Docstoc

P2

Document Sample
P2 Powered By Docstoc
					                  CS1050: Understanding and Constructing Proofs
                                Spring 2006


                    Programming Project 2
                          SORTING
                       Lecture 05, file P2
 Due January 31 before class as a link on your PPP
                                           Jarek Rossignac


Jarek Rossignac      http://www.gvu.gatech.edu/~jarek   MAGIC Lab   Georgia Tech, IIC, GVU, 2006   1
                    Start with the sample P2
 • Access the applet at
      http://www.gvu.gatech.edu/~jarek/courses/1050/processing/P2/
 • Click in the window and hold mouse down to see animation
 • It sorts random numbers and then animates the sorting




Jarek Rossignac   http://www.gvu.gatech.edu/~jarek   MAGIC Lab   Georgia Tech, IIC, GVU, 2006   2
                                     Declarations
 •    PFont fontUsed; // name of font used for writing on the graphic screen
 •    int H=5;                // number of entries in the table
 •    int T[] = new int[H];          // table (array). Will contain integers
 •    int AT[] = new int[H];           // copy of the table for animation
 •    int swaps[][] = new int[H*H+1][2]; // record swaps (pair of indices)
 •    color myRed = color(250,100,100); color myGreen = color(100,250,100);
 •    color myBlue = color(100,100,250); // my colors (R,G,B) in [0,255]
 •    int cw, ch;                  // cell width and height
 •    int c=0, mc=150;                  // animation counter and max
 •    int w=0, mw=50;                     // wait counter and max
 •    int swap=0;                   // index to swaps
 •    int swapMax=0;                    // counter of th enumber of swaps
 •    float t=0.0;               // animation parameter
 •    int s1, s2;              // indics of the current pair to be swapped

Jarek Rossignac   http://www.gvu.gatech.edu/~jarek   MAGIC Lab   Georgia Tech, IIC, GVU, 2006   3
                                              Setup
 void setup() {         // executed only once as initialization
  size(500, 500);        // opens graphic window of 600x600 pixels. \
  cw=int(35);          // computes cell sizes leaving a margin, Cast to integer
  ch=int(0.9*height/H);            // (height and width of window are keywords)
  fontUsed = loadFont("Times-Roman-25.vlw"); // this font must be loaded
                                (MENU-BAR > TOOLS > CREATE FONTS)
  textFont(fontUsed, 20);                   // selects font and assigns size
  for (int i=0; i<H; i++) {T[i]=int(random(2*H)); }; // init with random numbers
  for (int i=0; i<H; i++) {AT[i]=T[i]; };             // copy to animation table
  println(); println(" *** unsorted list ***");
  for (int i=0; i<H; i++) { println("T["+i+"]="+T[i]);};
  bubbleSort();         // call to my naive sorting routine
  };              // end of setup



Jarek Rossignac   http://www.gvu.gatech.edu/~jarek   MAGIC Lab   Georgia Tech, IIC, GVU, 2006   4
                                        bubbleSort
 void bubbleSort() {               // my simple sorting, replace by
    yours
  for (int j=H-1; j>0; j--) {
   for (int i=0; i<j; i++) {
     if (T[i]>T[i+1]) {doSwap(i,i+1);};
     }; }; };

 void doSwap(int s1, int s2) {
  int temp=T[s1]; T[s1]=T[s2]; T[s2]=temp;                                // performs
    the swap
  swaps[swapMax][0]=s1; // records the swap
  swaps[swapMax][1]=s2;
  swapMax++; };

Jarek Rossignac   http://www.gvu.gatech.edu/~jarek   MAGIC Lab   Georgia Tech, IIC, GVU, 2006   5
                                                Draw
 // will be executed continuously to refresh the window many frames per second
 void draw() {
 background(200); // erases screen and set up a light grey background
  strokeWeight(2); // lines will be drawn thicker
   translate(width*0.05,height*0.05);      // move the origin to leave a margin
   if (mousePressed) // moves animation by one step when mouse pressed
      {advanceAnimation(); };
   ShowTable();       // Displays the partially sorted table with animation state
   if (done) {noLoop();}; // stops when done
   };            // end of draw




Jarek Rossignac   http://www.gvu.gatech.edu/~jarek   MAGIC Lab   Georgia Tech, IIC, GVU, 2006   6
                            advanceAnimation
 void advanceAnimation () {
 s1=swaps[swap][0]; s2=swaps[swap][1];
                     // entries to be swapped are retrieved from list of swaps
  if (w<mw) {w++;}                    // advance the wait counter
  if(w==mw) {                        // when done waiting
    t=float(c)/float(mc);             // compute animation time in [0,1]
    c++;                            // advance animation counter
    if (c==mc) {                   // when animation done for this swap
      w=0; c=0; t=0;                // reset time and counters
      int temp=AT[s1]; AT[s1]=AT[s2]; AT[s2]=temp; // do the actual swap
      swap++;                   // next swap
      if (swap==swapMax) {done=true; swap=swapMax;} // all swaps done
      };
    };
  };

Jarek Rossignac   http://www.gvu.gatech.edu/~jarek   MAGIC Lab   Georgia Tech, IIC, GVU, 2006   7
                                      ShowTable
 void ShowTable() {                 // displays able animated
  int ax, ay;               // displacements for the cels being swapped
  color cellColor = myGreen;           // default color for cells
  float r=(s2-s1)*ch;                // radius for circular animation
  int sa=int(r*sin(t*TWO_PI/2.0)/2.0); // horizontal displacement
  for (int h=0; h<H; h++) {              // go through the cells
    cellColor=myGreen;              // default color for non-swapping cells is green
    ax=0; ay=0;                  // no displacement for non-swapping cells
    if (h==s1) {ay=int(t*r); ax=sa; cellColor=myRed; }; // if upper swap cell
    if (h==s2) {ay=-int(t*r); ax=-sa; cellColor=myBlue; }; // if lower swap cell
    drawCell(width/2-cw+ax,h*ch+ay,cw,ch,cellColor,AT[h]);
    }; };

 void drawCell(int wp, int hp, int cwp, int chp, color cp, int vp) {
  fill(cp); rect(wp,hp,cwp,chp); // draws and fills a rectangular region
  fill(0); text(nf(vp,2),wp+cwp/10,hp+chp*0.8); }; // writes vp on the screen
Jarek Rossignac   http://www.gvu.gatech.edu/~jarek   MAGIC Lab   Georgia Tech, IIC, GVU, 2006   8
              Implement 3 variants of bubblesort
 • Bubble sort is described page 125
 • Add three alternatives to bubbleSort
        – A modified bubble sort algorithm that stops when no interchange is
          required (exercise 37 page 130)
        – Modified insertion sort
                  • If the next nth element is smaller than the one it follows,
                  • then bubble it up
                  • until it is in the correct place in the sorted list of the first n elements
        – A modified selection sort (presented at the bottom of page 130)
                  •   Start with n=1
                  •   Assume that the first n–1 elements are sorted.
                  •   Find the smallest of the remaining elements
                  •   Swap it with the nth element
                  •   Increment n


Jarek Rossignac            http://www.gvu.gatech.edu/~jarek   MAGIC Lab         Georgia Tech, IIC, GVU, 2006   9
                  Enhance the user interface
 Increase the size of the array.
 Let the user press a key for the following actions:
    “r”: to select a new random set of numbers
    “n”: to select a nearly sorted set of numbers
    “b”: to run my naïve bubblesort
    “e”: to run your modified bubblesort that stops early
    “i”: to run your modified insertion sort
    “s”: to run your modified selection sort
 When the mouse is in the window and pressed, run the animation
    of the algorithm that was run last (make sure that you write in
    the graphics window the total number of swaps).


Jarek Rossignac   http://www.gvu.gatech.edu/~jarek   MAGIC Lab   Georgia Tech, IIC, GVU, 2006   10
                                    Report results
 • Debug your program and make images for each combination
 • Execute all 4 algorithms on several sets of random numbers and
   on several sets of nearly sorted numbers
 • Watch the 4 algorithms and provide a qualitative
   characterization of the differences in their behavior for random
   and nearly sorted numbers
 • Report statistics of the average number of swaps for each
   algorithm (separating random and nearly sorted sets).
 • Post on your PPP:
        – images (before and after) with number of swaps for each algorithm on a
          random and on a nearly sorted set.
        – your qualitative characterization
        – statistics with conclusions
        – links to applet and source code


Jarek Rossignac    http://www.gvu.gatech.edu/~jarek   MAGIC Lab   Georgia Tech, IIC, GVU, 2006   11

				
DOCUMENT INFO
Shared By:
Categories:
Tags:
Stats:
views:0
posted:4/15/2013
language:English
pages:11