PERFORMANCE AND FLOW CHARACTERISTICS OF FLOOR SWIRL DIFFUSER UNDER DIFFER

Document Sample
PERFORMANCE AND FLOW CHARACTERISTICS OF FLOOR SWIRL DIFFUSER UNDER DIFFER Powered By Docstoc
					International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 –
 INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING
6340(Print), ISSN 0976 – 6359(Online) Volume 4, Issue 4, July - August (2013) © IAEME
                               AND TECHNOLOGY (IJMET)

ISSN 0976 – 6340 (Print)
ISSN 0976 – 6359 (Online)                                                       IJMET
Volume 4, Issue 4, July - August (2013), pp. 154-165
© IAEME: www.iaeme.com/ijmet.asp
Journal Impact Factor (2013): 5.7731 (Calculated by GISI)                  ©IAEME
www.jifactor.com




  PERFORMANCE AND FLOW CHARACTERISTICS OF FLOOR SWIRL
 DIFFUSER UNDER DIFFERENT OPERATING AND FLOW PARAMETERS

                                        1
                                            Suraj, 2Dr. V.N. Bartaria
                                    1
                                     Suraj, ME Scholar, LNCT, Bhopal
                          2
                              Dr. V.N. Bartaria, Prof. & Head, LNCT, Bhopal



ABSTRACT

        Floor swirl diffusers used in air-conditioning system can create better air mixing to enhance
indoor air quality and help in achieving better human comfort. The variation in temperature in air
conditioning system depends strongly on the flow characteristics produced by the diffuser outlet that
vary considerably between different modeling set ups. In corporate sector it is very important to
calculate the effect of variation in temperature of diffused air from floor swirl diffuser with and
without heat load.
        In this experimental work, I have tried to reduce the variation in temperature of conditioned
air and improvement in thermal human comfort by adopting different models of floor swirl diffuser
designed on pro-E software. After that I have made prototype wooden model of the floor swirl
diffuser to check its performance under different operating and flow conditions experimentally.
        The experiment has been performed inside an acrylic sheet wooden room of size 4ft x 4ft x
5ft with floor swirl diffuser models installed at the roof. The variation in temperature of diffused air
form floor swirl diffuser at different altitude and the effect of heat load on temperature variation is
determined. This experiment has been performed on three different models of floor swirl diffuser
having different slot angles of 7⁰, 8⁰ and 9⁰.

Keywords: ACE-Air Change Effectiveness, Heat Load Capacity, Swirl motion, 7⁰ Swirl Diffuser-
Diffuser having slot with draft angle 7⁰, 8⁰ Swirl Diffuser- Diffuser having slot with draft angle 8⁰,
9⁰ Swirl Diffuser- Diffuser having slot with draft angle 9⁰,and Round and rectangular slots, Cross-
section.




                                                      154
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 –
6340(Print), ISSN 0976 – 6359(Online) Volume 4, Issue 4, July - August (2013) © IAEME

INTRODUCTION

         Floor air diffusers are used widely in air-conditioning systems for distribution of conditioned
air inside a room and the air diffusion is very much depends on the characteristics of different
diffuser designs. For floor-level air supply systems, swirling diffusers are most widely used.
Modeling of the diffuser plays an important role in predicting airflow pattern in the room. Swirl
diffusers are generally mounted into the underfloor air handling space. This device delivers
conditioned air at floor level to the space and allows the occupant to manually control both the
volume and direction of the air flow. The diffuser is constructed of a durable, high impact,
polycarbonate material. Delivering air from the floor has an advantage of supplying fresh, cool, clean
air directly into the occupied zone of the space, so heat and pollutants are not continuously circulated
within the space as it happens in an overhead air distribution system. It will results in dissipation of
heat and less concentration of pollutants in the occupied space in the lower level than those at the
upper levels of the space. Ventilation is done through displacement as opposed to dilution.
         The requirement of a good air distribution system is to supply clean and fresh air with less
variation in temperature with height and different locations to provide thermal comfort and high air
quality. In Asian and European countries, 30-50% of occupants have health problem because of bad
air distribution system. Almost 30-40% of the energy produced has been spent on air distribution
system in most of the developing countries.
         Swirl diffusers are designed to provide effective indoor air diffusion through specially
designed swirl deflection blades to produce a highly turbulent radial air flow pattern that will induce
better mixing of room air. This also results in rapid temperature equalization to give stable room
conditions with minimum temperature gradients. The excellent high qualities of air from swirl
diffusers enable designers to aim for a high value of Air Change Effectiveness (ACE). Swirl
diffusers have recently become very popular because they generate radially high induction swirl air
flow by drawing room air up into the supply air pattern to induce superior air mixing. Better mixing
means better ACE.
It is therefore required to study the characteristics of air distribution system with floor swirl diffuser
under different operating and flow conditions with high thermal load.

EXPERIMENTAL SET-UP

        It consists of an acrylic sheet wooden room of size 4ft x 4ft x 5ft with different models of
swirl diffuser installed at the floor level. The conditioned air from air conditioner is supplied from
the bottom through a duct of reducing cross-section to increase the air flow velocity through the
diffuser. A heater of 1500W is placed inside the room to provide a heat load. Heater is placed near
the location Y2. A temperature sensing instrument with six thermocouple wires is placed inside the
room to measure the temperature at six locations vertically at a distance of 0.7 feet. There are four
exhaust vents at the top surface of the wooden block through which ventilation is carried out inside
the room.
        There are six locations at the floor inside the room where readings of temperature have to be
noted and the variation in temperature of air is to be studied.
        3-D view of the experimental set-up and actual front view of the experimental set-up is
shown in Fig.1 and Fig.2 respectively.




                                                   155
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 –
6340(Print), ISSN 0976 – 6359(Online) Volume 4, Issue 4, July - August (2013) © IAEME




                             Fig.1 3-D view of the experimental set-up




                            Fig.2 Front view of the experimental set-up

DIFFERENT MODELS OF DIFFUSER

1. 7⁰ Swirl Diffuser
        It has a circular cross-section of 280mm diameter and height 280mm. Round slots are cut on
the top surface. Round slots are drafted through an angle of 7⁰ for producing swirl action. Width of
the top surface is 10mm. Vertical surface of the diffuser is cylindrical with rectangular slots of size
10mm x 200 mm are cut on its surface.




      Fig.3 Top view of 7⁰ Swirl Diffuser                  Fig.4 Front view of 7⁰ Swirl Diffuser

                                                 156
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 –
6340(Print), ISSN 0976 – 6359(Online) Volume 4, Issue 4, July - August (2013) © IAEME

2. 8⁰ Swirl Diffuser
        It has a circular cross-section of 280mm diameter and height 280mm. Round slots are cut on
the top surface. Round slots are drafted through an angle of 8⁰ for producing swirl action. Width of
the top surface is 10mm. Vertical surface of the diffuser is cylindrical with rectangular slots of size
10mm x 200 mm are cut on its surface.




       Fig.5 Top view of 8⁰ Swirl Diffuser                Fig.6 Front view of 7⁰ Swirl Diffuser

3. 9⁰ Swirl Diffuser
        It has a circular cross-section of 280mm diameter and height 280mm. Round slots are cut on
the top surface. Round slots are drafted through an angle of 9⁰ for producing swirl action. Width of
the top surface is 10mm. Vertical surface of the diffuser is cylindrical with rectangular slots of size
10mm x 200 mm are cut on its surface.




      Fig.7 Top view of 9⁰ Swirl Diffuser               Fig.8 Front view of 9⁰ Swirl Diffuser


FLOW PATTERN OF AIR THROUGH DIFFERENT DIFFUSER

       The flow pattern of air through different diffusers can be visualized with the help of smoke.
The smoke is created inside the diffuser chamber and it is accelerated through the diffuser by the
conditioned air coming from the air- conditioner.




                                                 157
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 –
6340(Print), ISSN 0976 – 6359(Online) Volume 4, Issue 4, July - August (2013) © IAEME




       Fig.9 Air flow pattern through 7⁰                    Fig.10 Air flow pattern through 8⁰
                Swirl Diffuser                                        Swirl Diffuser




                         Fig.11 Air flow pattern through 9⁰ Swirl Diffuser

EXPERIMENTAL RESULTS

        The main results of the experiment are tabulated at six locations inside the room with and
without heat load. Locations are taken along X-axis and Y-axis on the floor. These locations are
equally spaced and are at a distance of 1 foot from each other.
        The supply air temperature from the air-conditioner is 18.4⁰C at a flow rate of 0.2m3/s. The
heat load is applied inside the room with the help of heater of load capacity 1500W.
        Various temperature readings are noted at location Y1, Y2, Y3, X1, X2 and X3 with load and
without load. The experiment has been performed with all three models of diffuser.
        These experimental results will help us in comparing the performance of three different
models of floor swirl diffuser under different operating and flow conditions. These results have been
plotted graphically between temperature and height from the floor level. It will also provide the
designers a guideline in achieving better human comfort and best performance with floor swirl
diffuser used in air conditioning system.
        The graphs plotted between temperature and height at various locations indicates that
variation in temperature with height is less with 8⁰ swirl diffuser. The result also shows that variation
in temperature reduces as we move away from the heat source. Due to swirl action produced by the
                                                  158
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 –
6340(Print), ISSN 0976 – 6359(Online) Volume 4, Issue 4, July - August (2013) © IAEME

diffuser temperature equalization is almost achieved inside the room at different locations with and
without heat load. During the experiment performance only one exhaust vent is opened out of the
four. We can also perform the same experiment with all the four vents are opened.
        The variation in temperature at location Y1, Y2 and Y3 is comparatively more than at
location X1, X2 and X3 during presence of heat load. This happens due to presence of heat source at
location Y2.

AIR TEMPERATURE MEASUREMENT

       Air temperature is measured spontaneously at each location under different operating
conditions. Inlet and return air temperature are 18.4⁰C and 23.6⁰C for 7⁰ swirl diffuser, 18.4⁰C and
22.4⁰C for 8⁰ swirl diffuser and 18.4⁰C and 23.8⁰C in case of 9⁰ swirl diffuser respectively.
A uniform temperature distribution is observed. The highest temperature gradient is found at location
Y2. In the upper occupied zone there is small temperature gradient due to good mixing of air in the
upper region.
The temperature at various locations is tabulated and the graphical results are shown below.

Condition1: When exhaust vent 1 is opened
Initial Room Temperature= 32⁰C
Room Temperature at load 1500W without switching air-conditioner= 38⁰C


At location Y1
Load= No load with a.c.
                                                             Temperature (⁰C)
                                                                          ⁰
       S. No.             Height (ft.)
                                          7⁰
                                           ⁰                 8⁰
                                                              ⁰               9⁰
                                                                               ⁰
         1                    0.7                24                23                    25
         2                    1.4                24                23                    23
         3                    2.1                23                21                    21
         4                    2.8                24                22                    23
         5                    3.5                23                21                    24
         6                    4.2                22                20                    22


At location Y1
Load= 1500W load with a.c.
                                                            Temperature (⁰C )
                                                                         ⁰
       S. No.             Height (ft.)
                                                 7⁰
                                                  ⁰               8⁰
                                                                   ⁰                     9⁰
                                                                                          ⁰
          1                   0.7                26               25                     24
          2                   1.4                25               25                     23
          3                   2.1                25               24                     23
          4                   2.8                25               25                     25
          5                   3.5                23               25                     25
          6                   4.2                22               22                     23




                                                159
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 –
6340(Print), ISSN 0976 – 6359(Online) Volume 4, Issue 4, July - August (2013) © IAEME

At location Y2
Load= No load with a.c.
                                                   Temperature (⁰C)
                                                                ⁰
      S. No.              Height (ft.)
                                         7⁰
                                          ⁰              8⁰
                                                          ⁰                9⁰
                                                                            ⁰
         1                    0.7        26              24                26
         2                    1.4        24              23                23
         3                    2.1        23              22                22
         4                    2.8        24              23                24
         5                    3.5        23              22                24
         6                    4.2        21              21                22


At location Y2
Load= 1500W load with a.c.
                                                   Temperature (⁰C)
                                                                ⁰
      S. No.              Height (ft.)
                                         7⁰
                                          ⁰              8⁰
                                                          ⁰                9⁰
                                                                            ⁰
        1                     0.7        30              28                31
        2                     1.4        28              28                29
        3                     2.1        26              26                25
        4                     2.8        25              26                26
        5                     3.5        24              25                25
        6                     4.2        22              22                22


At location Y3
Load= No load with a.c.
                                                   Temperature (⁰C)
                                                                ⁰
      S. No.              Height (ft.)
                                         7⁰
                                          ⁰              8⁰
                                                          ⁰                9⁰
                                                                            ⁰
         1                    0.7        24              23                26
         2                    1.4        23              23                22
         3                    2.1        22              22                20
         4                    2.8        23              23                23
         5                    3.5        23              23                23
         6                    4.2        21              22                21


At location Y3
Load= 1500W load with a.c.
                                                   Temperature (⁰C)
                                                                ⁰
      S. No.              Height (ft.)
                                         7⁰
                                          ⁰              8⁰
                                                          ⁰                9⁰
                                                                            ⁰
         1                    0.7        30              25                28
         2                    1.4        28              26                26
         3                    2.1        26              23                24
         4                    2.8        26              25                25
         5                    3.5        25              25                25
         6                    4.2        23              22                22



                                         160
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 –
6340(Print), ISSN 0976 – 6359(Online) Volume 4, Issue 4, July - August (2013) © IAEME

At location X1
Load= No load with a.c.
                                                   Temperature (⁰C)
                                                                ⁰
      S. No.              Height (ft.)
                                          7⁰
                                           ⁰             8⁰
                                                          ⁰                9⁰
                                                                            ⁰
        1                     0.7         24             23                27
        2                     1.4         24             23                23
        3                     2.1         22             22                20
        4                     2.8         23             23                24
        5                     3.5         22             23                23
        6                     4.2         21             21                22


At location X1
Load= 1500W load with a.c.
                                                    Temperature (⁰C)
                                                                 ⁰
      S. No.              Height (ft.)
                                           7⁰
                                            ⁰             8⁰
                                                           ⁰               9⁰
                                                                            ⁰
         1                     0.7         25             24               25
         2                     1.4         23             24               23
         3                     2.1         23             22               23
         4                     2.8         25             25               25
         5                     3.5         24             24               24
         6                     4.2         22             21               21


At location X2
Load= No load with a.c.
                                                   Temperature (⁰C)
                                                                ⁰
      S. No.              Height (ft.)
                                         7⁰
                                          ⁰              8⁰
                                                          ⁰                9⁰
                                                                            ⁰
         1                    0.7        24              23                26
         2                    1.4        22              23                22
         3                    2.1        21              22                20
         4                    2.8        23              22                24
         5                    3.5        22              22                24
         6                    4.2        19              20                21


At location X2
Load= 1500W load with a.c.
                                                   Temperature (⁰C)
                                                                ⁰
      S. No.              Height (ft.)
                                         7⁰
                                          ⁰              8⁰
                                                          ⁰                9⁰
                                                                            ⁰
         1                    0.7        24              25                25
         2                    1.4        23              25                23
         3                    2.1        22              23                23
         4                    2.8        23              25                24
         5                    3.5        22              24                24
         6                    4.2        20              21                21

                                         161
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 –
6340(Print), ISSN 0976 – 6359(Online) Volume 4, Issue 4, July - August (2013) © IAEME

At location X3
Load= No load with a.c.
                                                             Temperature (⁰C)
                                                                          ⁰
       S. No.             Height (ft.)
                                                 7⁰
                                                  ⁰                8⁰
                                                                    ⁰                    9⁰
                                                                                          ⁰
         1                    0.7                24                22                    24
         2                    1.4                22                22                    23
         3                    2.1                22                21                    22
         4                    2.8                22                21                    24
         5                    3.5                23                22                    24
         6                    4.2                21                21                    22


At location X3
Load= 1500W load with a.c.
                                                             Temperature (⁰C)
                                                                          ⁰
      S. No.              Height (ft.)
                                                 7⁰
                                                  ⁰                8⁰
                                                                    ⁰                     9⁰
                                                                                           ⁰
         1                    0.7                24                24                     24
         2                    1.4                24                24                     23
         3                    2.1                23                24                     23
         4                    2.8                23                23                     24
         5                    3.5                24                24                     24
         6                    4.2                22                23                     23


GRAPHICAL REPRESENTATION OF RESULTS

       The following graph shows the variation in temperature with height at different locations in
experimental set-up.




 Fig.12 Variation in temperature vs. height at         Fig.13 Variation in temperature vs. height at
  location Y1 in condition 1 without load              location Y1 in condition 1 with load 1500W




                                                 162
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 –
6340(Print), ISSN 0976 – 6359(Online) Volume 4, Issue 4, July - August (2013) © IAEME




Fig.14 Variation in temperature vs. height at          Fig.15 Variation in temperature vs. height at
  location Y2 in condition 1 without load              location Y2 in condition 1 with load 1500W




 Fig.16 Variation in temperature vs. height at         Fig.17 Variation in temperature vs. height at
  location Y3 in condition 1 without load              location Y3 in condition 1 with load 1500W




  Fig.18 Variation in temperature vs. height           Fig.19 Variation in temperature vs. height at
  at location X1 in condition 1 without load           location X1 in condition 1 with load 1500W




                                                 163
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 –
6340(Print), ISSN 0976 – 6359(Online) Volume 4, Issue 4, July - August (2013) © IAEME




    Fig.20 Variation in temp. vs. height at            Fig.21 Variation in temperature vs. height at
   location X2 in condition 1 without load             location X2 in condition 1 with load 1500W




     Fig.22 Variation in temp. vs. height at           Fig.23 Variation in temperature vs. height at
    location X3 in condition 1 without load            location X3 in condition 1 with load 1500W


CONCLUSIONS

        The results from this study show that a workshop with floor-supply displacement ventilation
using swirl diffuser can improve indoor air quality because the contaminant concentration in the
breathing zone is lower than that of mixing system. It helps us in comparing the performance of three
different types of swirl diffuser under different operating and flow conditions. Due to swirl action
produced more unidirectional flow was created, the slow recirculation at the occupant zone was
eliminated for the floor-supply ventilation and the risk of cross contamination can be effectively
reduced. The system with the swirl diffusers can provide a better comfort level than that with the
perforated panels due to the mixing by the diffusers.
        This study helps in selecting optimum models for floor swirl diffuser under different
operating conditions. We can improve the Air Change Effectiveness and human comfort by varying
the slot design angle of diffuser. It will results in better mixing of air inside the room and the
variation in temperature of air from floor height will be reduced. We can achieve better human
comfort and proper ventilation by using floor swirl diffuser.




                                                164
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 –
6340(Print), ISSN 0976 – 6359(Online) Volume 4, Issue 4, July - August (2013) © IAEME

REFERENCES

 [1]  Xue, G., Lee, K., Jiang, Z. and Chen, Q. 2012. Thermal environment in indoor spaces with
      under-floor air distribution systems: 2. Determination of design parameters (RP-1522).
      Submitted to HVAC&R Research.
 [2] Allison, C. and North, B. 2011. Achieving Air- Change Effectiveness for Green Star IEQ-2
      Office Design with CFD Simulations: Diffuser Performance, Ecolibrium, February 2011,
      pp. 28-34.
 [3] Lee, K.S., Zhang, T., Jiang, J., and Chen, Q. 2009. Comparison of airflow and contaminant
      distributions in rooms with traditional displacement ventilation and under-floor air
      distribution systems – RP-1373. ASHRAE Transactions 115 (2).
 [4] Bauman, F., Webster, T., and Benedict, C. 2007. Cooling airflow design calculations for
      UFAD. ASHRAE Journal 49(10): 36-44.
 [5] D.-W. Kim, H.-S. Kim, S.-K. Park and Y.-J. Kim, Analyses on Flow Fields and Performance
      of a Cross-Flow Fan with various Setting Angles of a Stabilizer (in Korean), J. of Comp.
      Fluids Engg., 10(1) (2005) 107-112.
 [6] Bauman FS. Designing and specifying underfloor systems: Shedding light on common
      myths. HPAC Heating, Piping, Air Conditioning Engineering 2003; 75(12):26–39.
 [7] Akimoto T. Research on floor-supply displacement air-conditioning system. PhD thesis,
      1998, Waseda University, Japan
 [8] Chae Y, Moon H, Ahn B, Sohn J. Experimental comparison of characteristics between
      ceiling-based system and floor-based system using CAV HVAC system in cooling period.
      Proceedings of Indoor Air 2002:3–288.
 [9] Syed Moazzam Ali and Dr.Balu Naik Banoth, “Low Energy Consumption HVAC Systems
      for Green Buildings using Chilled Beam Technology”, International Journal of Advanced
      Research in Engineering & Technology (IJARET), Volume 4, Issue 3, 2013, pp. 316 - 324,
      ISSN Print: 0976-6480, ISSN Online: 0976-6499.
 [10] P. K. Sinha, A.K.das and B. Majumdar, “Numerical Investigation of Flow through Annular
      Curved Diffuser”, International Journal of Mechanical Engineering & Technology (IJMET),
      Volume 2, Issue 2, 2011, pp. 1 - 13, ISSN Print: 0976 – 6340, ISSN Online: 0976 – 6359.




                                            165

				
DOCUMENT INFO
Shared By:
Categories:
Tags:
Stats:
views:1
posted:8/13/2013
language:
pages:12