Docstoc

Reduced MHD “favors” straight field line coordinates for mode

Document Sample
Reduced MHD “favors” straight field line coordinates for mode Powered By Docstoc
					Reduced MHD “favors” straight field line coordinates for mode description. Reason: In straight field line coordinates, the safety factor q has no poloidal dependence on a given flux surface. Particle guiding center theory “favors” orthogonal magnetic coordinates. Reason: Guiding center equations of motion have a convenient Hamiltonian structure in orthogonal magnetic coordinates.

Representation of the unperturbed axisymmetric magnetic field in orthogonal coordinates:
A = A! "! + A# "# B = B! "! + B# "#

! - toroidal angle # - poloidal angle $ - flux coordinate
Note that there is no "$ - component in A or B in orthogonal coordinates.

Littlejohn Lagrangian in orthogonal magnetic coordinates:
e" Mc B! % e" Mc B( % ! Mc Mv||2 ! ! L = $ A! + v|| ' ! + $ A( + v|| ' ( + µ) * µ B * c# e B& c# e B& e 2

Dynamical variables:

! - toroidal angle ( - poloidal angle + - flux coordinate

v" - parallel velocity ) - gyroangle µ - magnetic moment

Hamiltonian form:

! ! ! L = P! ! + P"" + P## $ H (P! ; P" ; P# ;" ) P! % P" % e& Mc B! ) A! + v|| + c( e B* '

e& Mc B" ) A" + v|| + c( e B* ' Mc P# % µ e Mv||2 H % µB + 2
Transformation from straight field line coordinates r; " ;! to orthogonal coordinates

( r;";! ) :
r=r

(

)

! =!
r / r -, 2 ˆ " = " $ 1 + -, + . dr 4 sin" % " $ 5 sin " r 3 0 R0 0

-, % Shafranov shift

Mode representation (single poloidal component) in straight field line coordinates:
! SAW = ! nm (r )exp("i# t + in$ " im% )

Mode representation in orthogonal coordinates:

ˆ ! SAW = !nm (r)exp("i# t + in$ " im% + im& sin % )
Issue to address:

ˆ The case of large m& presents a challenge for brute-force numerical implementation because insufficient poloidal resolution can break the Hamiltonian structure of waveparticle interaction.


				
DOCUMENT INFO
Shared By:
Categories:
Stats:
views:9
posted:11/8/2009
language:English
pages:5