ROLE OF INSECTS IN FOREST ECOSYSTEMS

Document Sample
ROLE OF INSECTS IN FOREST ECOSYSTEMS Powered By Docstoc
					Lecture Notes: Forest Insects
ENT/PLPATH/FEM500 Insects and Disease in Forest Resource Management

Kenneth F. Raffa Dept. Entomology 345 Russell Laboratories University of Wisconsin Madison, WI 53706 262-1125 raffa@entomology.wisc.edu http:entomology.wisc.edu/~ raffa

TABLE OF CONTENTS Role of Insects in Forest Ecosystems .............................................. 4 6 6 6 7 7 10 11 11 11 11 14 14 15 16 16 16 17 18 18 18 19 19 21 22 22 22 22 24 26 26 26 26 27 28 29 29 29 29 30

Introduction to Entomology .............................................. Classification and Diversity of Insects .............................................. Insect Structure & Function .............................................. Growth & Development .............................................. Major Insect Orders .............................................. Insect Behavior .............................................. Population Dynamics .............................................. Role in Forest Entomology .............................................. Population Processes .............................................. Population Models .............................................. Life Tables .............................................. Population Distribution .............................................. Insect Population Sampling Techniques .......................................... Principles of Integrated Pest Management. ............................................. Economic Injury Levels .............................................. Available tactics of Forest Pest Control.............................................. Integrated Pest Management .............................................. Root Insects Introduction Impact on Stand Management Root Weevils Other Root Insects Stem Colonizing Bark Beetles Introduction Biology Major Species Management of Bark Beetles .............................................. .............................................. .............................................. .............................................. .............................................. .............................................. .............................................. .............................................. .............................................. .............................................. ..............................................

Wood Borers .............................................. Introduction .............................................. Native Species .............................................. Metallic Borers, Long-horned Beetles ..............……............ Horntails, Lepidoptera .............................................. Ambrosia Beetles .............................................. Invasive Species .............................................. Emerald Ash Borer .............................................. Asian Longhorned Beetle .............................................. Pine Sawyer / pine wilt nematode ......................................... Horntail: Sirex noctilio ..............................................

2

Tree Response to Defoliation .............................................. 31 Introduction .............................................. 31 Physiology of Defoliation .............................................. 31 Relation of Control Options to Life History of Defoliating Insects ....32 Hardwood Defoliators Lepidoptera Coleoptera Diptera Orthoptera and Phasmodea Thysanoptera Hymenoptera Conifer Defoliators Budworms Tussock Moths Conifer Sawflies Other Fluid Feeding Insects Introduction Homoptera Mites: Acarina Other Shoot and Tip Insects Introduction Weevils Shoot Moths Bark Beetles Cone and Seed Insects Cone Beetles Cone Moths Seed Moths Gall Insects References .............................................. .............................................. .............................................. .............................................. .............................................. .............................................. .............................................. .............................................. .............................................. .............................................. .............................................. .............................................. .............................................. .............................................. .............................................. .............................................. .............................................. .............................................. .............................................. .............................................. .............................................. .............................................. .............................................. .............................................. .............................................. .............................................. 32 32 36 36 36 37 37 38 38 39 40 40 42 42 42 44 44 45 45 45 46 47 48 48 48 48

.............................................. 49 .............................................. 49

Appendix 1: Insect Population Sampling Techniques Appendix 2: Major Categories of Insecticides; Mechanisms of Insecticide Resistance

3

ROLE OF INSECTS IN FOREST ECOSYSTEMS I. Herbivory (=Phytophagy) A. Host Range: Mono-, oligo-, poly- phagous Implications to pest management Plant parts (highly specialized) Microsite Impact 1. Can range from marginally beneficial to lethal 2. Implications to Management: Stand level losses in forests Individual losses in ornamentals 3. Beneficial: Bio Control of weeds (Alder) & Fungi 4. Ecological: Affects competition between plants Can influence succession 5. Vector plant pathogens Insect mouthparts Sometimes mechanical, sometimes quite specialized 6. Must consider at multiple levels Plant part: Tree may compensate: Diversion of energy, abscission Stand level: Increase of light, moisture, release from competition Release of bound biomass II. Predation & Parasitism A. B. C. Host range Specialize on insect stages: Eggs, Larvae, Pupae, Adults Sophisticated prey searching mechanisms Odor - Plant wounds, insect Management: BioControl Ecology: Can enhance diversity of ecosystem; Not allow any one herbivore to reach high densities
4

B.

C.

D.

III. Food For other Animals A. B. Food webs Antipredator mechanisms Camouflage Mimicry: Toxic insects, wasps, etc. Chemical Defenses Implications to Management: Sampling Biological Control IV. Saprophagy Importance Context of pest: Termites, Carpet beetles V. Pollination 2/3 of flowering plants Forestry - mostly hardwoods VI. Pest Actions of Insects. Only “pest” because they interfere with human objectives Major pests include both introduced and native

5

INTRODUCTION TO ENTOMOLOGY I. CLASSIFICATION AND DIVERSITY OF INSECTS A. Arthropods Phylum Arthropoda: Key Characteristics Exoskeleton Segmented body parts Paired appendages

Open circulatory system Ventral nerve cord (decentralized) Open respiratory system

Crustacea - Aquatic - 2 prs antennae - 2 body parts (cephalothorax, abdomen) Millipedes - more than 1 pr/segm, scavengers Centipedes - 1 pr/segm, predators Arachnids - Spiders (pred), Ticks, Mites (Some are important pests) no antennae, 4 prs legs, B. Insects Class Insecta: Key Characteristics 3 distinct body parts 3 prs legs

2 pr wings 1 pr antennae

Most diverse of all groups - 1 - 3 million species - @90% of all animals, over half of all life forms C. General References of Forest Insects Drooz: Eastern Forest Insects, USDA Misc. Publ. 1426, 1985 Furniss & Carolin: Western Forest Insects, USDA Misc. Publ. 1139, 1977

II.

INSECT STRUCTURE AND FUNCTION A. B. C. D. E. Exoskeleton Major Body Regions Nervous System Circulatory System Respiratory System

6

F. G.

Digestive System Reproductive System

III.

GROWTH AND DEVELOPMENT A. Types of Development 1. Hemimetabolous „Incomplete metamorphosis‟ 2. Holometabolous „Complete metamorphosis‟ Moulting Endocrine control 1. Ecdysone 2. Juvenile Hormone Life History Stages 1. Diapause 2. Dormancy:, Aestivation 3. Diurnal Rhytms 4. Migration

B. C.

D.

IV. MAJOR INSECT ORDERS Introduction Phylogentic Order 28 orders; 8 orders contain >95% of species A. Orthoptera (Grasshoppers); Related orders include Phasmatodea (walking sticks) and Mantodea (mantids) 1. 2. 3. Chewing mouthparts Incomplete metamorphosis Leathery forewings, Membranous hindwings Most not very important in forestry Some important groups: Walking sticks on oak in US; Eucalyptus in New Zealand Grasshoppers on oak B. Isoptera - termites 1. Chewing mouthparts 2. Incomplete metamorphosis 3. Highly social

7

Very common in forests; feed on cellulose (Indigestible - require protozoa and bacteria basis of their social systems) Beneficial - nutrient cycling Damaging - wood products, sometimes trees C. Thysanoptera - Thrips 1. Extremely small - Feathery wings 2. Highly modified mouthparts: Intermediate between chewing & sucking Piercing & sucking Asymmetric 3. Intermediate metamorphosis Several important species in forestry but not many D. Hemiptera - Bugs 1. Sucking mouthparts 2. Incomplete metamorphosis 3. Suborders a. Heteroptera Some plant pests, many predators, some human pests b. Homoptera - Aphids, Scale insects, Spittle bugs, cicadas Plant feeders Sometimes quite complex development Important ectors of plant pathogens E. Coleoptera 1. Largest insect order (@300,000): Most important pest group in forestry 2. Chewing mouthparts 3. Complete metamorphosis 4. Elytra (Thick & horny; Cover hindwings in flight) Highly Diverse: Plant feeders, predators Immatures - Grublike, Some free living F. Diptera - flies – Fourth large orderest 1. Sucking mouthparts - adults 2. Complete metamorphosis 3. Adults - 2nd Pair of wings highly reduced "Haltere" – Stabilizing organs 4. Larvae - maggot like Not major pest of forests
8

Important vectors of pathogens causing Human Disease Parasitic flies - Tachinidae Look like houseflies - hairy Female attaches egg to larva (mostly Lep) or leaf Predacious flies - Asilidae (Robber flies); Dolichopodidae G. Lepidoptera 1. Third largest insect order: Second important pest group in forestry 2. Sucking mouthparts 3. Complete metamorphosis 4. Adults - Scaly wings 5. Less diversity than Beetles: Almost all are plant feeders as larvae. Most feed on nectar as adults (some do not feed) 6. Larvae are damaging stage "caterpillars" - 3 pairs of true legs 4 - 5 pairs fleshy prolegs 7. Types of feeding Defoliation, Mine leaves, stems, buds H. Hymenoptera - Wasps, Bees, Ants, Sawflies, Woodwasps, Parasitic wasps 1. Second largest insect order; Most beneficial group in forestry 2. Chewing mouthparts - Modified 3. Complete metamorphosis 4. Adults - Membranous wings; 5. Ovipositor - Highly specialized - Defense, Insertion into plants or insects 6. Three Important Ecological Groups a. Plant - feeders: Sawflies, woodwasps, galls: Pests b. Parasites - Ichneumonidae & Braconidae: Benefit c. Social Insects - bees, ants, wasps - pollination, predation: 7. Larvae a. Caterpillar like (Sawflies > 5 prs prolegs) b. Grublike

V.

INSECT BEHAVIOR A. B. Introduction: "Observable Physiology" Feeding Behavior 1. 2. 3. Types of feeding Host range Specialization on plant parts

9

4. C.

Host location

Reproductive Behavior 1. 2. 3. Mate location Mating frequency Oviposition

D.

Orientation

10

POPULATION DYNAMICS I. ROLE IN FOREST ENTOMOLOGY A. B. B. Prediction Management Characteristics of Populations

II.

POPULATION PROCESSES A. Birth, Death, Immigration, Emigration

III.

POPULATION MODELS A. B. Exponential Growth Density Independent and Density Dependent Factors

Density Independent Factors: The proportionate effect on population processes (Birth, death, reproduction, movement) is not related to population density. 1. Example: Early frosts in 1995, 1999, & 2007 caused high mortality to a budworm. Yr. 2002 2003 2004 2005 2006 2007 Population Before frost After frost 1000 500 800 No frost 50000 No frost 75000 37500 100 No frost 200 100 Mortality 500 % Mortality 50

37500 100

50 50

2. Example: Mortality and % mortality vary; Related to precipitation, but not density. Population May 1 June 1 500 100 2000 1000 1500 600 1000 600 2500 800

Year 2003 2004 2005 2006 2007

Precipitation 7 4 5 3 6

Mortality 400 1000 900 400 1750

% Mortality 80 50 60 40 70

11

100

75

% Mortality

50

25

0

0

500

1000

1500

2000

2500

3000

2

3

4

5

6

7

8

Population

Precipitation

C. Density Dependent Factors: The proportionate effect on population processes (Birth, death, reproduction, movement) is related to population density. 1. Example: Population rates and mortality due to disease are listed below. As the population increases, both the absolute mortality and the % mortality increase Yr. 2002 2003 2004 2005 2006 2007 Population 1000 5000 100000 800 10000 50000 Mortality 10 500 90000 8 2000 25000 % Mortality 1 10 90 1 20 50

100

75

% Mortality

50

25

0

25000

50000

75000

100000

Population
12

125000

0

Types of density-dependent forces 1. Competition a. Starvation b. Can sometimes be have Non-lethal Effects: Examples: Delayed Development, Reduced Fecundity 2. Predation and Parasitism: Both Numerical and Functional Responses a. Numerical response: Predator population increases when prey abundant b. Functional response: Consumption / predator increases when prey abundant 3. 4. Disease Density Dependence Can Sometimes be Positive a. Allee Effects 5. C. Some Environmental Effects can have a density-dependent component

Carrying Capacity, Sigmoid Growth and Equilibrium Behavior 1. 2. 3. Effect on Population and Per Capita Growth Rates Time delays Integrating Density-Dependent and Density Independent factors

D.

Genetic Change

13

IV.

LIFE TABLES Life tables present the number of surviving individuals from an initial cohort, at a series of time intervals. They are used to predict future population densities, both between and within generations. A. Age-Specific death rate: percentage that dies during a particular stage.

B. Cumulative death rate: percentage of original cohort that dies before a particular life stage is reached. Example: Age - Specific Death Rate 50% 60% 50% 40% 58% 20% -Cumulative Death Rate -50% 80% 90% 94% 97.5% 98%

Stage Egg Larva - 1 -2 -3 -4 Pupa Adult

No. Surviving 1000 500 200 100 60 25 20

C. Key Factors Source of Stage-specific mortality that best predicts year to year fluctuation Not necessarily the highest mortality factor How is it computed? a) calculate the age specific mortality rates; b) determine what factor is most responsible for mortality during each stage; c) determine which stagespecific mortality is most correlated with generation to generation change V. POPULATION DISTRIBUTION A. Space Random, Clustered, Even B. Time 1. 2. Seasonal abundance Outbreak behavior

C. Space * Time Interactions

14

VI. INSECT SAMPLING A. Sampling vs. Collecting B. C. Absolute vs. Relative Methods Appendix 1

15

PRINCIPLES OF INTEGRATED PEST MANAGEMENT I. ECONOMIC INJURY A. B. C. Relationship of Population Density to Yield Loss Sampling Decisions to Employ Control Measures

II.

AVAILABLE TACTICS OF FOREST PEST CONTROL A. Biological Control 1. 2. 3. 4. 5. B. Natural Components Introduced Species Enhancement of Native Control Agents Biotic Insecticides Advantages, Disadvantages

Silviculture 1. 2. 3. 4. Species Composition and Planting Schedules Thinning Harvesting Schedules Advantages, Disadvantages

C.

Resistance Breeding 1. 2. 3. 4. Genetic Variation Operational Considerations Biotechnology Advantages, Disadvantages

D.

Exclusion and Eradication 1. 2. Quarantine Relating Exclusion to Other Control Measures and Insect Biology

16

E.

Chemical Control 1. Insecticides (Appendix 2) a. b. c. d. 2. 3. 4. Types Advantages and Disadvantages LD values Systemic

Pheromones Insect Growth Regulators Antifeedants

III.

INTEGRATED PEST MANAGEMENT A. B. Optimum Combination Applying General Principles To Specific Situations

17

ROOT INSECTS

I.

INTRODUCTION A. B. C. Increased importance Taxonomy of major groups General features of root insects 1. 2. 3. 4. 5. 6. D. Slow development time Oligophagous Orientation to host odors Clustered distributions Low fecundity Close symbiotic relationships with fungi

High Level of Niche Partitioning 1. 2. 3. Host age and condition Microhabitat Behavior

II.

IMPACT ON STAND A. Direct 1. 2. B. Larval feeding Adult feeding

Indirect

18

III.

MANAGEMENT A. B. Sampling Control 1. 2. 3. 4. Chemical Biological Silvicultural Tree breeding

ROOT WEEVILS

I.

INTRODUCTION A. B. Types of Damage Weevils: Curculionidae 1. 2. C. D. Identification Description

Relationships With Other Insects and Fungi Increased Importance

II.

MAJOR ROOT WEEVILS: A. Pine Root Collar Weevil: Hylobius radicis 1. 2. 3. 4. 5. 6. Hosts Distribution Life cycle Damage Stand factors Control and Management

19

B.

Pine Root Tip Weevil: Hylobius rhizophagus (H. assimilis) 1. 2. 3. 4. 5. Hosts Distribution Life cycle Damage Control and management

C.

Pales Weevil: Hylobius pales 1. 2. 3. 4. 5. Hosts Distribution Life cycle Damage Control and management

D.

Pitch-eating Weevil: Pachylobius picivorus

III.

OTHER ROOT WEEVILS A. B. C. D. Warren's Collar Weevil Strawberry Root Weevil Eastern Pine Weevil: Pissodes nemorensis Hylobius abietis: Europe

20

OTHER ROOT INSECTS

I.

WHITE GRUBS (COLEOPTERA: SCARABAEIDAE) A. B. C. Biology Plantation Pests, Alternate Hosts Control

II.

BARK BEETLES (COLEOPTERA: SCOLYTIDAE) A. Hylastes 1. Pests of western Douglas fir plantations, vectors of Black Root Stain disease B. Pseudohylesinus

III.

LEPIDOPTERA A. Conifer swift moth

IV.

HOMOPTERA A. B. Aphids Cicadas

21

STEM COLONIZING BARK BEETLES

I.

INTRODUCTION A. Taxonomy: Coleoptera: Scolytidae; alternate Curculionidae Scolytinae 1. 2. B. C. D. Bark beetles Ambrosia beetles

Economic Importance Distribution Classification By Vigor of Hosts Selected

II.

BIOLOGY A. B. C. Life History Host Resistance Pheromones 1. 2. D. Aggregation Anti-aggregation

Microorganisms 1. 2. Blue Stain Fungi: Ophiostoma, Ceratocystis Digestion

E. F.

Relationship of Life Stages to Control Tactics Factors Predisposing Trees to Attack

III.

MAJOR SPECIES A. Mountain Pine Beetle: Dendroctonus ponderosae 1. 2. 3. 4. Northwest and Rocky Mountains Lodgepole Pine, Ponderosa Pine, Sugar Pine, White Pine O. clavigera (Grosmannia clavigerum) Responses to climate change: Changes in voltinism, habitats, geographic range
22

B.

Western Pine Beetle: Dendroctonus brevicomis 1. 2. California and southwestern Rocky Mountains Ponderosa pine

C.

Southern Pine Beetle: Dendroctonus frontalis 1. 2. 3. Southern states Loblolly, Virginia, Short Leaf Pine O. minus; Basidiomycetes; Mites

D.

Spruce beetle: Dendroctonus rufipennis 1. 2. 3 Alaska, British Col., Rocky Mtn states, North Central states, New England White spruce, Sitka Spruce, Lutz spruce Variations in population behavior: Region; Population phase

E.

Pine Engraver: Ips pini 1. 2. 3. 4. Transcontinental All pines, some spruces Major Lake States bark beetle O. ips

F.

European Spruce Bark Beetle: Ips typographus 1. 2. Europe C. polonica

G.

Turpentine Beetles: Attack Base of Weakened Trees 1. Red Turpentine Beetle: Dendroctonus valens a. 2. Transcontinental

Black Turpentine Beetle: Dendroctonus terebrans a. Southern States

23

H.

Other Conifer Bark Beetles - Moderately Aggressive. Capable of outbreaks under stress conditions 1. Southern States a. b. 2. Eastern 5 Spined Pine Engraver: Ips grandicollis Small Southern Pine Engraver: Ips avulsus

Western States a. b. Douglas Fir Beetle: Dendroctonus pseudotsugae Fir Engraver: Scolytus ventralis

3.

Eastern and Lake States a. Eastern Larch Beetle: Dendroctonus simplex

I.

Dutch Elm Disease 1. 2. Imported Pest Complex Smaller European elm bark beetle: Scolytus multistriatus, O. ulmi Native elm bark beetle: Hylurgopinus rufipes 3. 4. Biology Control

J.

Other Bark Beetles Colonizing Angiosperms 1. Hickory Bark Beetle

IV.

MANAGEMENT OF BARK BEETLES A. Impacts 1. Forest Products 2. High Values Trees a. Recreation, Watershed b. Private 3. Wilderness a. Old Growth b. Endangered Species
24

c. Dispersal B. Chemical 1. 2. C. Insecticides Pheromones

Biological 1. Natural Enemy Complex a. b. c. 2. Predators - Beetles, Flies, Mites, Woodpeckers Parasites - Wasps, Flies, Nematodes Disease Agents

Utilizing Biological Control a. b. Problems Role in Sanitation

D.

Silviculture 1. Augmentation of Host Resistance a. b. c. 2. Thinning Site Selection Harvesting Schedule

Reduce Food Base a. b. c. Age mosaic Removal of large trees Timing of operations

3.

Population Removal a. b. Removal of Infested Trees Destruction of Slash

E.

Survey Methods and Population Prediction

25

WOOD BORERS

I.

INTRODUCTION A. B. C. D. General Biology Host Location Ecological Role Economic Impacts

Native Species I. "METALLIC BORERS," "FLAT-HEADED BORERS" A. B. Coleoptera: Buprestidae Life Cycle 1. 2. 3. C. Adult characteristics Larval characteristics Larval mines

Ornamental and Forest Pests 1. Bronze Birch Borer: Agrilus anxius a. 2. 3. Resistant Varieties: Japanese White Birch--"Whitespire"

Two-lined Chestnut Borer Agrilus bilineatus Control

D.

Plantations 1. 2. Poplar root girdler: Agrilus horni Turpentine borer: Buprestis

E.

Lumber Yards 1. Golden buprestid: Buprestis

26

II.

"LONG-HORNED BEETLES," "ROUND-HEADED BORERS" A. B. Coleoptera: Cerambycidae Life Cycle 1. 2. 3. C. Adult characteristics Larval characteristics Larval mines

Host relationships 1. Living trees a. b. c. d. Sugar Maple Borer Red Oak Borer Locust Borer Poplar Borers: 1. e. 2. 3. 4. 5. Saperda spp: association with Hypoxylon cankers

Management

Recently felled trees Old moist wood Dry seasoned wood Twig and stem girdlers

III.

"HORNTAILS" A. Hymenoptera: Siricidae 1. 2. 3. Description Life Cycle Control

V.

LEPIDOPTERA: Cossidae A. Oak carpenterworm

27

VI. AMBROSIA BEETLES A. Coleoptera: Scolytidae (and related families) 1. 2. 3. Biology Economic impact Trypodendron

B. Management 1. Cutting Operations a. b. 2. Removal of brood trees and logs Rapid removal of felled trees

Storage a. b. c. d. Distance from sources of beetles Maintain minimum inventories Water Misting Pheromones

VI. Termites

VII. Other A. B. C. Carpenter Ants: Formicidae Coleoptera: Bostrichidae, Curculionidae Diptera: Agromyzidae

28

Invasive Species A. Emerald ash Borer 1. Host range, Biology 2. 3. 4. B. Geographic range Means of spread Control

Asian Long-Horned Beetle 1. 2. 3. Introduced into NY in 1996; Chicago 1998. Native range: China, Japan, Korea Hosts a Primary: Maple, poplar, willow

b. Other: Birch, elm, horsechestnut 4. Life history a. @ 30 eggs/female; hatch in 10 days b. Camrial Region: L1-L3; Sapwood: L4-L5. c. Pupate in tree 4. Control: Sanitation, chemical (Carbofuran?)

C.

Pine Sawyer--Vector of Pine Wood Nematode 1. Japan, Portugal a. Causal agents 1. 2. b. 2. Native beetle: Monochamus North American nematode: Bursaphelencus

Host--Japanese red pine

Biology
29

3.

Impact on host: Death of ray and axial paranchyma cells surrounding duct epithelium, wilt

4.

Control a. b. Insecticides Sanitation

c. Introduced entomophagous nematode

D.

Sirex noctilio in Australia, New Zealand, S. Africa 1. Introduced Insect/Fungal Complex, Introduced Tree a. b. 2. Amylastereum spp & Stereum spp Pinus radiata (Monterey Pine)

Life Cycle a. b. Adults attracted to stressed trees (Monoterpenes) Insert egg in first drill Insert fungal arthrospores & mucus in second drill c. d. e. Host responds by accumulating resins & polyphenols Fungi & mucus impede host response Multiple attacks

3. 4.

Wilt Symptoms & Tree Death Control a. Biological 1. b. c. Nematode: Deladenus spp

Sanitation Resistance Breeding

5. Recently introduced into US E. Other 1. Poplar & Willow borer: Cryptorhynchus-hybrid poplars 2. Formosan Termite
30

TREE RESPONSE TO DEFOLIATION

I.

INTRODUCTION A. Types of Yield Loss 1. Direct a. b. c. 2. Mortality Radial increment loss Altered physiological allocation

Indirect a. b. c. Predisposition to subsequent attack Susceptibility to environment Lowered competitive ability

B. C.

Types of Feeding Behavior Insect Groups

II.

Physiology of Defoliation A. Factors Affecting Response 1. 2. 3. 4. 5. B. C. Hardwoods vs. conifers Early season vs. late season Environmental effects Degrees of and repetitive defoliation Tissue location and age

Reflushing The Role of Stress 1. 2. Effect on plant resistance Effect on tolerance
31

3. D.

Population level effects

Changes in host suitability for subsequent attack 1. 2. Short vs. long-term effects Types of changes a. b. c. d. 3. Allelochemicals Nutrients Storage patterns Phenology

Effects on different feeding guilds a. b. c. Folivores Root pathogens Bark beetles

III.

Relation of Various Control Options to Life History of Defoliating Insects A. B. C. Biological Chemical Silvicultural

32

HARDWOOD DEFOLIATORS I. LEPIDOPTERA A. Tussock Moths: Lymantriidae 1. Gypsy Moths: Lymantria dispar a. b. c. d. History, current distribution Life cycle and recognition Host range and preferences Population behavior 1. 2. Weather Host Plant Quality a. b. 3. Species Preference Defensive Chemicals: Tannins

Natural Enemies a. b. c. Generalist Predators Specialist Parasitoids Viruses

4.

Interactions Between Host Plants and Natural Enemies a. b. c. d. Predators Parasites Virus Btk

e.

Sampling 1. 2. 3. Pheromones Egg Mass Survey Larval Banding

33

f.

Control 1. Biological a. Major natural enemies Egg: Larva: Ooencyrtus kuvanae (Encyrtidae) Cotesia melanoscela (Braconidae) Blepharipa intermedia (Tachinidae) Compsilura concinnata (Tachindae) NPHV Entomophaga maimaiga Pupa: White footed deer mice Calosoma sycophanta (Carabidae) Brachymeria intermedia (Cholcididae) b. Microbial control 1. 2. 3. Btk NPHV Entomophaga maimaiga

2.

Chemical a. b. c. Insecticides - Sevin Pheromones - "Disparlure," "Gyplure" Insect growth regulators-Dimilin

3. 4. g. h. i.

Silvicultural Mechanical

Exclusion Interagency cooperation Asian gypsy moth: Introductions; Flight in femdes

34

2.

White-marked tussock moth: Orgyia leucostigma a. b. c. Host range Distribution Biology and recognition

3.

Satin moth: Stilpnotia salicis Brown-Tail Moth, Nygmia phaeorrhoea

B.

Tent Caterpillars and Webworms 1. Tent Caterpillars: Lasiocampidae: Malacosoma a. b. c. 2. Forest Tent Caterpillar: M. disstria Eastern Tent Caterpillar: M. americanum Western Tent Caterpillar: M. californicum

Webworms: Arctiidae a. Fall Webworm: Hyphantria cunea

C.

Other Arctiidae 1. Halisidota - "Tussock Moths" a. b. c. d. Hickory TM - H. caryae Spotted TM - H. maculata Pale TM - H. tessellaris Sycamore TM - H. harrisii

D.

Inchworms: Geometridae 1. 2. Inchworms: Geometridae Fall Cankerworm: Alsophila pometaria a. distribution b. host range c. biology 3. 4. 5. Spring Cankerworm: Paleacrita vernata Bruce Spanworm: Operopthera bruceata Winter Moth: Operopthera brumata
35

E.

Notodontidae 1. 2. Yellow-necked Caterpillar: Datana ministra Walnut Caterpillar D. integerrima

F.

Royal Moths: Citheroniidae 1. 2. 3. Hickory Horned Devil: Citheronia regalis Orange-Striped Oakworm: Anisota senatoria Green-Striped Mapleworm: Dryocampa rubicunda

G.

Leaf Roller Moths, Leaf tiers, Leaf Miners

II.

COLEOPTERA A. Leaf Beetles: Chrysomelidae 1. 2. 3. 4. B. Elm Leaf Beetle: Pyrrhalta luteola Cottonwood Leaf Beetle: Chrysomela scripta Willow Leaf Beetle: Plagiorda versicolora Leaf miners

Scarabaeidae

III.

DIPTERA A. Leaf Miner Flies: Agromyzidae 1. Holly Leaf Miner: Phytomyza ilicicola

IV.

ORTHOPTERA and PHASMATODEA A. Grasshoppers: Acrididae 1. B. Red-Legged Grasshopper: Melanoplus femurrubrum

Walkingsticks: Diapheromera femorata

36

V.

THYSANOPTERA - THRIPS A. B. Introducted Basswood Thrips: Thrips calcaratus Pear Thrips: Taeniothrips inconsequens

VI.

HYMENOPTERA (SAWFLIES) A. B. Leaf Miners: Birch, Elm, Alder Defoliators: Slug Oak Sawfly: Caliroa quercus coccineae

37

CONIFER DEFOLIATORS

I.

BUDWORMS - LEPIDOPTERA: TORTRICIDAE A. Eastern Spruce Budworm: Choristoneura fumiferana 1. 2. Importance, range Biology a. b. 3. hosts life cycle

Natural Enemies a. b. Predators - Birds Parasites 1. 2. 3. Eggs - Trichogramma minutum (Chalcidae) Early laravae - Apanteles fumiferanae (Braconidae) Late larvae - Actia interrupta (Tachinidae) Meteorus thrichynotus (Braconidae) 4. c. Pupal - Itoplectus conquistidor (Ichueumonidae)

Diseases 1. 2. 3 NPHV Protozoa - Nosema Fungi

4.

Population dynamics, sampling a. b. c. cycles key factors sampling

5.

Impact a. b. tree stand

38

6.

Management a. b. c. d. e. silviculture, risk rating insecticides, IGR's microbial control natural enemy enhancement pheromones

B.

Western Spruce Budworm: Choristoneura occidentalis 1. 2. 3. Importance, range Biology Control

C.

Jack Pine Budworm: Choristoneura pinus 1. 2. 3. Biology & Host Range Damage Control

II.

TUSSOCK MOTHS - LEPIDOPTERA:LYMANTRIIDAE A. Douglas fir tussock moth: Orgyia pseudotsugata 1. 2. Importance, range Biology a. b. 3. hosts life cycle

Population dynamics a. b. c. cycles factors sampling

4.

Impact a. b. tree stand
39

5.

Management a. silviculture, risk rating i. ii. b. c. d. e. corrective measures preventative measures

insecticides, IGR's microbial control natural enemy enhancement pheromones

B.

Pine Tussock Moth: Dasychira plagiata 1. 2. 3. Biology Host range Site conditions

III. CASEBEARERS AND BAGWORMS A. Casebearers (Lepidoptera: Coleophoridae) 1. Larch Casebearer, Coleophora laricella a. b. c. B. Biology Damage Control

Bagworms (Lepidoptera: Psychidae) 1. Thyridopteryx ephemeraeformis

IV.

CONIFER SAWFLIES - HYMENOPTERA: DIPRIONIDAE, TENTHREDINIDAE A. B. C. General Importance of Lake States Redheaded Pine Sawfly - Neodiprion lecontei 1. 2. Importance Host range
40

3. 4. D.

Biology Control

European Pine Sawfly - N. sertifer 1. 2. Host range Biology

E.

Introduced Pine Sawfly - Diprion similis 1. 2. Host range Biology

F. G.

European Spruce Sawfly - D. hercyniae Larch Sawfly - Pristophora erichsonii 1. 2. Host range Biology

V. REGIONALLY IMPORTANT DEFOLIATORS A. Needleminers (Lepidoptera: saturniidae) 1. B. Lodgepole needleminer - Coleotechnites milleri

Silkworm Moths (Lepidoptera: Saturniidae) 1. Pandora Moth - Coloradia pandora

C.

Inchworms (Lepidoptera: Geometridae) 1. Western Hemlock Looper - Lambdina fiscellaria

D.

Sulfur Butterflies - Lepidoptera: Pieridae 1. Pine Butterfly (Neophasia menapia)

E.

Scarab Beetles (Coleoptera: Scarabaeidae) 1. Foliar damage a. Pine chafer - Anomala oblivia

41

FLUID-FEEDING INSECTS

I.

INTRODUCTION A. B. Nature of Feeding Nature of Damage 1. 2. 3. Nutrient loss Pathogen transmission Phytotoxins

II.

HEMIPTERA: HOMOPTERA A. Aphids 1. Balsam Woolly Adelgid--Adelges picea a. b. c. d. e. f. Introduced pest Host range Geographic range Damage Survey and detection Control

2. Hemlock Wooly Adelgid, Adelges tsugae a. Host range b. Impact 3. Cooley Spruce Gall Aphid - Adelges cooleyi a. b. 4. complex life cycle, alternate hosts importance

Pine Bark Aphid - Pineus strobi a. Introduced

5.

Gall Aphids

42

B.

SCALE INSECTS 1. 2. 3. 4. General Pine Tortoise Scale - Toumeyella parvicornis Red-pine scale - Matsucoccus resinosae Beech scale - Cryptococcus fagi a. b. Infection court for Nectria coccinea (Fungus) Association with lichens

C.

SPITTLEBUGS 1. 2. Biology Saratoga Spittlebugs - Aphrophora saratogensis a. b. c. 3. Biology Damage Control

Pine Spittlebug - Aphrophora parallela a. Hosts 1. 2. 3. b. Preferred - Scotch Most pines, also Spruce, Fir, Larch, Hemlock All ages and sizes

Infection counts for Diplodia pini fungus 1. Flagging

c.

Control 1. 2. Thinning: increases vigor Entomophora fungus

D.

LEAFHOPPERS: Cicadellidae 1. White-banded elm leafhopper - Scaphoideus luteolus a. Elm yellows: Phytoplasma

E.

CICADAS 1. Ovipositional damage
43

III.

MITES: CLASS ACARINA A. Spruce Spider Mite, Oligonychus ununguis 1. 2. Symptoms Occurrence following pyrethroid application

IV. OTHER FORMS OF FLUID-FEEDING BY ARTHROPODS A. B. C. Predation: Hemiptera (true bugs), spiders Ectoparasitism: Ticks, mites, biting flies Nectar: Adult moths, bees, flies, etc.

44

SHOOT AND TIP INSECTS

I.

INTRODUCTION A. B. Types of Damage Interactions with other groups

II.

WEEVILS (COLEOPTERA: CURCULIONIDAE) A. White Pine Weevil, Pissodes strobi 1. Geographic range: Transcontinental a. 2. Wisconsin hazard zones

Host range a. b. c. Northeast and Lake states: White Pine Pacific Northwest: Sitka Spruce All pines

3.

Biology a. b. Adult feeding and oviposition Larval girdling of shoots

4.

Damage a. Deformed terminals

5.

Control a. Prevention 1. b. Hardwood cover

Treatment 1. 2. Pruning Removal

c. B.

Resistance Breeding

Other Weevils

45

III.

SHOOT MOTHS A. European Pine Shoot Moth, Rhyacionia buoliana 1. Geographic range a. b. c. 2. 3. Northeastern U.S. and Southern Canada Lake States, S.E. Wisconsin Pacific Northwest

Host range: All pines, especially Red Pine, <15' tall Life Cycle a. Adults emerge in spring; oviposition at base of buds, needles fascicles, twig tips. b. Larvae 1. 2. 3. 4. Early Larvae spin webbing; mine needles Mid Larvae (mid summer): Bore into new buds & overwinter Late Larvae (spring): Bore into new buds: most damaging phase. Temperature: Cannot tolerate < -29% C.

B.

Red Pine Shoot Moth, Dioryctria resinosella 1. 2. 3. Central Wisconsin 30-40 year old trees Shoots and Cones

C.

Nantucket Pine Tip Moth, Rhyacionia frustrana 1. 2. Geographic distribution: Eastern, Central and Southern States Host range: All pines except longleaf and white a. b. c. 3. South: Loblolly, Shortleaf Mid-Atlantic: Pitch, Virginia, Scotch Central: Red

Plantation problems

D. E.

Zimmerman pine moth, Dioryctria zimmermani White-Pine Shoot Borer, Eucosma gloriola
46

1. 2. F.

Geographic Range: Northeastern and Lake States Host Range: White, Jack, Red, Scotch Pines

Western Pine Shoot Borer, Eucosma sonomana

IV.

BARK BEETLES (Scolytidae) A. Pine Shoot Beetle Tomicus piniperda 1. 2. 3. 4. B. Native and North American distribution Life history Impact Management

Pitch Canker 1. 2. Fusarium subglutinans f. sp. pini, vectored by Pityophthorus twig beetles. Monterey pine in California.

47

CONE AND SEED INSECTS

I.

CONE AND SEED INSECTS A. Introduction 1. 2. B. Importance Ecology

Cone Beetles (Coleoptera) 1. Bark Beetles (Scolytidae) a. Red Pine Cone Beetle, Conophthorus resinosae 1. 2. 3. Importance Hosts Life cycle b. White Pine Cone Beetle, Conophthorus coniperda 1. 2. 3. c. 2. Importance Hosts Life cycle

Western species of Conophthorus

Weevils (Curculionidae): Curculio a. b. Pecan Weevil Chestnut Weevil

C.

Cone Moths (Lepidoptera) 1. 2. Red Pine Coneworm, Dioryctria disclusa Fir Coneworm, Dioryctria abietivorella a. 3. 4. True firs, Douglas fir

Spruce Coneworm, Dioryctria reniculelloides Southern Pine Coneworm

48

D.

Seed Moths 1. 2. 3. Spruce Seed Moth, Laspeyresia youngana Filbertworm Valentinia

E.

Cone Flies (Diptera) 1. 2. Spruce Cone Maggot Walnut Husk Fly

F.

Bugs ( Heteroptera: Hemiptera) 1. 2. Seed bugs Coreidae - Platycoreia luridans Pentatomidae - Shieldbacked Pine Seed Bug, Tetyra bipunctata (north), T. corculus (south)

G.

Gall Wasps (Hymenoptera: Cynipidae)

GALL INSECTS I. Major Groups A. B. Aphids Midges: Cecidomyidae 1. 2. C. D. E. \ Balsam Gall Midge Protection by fungal endophytes

Sawflies - Deciduous: Tenthredinidae Gall Wasps: Cynipidae Zimmerman Pine Moth

49

APPENDIX 1: INSECT POPULATION SAMPLING TECHNIQUES I. Absolute Population Estimates -- expressed as a density (numbers) per unit area A. Absolute population estimates using marking techniques 1. Methods of marking animals a. paints and dye solutions b. labels c. fluorescent substances (powder) d. mutilation e. marking internally by injection f. marking by feeding with dyes g. genes, mutant and normal h. radioactive isotopes 2. Capture-recapture methods: Lincoln Index B. Absolute population estimates by sampling a unit of habitat - air, plants, 1. Sampling from the air a. exposed cone type of suction trap b. enclosed cone types of suction trap c. rotary and other traps 2. Sampling from plants a. direct counting b. the separation of exposed small animals from the foliage on which they are living (1) knockdown by chemicals, jarring and heat (2) brushing (3) washing (4) imprinting c. the expulsion of insects from trees or shrubs (1) jarring or beating (2) chemical knockdown d. the extraction of insects from herbage and debris (1) suction apparatus (2) cylinder or covering method (3) tents for sampling strongly phototactic insects (4) extraction by heat and drying e. methods for insects (eggs) in plant tissues (1) dissection (2) bleaching and/or selective staining (3) X-rays C. Absolute population estimates by sampling a unit of habitat - soil and litter 1. Mechanical methods of extraction a. dry sieving b. soil washing (or wet sieving) c. soil washing and flotation d. flotation e. separation of plant and animal matter by differential wetting f. centrifugation g. sedimentation h. elutriation2. Behavioral or dynamic methods
50

D. II.

dry extractors (1) large Berlese funnel (2) horizontal extractor (3) multiple canister extractor (4) Kempson bowl extractor b. wet extractors (1) Baermann funnel (2) hot water extractors (3) sand extractors (4) cold water extractor c. chemical extraction d. electrical extraction Absolute population estimates by sampling a unit of habitat -freshwater habitats

a.

Relative Methods of Population Estimation -- the population is measured in unknown units -allow only comparisons in space and time; especially useful in extensive work A. Catch per unit effort 1. Visual observation 2. Flushing 3. Collecting with net or similar device B. Trapping 1. Interception traps a. air - flight traps b. water - aquatic traps c. land - pitfall and other traps 2. Flight traps combining interception and attraction a. sticky traps b. water traps 3. Light and other visual traps a. shelter traps b. trap host plants c. use of vertebrate hosts or substitutes as bait (1) moving baits (2) stationary baits d. bait traps utilizing non-living materials (1) carbon dioxide and "scents" of animals (2) carrion and dung (3) fruits and other attractants e. sound traps Estimates based on products and effects of insects (population indices). The insects themselves are not counted, but their products (e.g., frass, webs, exuviae, nests, etc.,) or effects (e.g., plant damage) are counted. A. Products 1. Exuviae 2. Frass 3. Other products B. Effects 1. Economic damage
51

III.

2. 3.

Yield Amount of plant consumed

52

APPENDIX 2: MAJOR CATEGORIES OF INSECTICIDES I. ORGANOCHLORINES A. Mode of Action - Axon poison B. Attributes Very broad acting Highly persistent in environment Longterm control Environmental Contamination; Biomagnification Bird egg shell thinning Variable toxicity, carcinogenicity & mutagenicity May releases mite outbreaks C. Examples DDT, lindane, chlordane D. Comments Most are banned for most uses ORGANOPHOSPHATES A. Mode of Action - Acetylcholinesterase inhibitor B. Attributes Very broad acting Less persistent in environment High mammalian toxicity Some miticidal activity C. Examples Malathion, orthene, lorsban, cygon D. Comments Inexpensive; commonly used CARBAMATES A. Mode of Action - Acetylcholinesterase inhibitor B. Attributes Moderately broad acting Less persistent in environment Moderate mammalian toxicity (sometimes high) Sometimes high bee (and earthworm) toxicity C. Examples Carbaryl "Sevin," Temik, Vydate D. Comments Sevin is widely used PYRETHROIDS A. Mode of Action - Axon poison B. Attributes Moderately broad acting Highly effective; very low doses needed Moderately persistent in environment Low mammalian toxicity High fish toxicity May release mite outbreaks C. Examples - Pydrin D. Comments Expensive Derived from Chrysanthemum

II.

III.

IV.

INSECTICIDE TERMINOLOGY Systemic Will be taken up by plant

53

LD50 LT50

-

The dose required to kill 50% of the population; the lower the LD50, the higher the toxicity The time required to kill 50% of the population

MECHANISMS OF INSECTICIDE RESISTANCE Reduced penetration Excretion Sequestration Detoxification Target Site Insensitivity

54


				
DOCUMENT INFO
Shared By:
Categories:
Tags:
Stats:
views:1112
posted:11/14/2009
language:English
pages:54