should scroll through the document and check
  for problems caused by page breaks being shifted, margins changing, or other problems.
  You also should perform this procedure before you fax your document using a fax modem. Because fax resolution is a
  maximum of 200dpi in most cases, this lower resolution can cause major layout changes, even with scalable fonts such
  as TrueType or PostScript Type 1.

Application Problems
     I Margins out of range error. Most laser printers have a border around all four sides of the page of
       approximately one-third of an inch where the toner can’t reach; inkjet printers might have an
       unprintable area as wide as 1/2''. If you configure an application to use margins smaller than
       this border, some drivers can generate this error message, whereas others simply truncate the
       output to fit the maximum printable page size. If your application or driver does not generate
       an error message and does not give you an opportunity to enter a correct margin setting, be
       sure to check your printer manual to find the possible margin settings before printing.

  Some applications offer a “print-to-fit” option that automatically adjusts the document to fit on the page in case you’ve
  made a margin-setting mistake. These options work by changing the font size or readjusting line and page breaks. This
  option can be useful, but preview it before you use it blindly.

Network Printing Problems
     I Can’t print to a networked printer. Be sure you have rights to the printer; you must log on to the
       network to be able to use any networked resource. If your printer is a peer resource, you might
       need to provide a password. If the printer is on a Linux, Novell NetWare, Unix, or Windows
       NT/2000/XP network, contact the network administrator to have the printer added to your list
       of permissions.
         Make sure the printer is designed to be networked. If nobody but the user connected directly to
         the printer can use it, but the network settings are correct, the printer might not be suitable for
         network use. Check this feature before you buy (see the checklists found earlier in this chapter).
         You must map an LPT or COM port to the print queue to print from an MS-DOS program; you
         can use the UNC (Universal Naming Convention) print queue name to print from a Windows
     I Simple jobs print, but complex jobs don’t. Adjust the timings in the printer properties sheet for the
       network printer.
     I Printer prints gibberish for some users. The wrong printer driver might be used by some network
       users; install the correct driver.

  Scanners provide you with a way to convert documents and photographs of many types into
  computer-readable form. Similar to the scanning element on a copier, a scanner works by transferring
  digital signals representing the document to the computer for processing.

     Regardless of the final use for the scanned document, all scans are received by the computer as digital
     Scanners differ in how the signals are created, how the scanner is interfaced with the computer, and
     which types of documents can be scanned. After the document is scanned, a scanning utility program
     provided with the scanner sends the scan to application software. This software determines whether
     the scan will be saved as an image or converted into computer-readable text. If page-recognition soft-
     ware, such as OmniPage, is used, both text and graphics on a page can be recognized and converted
     into digital form during the same operation.
     Price drops and technology improvements on scanners have transformed scanners from exotic devices
     restricted to graphic artists and media-conversion specialists into one of the most popular add-ons for
     home and office use alike.
     The next sections help you choose the best scanner for your needs and show you how to ensure it
     works reliably for you.

Sheet-fed Scanners—”Faxing” Without the Fax
     Hand scanners, the first type of scanner used for PCs, have been replaced by more powerful, less fussy
     scanner technologies that are now often similarly low in price.
     A sheet-fed scanner uses motor-driven rollers to pull the document or photograph to be scanned past
     a fixed imaging sensor. The design is virtually identical to the scanner built into fax machines. This
     fact made it easy for even the first multifunction office machines (see preceding sections) to incorpo-
     rate limited scanning capabilities.
     Sheet-fed scanners, such as Visioneer’s StrobePro series, work well for letter-sized documents. In addi-
     tion, color-compatible models with scanning resolutions of 300dpi or above have also proved compe-
     tent at handling photographs.

Advantages of the Sheet-fed Scanner
       I Easy interfacing. Almost all sheet-fed scanners take advantage of the “hidden” bidirectional fea-
         tures of the parallel (LPT) port and provide a second port to enable printers to daisy-chain to
         the scanner. Some also work with the RS-232 serial or USB ports, enabling you to move the
         scanner to any computer in your office, regardless of its I/O port type.
       I Low cost. Because the sheet-fed scanner uses a simple, rigid imaging device and a straightforward
         motorized-roller mechanism, its production and selling costs are low.
       I Size. The sheet-fed scanner is very compact and portable; it can easily fit into a briefcase. Some
         vendors produce ultra-thin models specially designed for use with portable computers.

Drawbacks of the Sheet-fed Scanner
       I Scanning limited by resolution, origins of mechanism. As an outgrowth of fax imaging, sheet-fed
         scanners were originally intended for line art or text scanning only. Although later models also
         could support grayscale and color scanning, the mechanism’s limitations mean that resolutions
         are typically limited to 300dpi–400dpi. This is adequate for same-sized scanning but precludes
         serious enlargements of small originals.
       I Limited media handling. Because the sheet-fed scanner is essentially a computer-controlled fax
         scanner, it’s subject to the same limitations as a fax machine. It can’t handle books or even any-
         thing thicker than a piece of paper. It might jam or pull the document through unevenly, pro-
         ducing some unintentionally “creative” effects. It can’t work with any type of transparent
         media, such as negatives or slides, and will even have problems with smaller than letter-sized
         documents or snapshot-sized photos.

   Although some late-model sheet-fed scanners include a transparent sleeve to hold odd-sized originals,
   their inability to work with anything beyond individual sheets is a serious limitation.
   For these reasons, sheet-fed scanners are less popular than flatbed scanners today, but they continue
   to be an important part of the jack-of-all-trades multifunction office machine.

Flatbed Scanners
   Take the toner, drum, and paper feed off a copier and add a computer interface, and you have the
   basic understanding of a flatbed scanner—the current favorite among after-the-fact imaging technolo-
   gies. Recent developments have pushed flatbed scanners to new heights in optical (true) resolution
   while reducing the price: In many cases you can buy a scanner with 1,600dpi or higher optical resolu-
   tion for about one-third the cost of a model with 600dpi resolution just a couple of years earlier.
   As with other types of scanners, reflected light is used to start the imaging process, but flatbed scan-
   ners require a more precise design than hand or sheet-fed scanners because the light that reflects off
   the document has a long way to go afterward (and even before because scanning colored images
   requires the light to go through red, green, and blue filters first). See Figure 9.
   The light that bounces off the document is reflected through a series of mirrors to light-sensing
   diodes that convert the light into electricity. The electricity is sent to an analog-to-digital converter
   (ADC) that converts the electricity into digital pixels that can represent black-and-white, gray tones,
   or color (if the original was scanned in color). The digital information is sent to the computer, where
   your application determines its future as text, graphics, or a bad scan that must be redone.

                                           Light Path from Light Source to A/D Converter

                                            Cover glass               Light source and mirror
                         Pivoting mirror

                                       Drive mechanism


                                 Light-sensing diodes                              Pivoting mirror
                                 and A/D converter

                       Interface (SCSI, Parallel, or USB)

   Figure 9   The path from the light source to the A/D converter is shown here.

Advantages of Flatbed Scanners
      I Flexible media handling. Even the simplest flatbed scanners can handle documents of varying
        sizes, from small scraps of paper and wallet-size photos to letter-size documents and books.
        More sophisticated scanners with automatic document feeders can even handle legal-size
        8.5''×14'' documents. Add a transparency adapter, which shines light through the item to be
        scanned, and your scanner can also handle negatives, slides, and filmstrips of varying sizes.
         Several ways of handling transparency media are available. The least expensive way is an
         adapter that will reflect light from the normal scanner mechanism behind and through the
         media. This unit, which might be capable of handling a few 35mm slides or a single strip of

           negatives, is intended for casual use. More serious users will opt for a true transparency adapter.
           Some models have a lid that doubles as a transparency adapter for up to 4''×5'' slides, whereas
           others use a device that replaces the normal scanner cover and contains its own light source
           and mirror mechanism. The scanner driver is used to select this adapter as the scanning source,
           and the normal light source inside the main scanner body is turned off. The most sophisticated
           variation found in very high-priced scanners is a media drawer that slides open and enables
           transparencies to be slid into the body of the scanner. Of these three, only the media drawer
           technology provides for true high-resolution scanning of small 35mm slides and negatives.
       I High resolution made even higher through interpolation. Unlike simpler types of scanners, flatbed
         scanners actually have two resolutions: optical and interpolated. Optical resolution (also referred
         to as hardware resolution by some vendors) refers to the actual resolution of the scanning
         optics—the hardware. To achieve higher resolution, flatbed scanners also offer a second resolu-
         tion in which the scanner’s software driver fills in fine details lost when detailed line art or text
         is scanned. This second method is called interpolation and usually increases the maximum reso-
         lution of the scanner by a factor of at least 4×. Thus, a scanner with a 1,200dpi optical resolu-
         tion might have an interpolated resolution of at least 4,800dpi. Because the interpolated
         resolution is software based (instead of hardware based), poorly written scanner drivers can
         cause poor results when using these higher resolutions. However, most scanners feature excel-
         lent interpolated modes that can produce much better results when scanning line art or text for
         OCR use. Although these modes also can be used for photographs, this is seldom necessary
         because of the resolution limitations inherent in photographs (see the following). Interpolated
         resolutions should not be used to scan 35mm transparencies or negatives, however, because
         they can distort the image.

Drawbacks of Flatbed Scanners
       I Size and bulk. Because flatbed scanners are designed to handle letter-size documents, they take
         up a fairly large amount of desk space, although some newer models are hardly larger than the
         8.5''×11'' letter-size paper they handle as a maximum size.
       I Reflective media limitations. The least expensive flatbed scanners have no provision for trans-
         parency adapters, but most mid-range to high-end models have optional adapters for 35mm
         and larger negatives and slides. The scanning quality is very high when scanning 4''×5'' and
         larger negatives (a colleague of mine has scanned about a thousand 1900–1920 vintage glass
         negatives for a university archiving project with a transparency-adapter-equipped scanner).
         However, because of the limits of optical resolution, they’re not the best choice for small nega-
         tives and slides.

Slide Scanners
     Slide scanners use a motorized film holder that pulls a 35mm slide or filmstrip holder past a scanning
     mechanism. Even though the moving parts in the scanner are limited to the film holder, the high
     optical resolution of these scanners (2,700dpi–4,000dpi are typical), the resulting precision of the
     motors, and the relatively small market for transparency film make most slide scanners relatively
     expensive ($400–$1,600). Slide scanners use SCSI or IEEE-1394 interfacing and are usually limited to
     35mm film, although some models can be fitted with adapters for Advanced Picture System (APS) film
     holders or microscope slides. A few slide scanners can handle media up to 4''×5''.
     Although the high cost of slide scanners means they’re not for casual users, models with 2,700dpi or
     higher resolution represent the best way to maximize the quality of the small 24mm×36mm (approxi-
     mately 1''×1.5'') 35mm negatives or slides at a reasonable cost. They often feature advanced software
     for automatically correcting color based on the characteristics of the slide or print films being scanned
     and even automatic digital dust and fine-scratch removal.

  The most sophisticated slide scanners incorporate one or more of the following Applied Science
  Fiction’s (ASF) image enhancement technologies:
     I Digital ICE, which removes dust, scratches, and dirt from scanned images made from slides or
     I Digital ROC, which automatically enhances dark and faded images to their original color and
     I Digital GEM, which reduces graininess in scanned images, a common problem with today’s
       high-speed film or when enlarging a section of a slide or negative

  The Digital ICE3 suite combines all three technologies. For more information about scanners includ-
  ing these features, contact Applied Science Fiction (www.asf.com).
  ASF also offers the following plug-ins for Adobe Photoshop and compatible programs:
     I Digital ROC, which automatically enhances dark and faded images to their original color and
     I Digital SHO, which improves shadow detail

  Free trials are available from the ASF Web site.

Photo Scanners
  The photo scanner designation refers to scanners that can scan prints at 300dpi and scan negatives
  and slides at resolutions above 2,000dpi. Currently, the only scanner on the market in this category is
  HP’s PhotoSmart S20, although similar models from Artec and Tamarack might still be available at
  some retailers. The S20 provides a 300dpi snapshot resolution for prints up to 5''×7'' and a 2,400dpi
  high-resolution scan for 35mm negatives and slides.

  Although the differences in scanning resolutions between prints and slides/negatives seems startling, there’s a good reason
  for it. Most prints don’t provide better quality if scanned at more than 300dpi because of the loss of fine details in prints.
  Also, prints are at or near the size they’ll be when reprinted after scanning. However, slides and negatives are only
  24mm×36mm (about 1''×1.5'') and must be enlarged a great deal for typical printing or even Internet Web page use.
  Scanning them at a higher resolution makes sense.

  The S20 features a USB interface and, similar to the original SCSI-based HP PhotoSmart (now discon-
  tinued), provides very high image quality—especially with slides and negatives. It’s a good choice
  for these tasks if you’re short on cash, but if you’re primarily in need of a print scanner, get a
  600dpi–1,200dpi flatbed scanner from a major vendor for better print scanning quality, the ability to
  scan enlargements, and the ability to enlarge fine detail.

Replacement Software for Your Scanner
  Your satisfaction with any given scanner has a lot to do with the software used to control it. At one
  time you were limited to the scanner control software provided by the scanner vendor, but you have
  many more choices today.
  The original SCSI-based PhotoSmart’s software has been the source of many complaints. Lenik Terenin
  has developed a free replacement for the standard HP scanner software for the PhotoSmart SCSI-based
  models. You can download his Pscan32 free from the Web (www.mecc.co.jp/lenik/psmart.htm).

     Replacement shareware and commercial scanner control software products that work with a wide vari-
     ety of scanners include
       I VueScan (www.hamrick.com)
       I Art-Scan Pro (www.jetsoftdev.com)
       I SilverFast and SilverFast SE (www.lasersoft-imaging.com)
       I Infothek 2000 (www.informatik.com)

     You should also check with your scanner vendor for upgraded and replacement scanner control pro-

Drum Scanners
     Despite the quality improvements in flatbed scanners and the development of slide and transparency
     scanners, the ultimate image scanners remain drum scanners. Whereas high-resolution flatbed scan-
     ners can achieve optical resolutions of 3,000dpi, drum scanners can reach as high as 8,000dpi. This
     makes them the perfect choice for creating color separations for professional glossy magazine and cat-
     alog reproduction.
     Drum scanners attach the media to be scanned to a rotating drum that spins at thousands of revolu-
     tions per minute (rpms). Light passes through the drum and image and is converted to digital format
     by photo multiplier tubes (PMTs).
     Drum scanners’ superior optical resolution is matched by their capability to pick up fine details
     (resolving power) and handle a wide range of light to dark tones (dynamic range). High-quality drum
     scanners can handle the entire dynamic range from 0 (pure white) to 4.0 (dead black) optical density
     (OD). This exceeds the needs of typical prints (0.05OD–2.2OD) and even transparencies
     (0.25OD–3.2OD). Some models even perform color separations within the scanner itself.
     Although drum scanners are far too expensive for all but high-end graphics studios to purchase (typi-
     cal models sell for $10,000–$30,000 and above), many companies offer drum scanning on a per-item
     basis for graphics that need to be of ultimate quality, such as for high-quality color image setting.

Interfacing Your Scanner
     Four interface methods are used on recent and current-model scanners: parallel port, SCSI, USB, and

Parallel (LPT) Port Interfacing
     Parallel port connections are primarily limited to low-priced models. This interface type often takes
     advantage of the higher data transfer rates of the IEEE-1284-compatible port settings, such as EPP and
     ECP, and always takes advantage of bidirectional or PS/2-style printer ports. Because virtually all com-
     puters have a parallel port, parallel port scanners are universal scanners capable of working virtually
     everywhere with every type of computer running Microsoft Windows.
     Parallel port scanners have some significant disadvantages, though. First, juggling any combination of
     devices beyond a scanner and a printer can be difficult. With Zip, LS-120, CD-R/CD-RW, tape backup,
     and other types of removable-media drives often fighting for the parallel port, the order in which
     devices are connected to the computer can be critical. Should the Zip drive or the scanner be con-
     nected first? The printer must be the last item in the daisy-chain because printers lack the pass-
     through ports used by the other devices. You’ll need to experiment or add a second LPT port to
     separate your scanner and printer from other devices.

   A second disadvantage is scanning speed. Even if your scanner can use the fastest ECP or ECP/EPP
   port modes, the parallel port can’t lay a glove on the faster SCSI, USB, or IEEE-1394 ports. Use
   parallel-port scanners for light-duty operation with consumer versions of Windows (9x/Me) or when
   other types of expansion aren’t feasible.

SCSI Interfacing
   As you saw in Chapter 8, “The SCSI Interface,” SCSI interfacing is extremely flexible, allowing daisy-
   chains of up to seven SCSI devices of varying types and even more with advanced SCSI interface
   cards. The SCSI Interface is covered in more detail in Chapter 8.
   In tests, a typical scanner equipped with both SCSI and USB ports scanned an 8''×10'' color image in
   about half the time using the SCSI port as compared to when the USB port was used. SCSI is the best
   choice for users who need speed and flexibility and who already have a SCSI interface or don’t mind
   the extra cost of the card (some scanners come with an appropriate interface card).
   Note that some vendors are now switching to USB ports in place of SCSI for some models because
   both offer daisy-chaining, but SCSI remains the better choice for high performance.
   If your SCSI-based scanner comes with a host adapter card, can you use it for other devices?
   Frequently, the answer is probably not. Such low-cost cards are often optimized just for scanner sup-
   port. I have used some cheap SCSI cards of this type to attach to a scanner and SCSI Zip drive, but
   more elaborate daisy-chains aren’t recommended and often don’t work.

USB Interfacing
   The Universal Serial Bus is the latest widely available port and is beginning to replace serial and paral-
   lel ports. For users needing to mix the no-brainer installation typical of parallel port devices with the
   flexibility of SCSI device handling, USB is the way to go for hobbyist use on systems featuring
   Windows 98, Windows Me, Windows 2000, or Windows XP. USB is covered in more detail in
   Chapter 17.
   The original version of USB—USB 1.1—is a good choice for flatbed scanners with optical resolutions
   up to 1,200dpi, but it’s too slow for higher-resolution scanning, such as the 2,400dpi–4,000dpi scan-
   ners used for 35mm negatives and transparencies. USB 2.0, which was introduced as a built-in inter-
   face starting in mid-2002, is a better platform for high-resolution scanners. Because USB 2.0 manages
   multiple peripherals better than USB 1.1, it’s a beneficial upgrade if you use two or more high-
   bandwidth USB peripherals such as printers, drives, or scanners. Add-on USB 2.0 cards from many
   vendors are available if your system has USB 1.1 ports.

IEEE-1394 (i.Link/FireWire) Interfacing
   Recent developments in scanner technology have made possible the development of 1,000dpi and
   above optical scanners at reasonable prices. Scanners with this level of performance can be used to
   create incredibly sharp and detailed scans, but only by delivering an enormous amount of data to the
   host PC. The IEEE-1394 (i.Link/FireWire) interface is now available on high-performance scanners
   from Epson, UMAX, and others, enabling large amounts of scanned data to be transported to the
   computer from the scanner.
   To use an IEEE-1394 scanner with a system, you must have the following:
      I IEEE-1394 port installed on your computer. These cards are PCI based and typically contain two or
        more ports; a few computers have built-in IEEE-1394 ports.
      I Compatible operating system software (Windows 98/Me/2000/XP) and drivers. Note that some
        IEEE-1394 devices support Mac OS but not Windows.

     You can find a list of IEEE-1394-interface scanners at the AllFireWire.com Web site:

     Regardless of which interface you choose for the scanner, a scanner can’t work without driver soft-
     ware. One of the hidden factors driving the popularity of scanners is a standard called TWAIN.
     TWAIN, the “acronym that isn’t” (see the following Note), is the collective name for a very popular
     type of software driver that enables virtually any application to drive virtually any scanner or digital

     TWAIN, according to the official TWAIN online site, is short for nothing (“TWAIN is TWAIN”). However, one unofficial
     name that has made the rounds for years is “Technology Without an Interesting Name.”

     Before TWAIN, each scanner maker had to provide device drivers and an image-scanning program
     that was hard-wired to the scanner. These programs were usually limited, and most users preferred to
     perform most image-editing with other programs, such as Adobe Photoshop. To get a scanned image
     into Photoshop, for example, you had to close Photoshop, start the image-scanning program, scan the
     image, save it, and load it into Photoshop. When combined with the limited multitasking capabilities
     of early versions of Windows, this clunky process made scanning very difficult for most users. OCR
     software vendors—such as Caere, creators of OmniPage—were among the first to need direct access to
     the scanner. Before TWAIN, this meant they had to write direct-support drivers for every scanner they
     wanted to support.
     The result was that new scanners would often not work with existing OCR and graphics programs. In
     addition, users had to ensure their scanner and software combinations would work together.
     TWAIN was created in 1992 by a group of industry vendors in the scanning hardware and OCR/
     imaging software fields. More than 175 vendors form the TWAIN Coalition, which reviews standards
     developed by the TWAIN Working Group.
     TWAIN provides a hardware-specific driver that can be integrated into OCR, imaging, word process-
     ing, and other types of applications. Any TWAIN-compliant application can use any TWAIN device
     installed on the system. A common use for TWAIN is to enable programs such as Adobe Photoshop to
     access scanners within the program.
     TWAIN devices such as scanners and digital cameras come with a driver that gives all TWAIN-
     compliant applications access to the device. Although a user with two or more scanners (this writer
     has Epson, Canon, and Polaroid scanners) will have a TWAIN driver for each device, any device can
     be used with any software that supports TWAIN. Instead of each application needing a separate driver
     routine for every scanner, each application needs only to have TWAIN compatibility to use any
     TWAIN device on the system.
     This integration enables a Photoshop user, for example, to choose a TWAIN device as an image source,
     start the device (a scanner, for example), scan the image, and have the resulting image appear in the
     Photoshop window for editing—all without the need to close down or reopen Photoshop. TWAIN also
     opens the door to direct scanner support in word processing and page layout programs, as well as in
     the traditional graphics-editing, photo-editing, and OCR programs.
     Because TWAIN provides a standardized interface at the application level, creators of photo editors,
     OCR programs, and other typical scanner-driven programs no longer need to write customized drivers
     for the increasing numbers of scanners on the market.

  TWAIN also minimizes the chances of scanners becoming outdated due to a lack of software support.
  Because all the scanner manufacturer has to do is write a single TWAIN driver for each operating
  system/scanner combination, older scanners can be supported for several years.

Image and Scanner Interface Specification
  The Image and Scanner Interface Specification (ISIS), created and controlled by Pixel Translations, is
  another popular imaging-software interface standard. Unlike TWAIN, ISIS is designed to provide sup-
  port for not only image acquisition, but also image processing and image handling with languages
  (such as Java and Visual Basic OCXs) and applications created with these languages.
  Pixel Translations provides free toolkits enabling vendors to create ISIS-compliant drivers and also
  supplies customized drivers to many major scanner vendors; you can also purchase drivers from Pixel
  Translations. If your scanner provides both ISIS and TWAIN support, try each of them to see which
  provides better performance and features. You can check for ISIS drivers for your scanner at

  If your software lists a File option such as Acquire or Import, your application probably supports
  TWAIN or ISIS scanner control. If you have multiple TWAIN or ISIS devices, you’ll typically have a
  menu option to Select Source, enabling you to choose which scanner or other digital source to use for
  image acquisition.

Windows Me/XP WIA
  Windows Me and Windows XP can use TWAIN, ISIS, or Microsoft’s own Windows Image Acquisition
  (WIA) application program interface (API) to interface with scanners and digital cameras. The WIA
  API has the following major features:
    I Plug and Play recognition of supported devices. When the device is recognized, WIA starts the
      Camera and Scanner Wizard to transfer pictures from the device to the computer, or you can
      select the device from the wizard to start the process.
    I A standardized scanning process. This includes preview, selection of image type, resolution/target
      device selection, selection of image area to scan, and final scan. Regardless of the brand or
      model of scanner, WIA provides a consistent user interface.
    I Automatic transfer of scanned images to a specified folder as a specified file type. Scanned images are
      saved as .bmp or .jpg.
    I Automatic generation of preview images and a built-in slideshow feature for folders storing images.

  WIA also works with image files on CD, flash memory card readers, and other image storage devices,
  which enables you to choose whether to transfer images, create a slideshow, or perform another
  action whenever you insert media with stored images.
  The Windows Me version of WIA might not support a particular scanner’s advanced features such as
  transparency adapters or automatic document feeders, but you can still use your scanner’s normal
  control software for these features by activating the scanner through File/Acquire using its TWAIN or
  ISIS driver. Windows XP’s version of WIA has been enhanced to support automatic document feeders,
  transparency adapters, and sheet-fed scanners that lack preview capabilities.

Getting the Most from Your Scanner’s Hardware
       1. Use the fastest interface your scanner offers. If your scanner offers either SCSI and USB or SCSI and
          parallel, it’s worth the extra time and expense (both minimal with Windows) to buy and install
          a SCSI interface card (some scanners come with the appropriate SCSI card). SCSI is the fastest of
          the three major interfaces, and speed is a critical factor in scanning, especially with large origi-
          nals and high scanning resolutions. If you’re already using a SCSI card for any other device, you
          should be able to attach your scanner to it if it’s an Adaptec ASPI-compliant SCSI card and scan-
          ner. If your system has an IEEE-1394 port and you can afford to spend more money, get an
          IEEE-1394 scanner for even better performance than with SCSI, as well as hot-swap capability. If
          you want to add an IEEE-1394 port to your system, you can save a slot by buying it in combina-
          tion with a USB 2.0 add-on card or as part of a high-end sound card, such as the Sound Blaster
          Audigy from Creative Labs.
       2. Set your LPT port for best performance if you use a parallel port scanner. Generally, bidirectional, EPP,
          or ECP/EPP modes are recommended for scanners that use parallel ports. (Check your documen-
          tation for details.) As you saw with other parallel port devices, using the fastest possible settings
          that are compatible with all LPT devices you use is the best route to follow.
       3. Get SCSI right. Although SCSI interfacing is one of the fastest interfaces for scanners and many
          other peripherals, it offers several challenges.
           If your scanner will be added to a daisy-chain of existing SCSI devices, you might need to pur-
           chase a cable different from the one that came with your scanner.
           If you’ll be using a scanner bundled with a SCSI card and cable, the cable you receive will work
           fine, but you must ensure that your scanner’s terminator is turned on and connected to end the
           SCSI bus. If in the future, you add another SCSI device to your system by connecting it to the
           scanner, turn off the scanner’s terminator and turn on or install the new device’s terminator.

     For more information about SCSI, see Chapter 8 in the book.

Scanner Troubleshooting
     For a scanner to work properly, the operating system, application, and scanner must all work properly
     together. When the scanner won’t respond or doesn’t produce the results you expect, use this list of
     typical problems and solutions to get your scanner back into action.

Scanner Fails to Scan
     If the scanner’s on a parallel port, be sure you’ve loaded the correct DOS-based parallel port driver as
     well as the scanner driver for Windows. For example, Epson scanners use EPSN.SYS in the computer’s
     CONFIG.SYS file. These device drivers usually require configuration options to indicate the correct LPT
     port address.
     Also, make sure the parallel port is set correctly. At a minimum, parallel port scanners require the
     bidirectional or PS/2-style port setting. Some might work with the later IEEE-1284 EPP or ECP modes,
     but others don’t.
     If the scanner is SCSI based, be sure the scanner’s device ID isn’t in use by other SCSI devices. If your
     SCSI interface card is made by Adaptec, for example, you can use the included SCSI Interrogator to
     ensure your scanner and other SCSI-based devices are available.
     Make sure terminators are set correctly for SCSI devices; the last device in the daisy-chain must be ter-
     minated. If you terminate any other devices in the daisy-chain, devices beyond the terminated device
     will be ignored.

  If you’ve just updated a Windows 95 system to Windows 98, an important TWAIN driver file might
  have been replaced. Use the Microsoft Windows 98 Version Conflict Manager (VCM) to check for a
  changed file called TWAIN.DLL, and replace the one installed during the Windows 98 upgrade with the
  one you were using (that worked!).
  With newer hot-swap technologies, such as USB and IEEE-1394, make sure that your system is ready
  for the scanner by doing the following:
    1. Enable the USB port, or install an IEEE-1394 or a USB card. If you need to install a USB card, I
       recommend a USB 2.0-compatible card.
    2. Use an operating system that supports the port type. Windows 98/Me/2000/XP are required for
       IEEE-1394, and USB devices work best with these versions of Windows, although late releases of
       Windows 95 do support some USB devices.
    3. Make sure the device drivers for the scanner are installed.
    4. Attach the scanner to the system and power it up.
    5. If you connect the scanner to a hub rather than to your system, use a powered hub with USB
       devices for greater reliability. If you use a USB 2.0 card, be sure you use USB 2.0-compliant
       cables and hubs.

  If you forgot to plug in a USB or an IEEE-1394 scanner, you can attach it to your system at any time
  because these technologies are both Plug and Play and hot-swappable.

Can’t Detect Scanner
  SCSI and parallel port scanners must already be turned on when the system starts to be detected. In
  some cases with a SCSI-based device, you can open the Device Manager (Control Panel, System,
  Properties Sheet) for Windows 9x/Me/2000/XP and click the Refresh button after resetting or turning
  on the scanner. If this fails or the scanner is a parallel port model, you must turn on the scanner and
  restart the computer to enable the scanner to be recognized.
  You can attach IEEE-1394 and USB scanners to your system at any time.

Can’t Use “Acquire” from Software to Start Scanning
  To see whether the scanner or application is at fault, use the scanner’s own driver to scan directly (it’s
  usually added to the Windows 9x/Me/NT/2000/XP menu). If it scans correctly, you might have a
  problem with TWAIN registration in your application’s File, Import/Acquire option. Check your appli-
  cation’s documentation for help; the fix might require reinstalling your scanner drivers.

Distorted Graphic Appearance During Scan
  Most scanners are designed to handle a wide range of originals, from black-and-white pencil drawings
  to full-color photographs. You must correctly identify the image type to get good results, so check
  your document or image type against the checklist given. You probably have selected the wrong scan
  type for the document.
  Because most scanning involves color originals, make sure your display’s color depth is set to 24-bit or
  32-bit before you scan. If you use 16-bit color or 256 color modes, you might not be able to scan
  using the True Color or Millions of Colors setting, you won’t be able to accurately edit photos after
  you scan them, and you won’t be able to save the image in 24-bit mode.
  Use Table 2 as a quick reference to help you determine the best scanning mode for your documents.

     Table 2       Recommended Scanning Modes for Document Types
       Document Type/                                                                           Black-and-White
       Scanning Mode                Color Photo            Drawing               Text           Photo

       Line Art                     No                     Yes                   Yes            No
       OCR                          No                     No                    Yes            No
       Grayscale                    No                     Yes                   No             Yes
       Color Photograph             Yes                    No                    No             Yes
       Color Halftone               Yes                    No                    No             No
       Color Drawing                No                     Yes                   No             No
       256-color                    No                     Yes                   No             No
                                          4                      4                     4              4
       Copy/Fax                     Yes                    Yes                   Yes            Yes
     1. Recommended only for drawings containing pencil shading and ink wash effects.
     2. Use to convert color to black-and-white if photo-editing software conversion is unavailable or produces inferior
     3. Adjust halftone options to match output device’s requirements.
     4. Use to prepare scanned image for sending as fax or when image will be photocopied; converts all tones to digital

Graphic Looks Clear Onscreen But Prints Poorly
     As you learned in the printer section of this chapter, a big difference exists between how a graphic
     displays onscreen and how well it prints. Use this list of typical problems and solutions to get the best
        I Colors don’t match. You must use a color-management tool (which might be included with your
          scanner or have to be purchased separately), and you must color-calibrate your scanner and
          your monitor. See the documentation for your photo-editing program and scanner for compati-
          ble color-management tools.
        I Print is fuzzy and lacks definition. You might have scanned the photograph at 72dpi instead of
          200dpi or higher (depending on the printer). Because inkjet and laser printers have many more
          dots per inch than displays do, a display-optimized scan will become very small and still lack
          sharpness when printed on a printer with a higher resolution.

OCR Text Is Garbled
     OCR applications, such as OmniPage, enable your scanner to convert printed pages of all types back
     into computer-readable text and graphics. These programs boast remarkable accuracy when used cor-
     rectly, but it’s up to you to ensure that you provide readable documents. Follow these recommenda-
     tions to ensure the best results possible:
        I Check the quality of your document. Photocopies of documents scanned after handwritten notes
          and highlighters were used on the original are difficult for even the most accurate page-
          recognition program to decipher.
        I Scan at a minimum of 300dpi or higher if your scanner permits it. Compare the results at 300dpi to
          those at 600dpi or even higher; standardize on the resolution that provides the best results. The
          higher resolutions might take a bit more time, but quality is king! You can’t recognize data that
          doesn’t exist. Plus, you always can reduce the resolution of a high-resolution scanned image if
          you want to use it on a Web page.

I Check the straightness of your document. Deskew the scan, or reinsert the original and rescan it.
I The fonts in the document might be excessively stylized—such as script, black letter Gothic, and others.
  If you have a hard time telling an A from a D, for example, a page-recognition program will
  have an equally difficult time trying to decipher it. If you plan to scan documents using the
  same hard-to-recognize fonts frequently, consider taking the time to train your page-recognition
  program to understand the new alphabet, numbers, and symbols.
I Try manually zoning the document (drawing boxes around what you want scanned). Check the
  expected data type in each zone. The program might be mistaking a graphics box for a text area
  or a table for ordinary text.

To top