TEKS 8 TEKS 9B Cellular Respiration TAKS Objective 2 – by vivi07

VIEWS: 77 PAGES: 35

									TEKS 9B
Cellular Respiration
TAKS Objective 2 – The student will demonstrate an understanding of
living systems and the environment.

TEKS Science Concepts 9 B
The student knows metabolic processes and energy transfers that occur in organisms. The student is expected to: (B) compare the energy flow in photosynthesis to the energy flow in cellular respiration

TAKS Objective 2

page 1

TEKS 7.9 A

For Teacher’s Eyes Only
Teacher Background: Cellular respiration is a complex concept that must be taught. In these activities, we will introduce cellular respiration and its components to students. In later activities, students will be able to compare the energy flow of cellular respiration to photosynthesis. A brief description of cellular respiration follows: Cellular Respiration – .

Student Prior Knowledge
Students should be familiar with the components associated with body systems TEKS 6.10 (C) identify how structure complements function at different levels of organization including organs, organ systems, organisms, and populations and the functions of these systems.

TAKS Objective 2

page 2

TEKS 7.9 A

ATP, ENERGY!

5 E’s
ENGAGE
Obtain small Nerf Toys that shoot soft darts. As students are waiting to begin class, shoot the soft darts around the room. This toy is a great representation of the molecule ATP. Tell students that our body obtains energy by making a molecule called ATP from the foods we eat. Show students the picture of the molecule and describe which parts represent Adenine (handle), Ribose (barrel) and Phosphates (dart). Later on during the lesson, students will see that when ATP looses a phosphate it give off energy, which is represented in the shooting of the dart.

EXPLORE
Exploration 1 Cellular Respiration Simulation Activity
Activity Overview: This is a role-playing simulation where the students act as the enzymes of cellular respiration to break down a glucose "molecule." The purpose of the activity is to review the "big picture" of metabolism, aiding students in understanding the relationship among glycolysis, the Kreb's cycle, and the ETC. See Blackline Masters for the simulation layout and detailed directions.

TAKS Objective 2

page 3

TEKS 7.9 A

Exploration 2 Muscle Fatigue
Students work in pairs to complete the following experiment to investigate the relationship between oxygen and muscle fatigue. Use the following procedure to explore lactic acid buildup in muscles. 1. Each pair of students is given a tennis ball. 2. Partner A holds the ball in his or her hand. Either hand is OK. 3. Partner B monitors the time for two minutes. 4. When Partner A says begin, Partner B squeezes the tennis ball with his or her hand as many times as possible until time is called at the end of two minutes. Simultaneously, Partner A will count aloud the number of times the tennis ball is squeezed. 5. Create a data table and record Partner A’s data. 6. Partners switch roles, and repeat steps 2-4. 7. Record Partner B’s data. Provide a debriefing for the activity using the following questions: 1. Describe how your hand felt at the end of the activity? Answers will vary but should include responses related to discomfort or pain. 2. What is happening to the muscles in your hand? The muscles are requiring more oxygen than the blood can deliver (oxygen debt). As oxygen levels decrease, the muscle cells form lactate, which causes discomfort or pain. 3. How do swimmers overcome lactate buildup as they near the end of a race? Initially, creatine phosphate powers the muscles during the race. However, near the end of the race, the swimmer uses rapid breathing to restore the oxygen supply to the muscles. The lactate diffuses out of the muscles and into blood where it be carried to the liver for conversion to glucose. The glucose is transported back to the muscle cells for cellular respiration to synthesize ATP which is used to regenerate creatine phosphate. 4. Which body systems are interacting together in this learning experience? Answers will vary, but might include the following: circulatory, respiratory, nervous, muscular. Students should be able to describe how these systems interact directly or indirectly.

TAKS Objective 2

page 4

TEKS 7.9 A

EXPLAIN ELABORATE
Elaboration 1 Respiration Labs (Blackline Masters)
Students will perform three different laboratory experiments that review and further explain the process of cellular respiration

TAKS Objective 2

page 5

TEKS 7.9 A

EVALUATE
1. Working in a group and given 40 minutes, the student will design and implement an experiment to demonstrate the relationship between heart, respiration rates, and lactic acid build up in muscles. A minimum score of 70% on the “Check Sheet for Independent Investigations is required.
Check Sheet for Independent Investigations I. Stating a problem to investigate Problem phrased as a research question If…then hypothesis statement Develop a procedure to compare baseline heart and respiration rates to an after exercise heart and respiration rates. All steps in sequential order and reproducible Multiple trials indicated Materials are appropriate and described Gathering respiration and heart rate data Data organized in table or chart Data has a title Labels for manipulated & responding variables Units are stated Multiple trials, totals and averages are included Graphing data Appropriate graph type used Appropriate scale, range, and interval are used Graph has a title Descriptive label for variable on the x-axis and responding variable for the y-axis Graphed data matches data collected. Units indicated for each axis Data analysis Results from graph clearly stated Inferences made about results Conclusion Conclusions based on results and inferences Hypothesis is restated Hypothesis is accepted or rejected

i)
5

II.

15

III.

15

IV.

20

V.

20

VI.

25

2. Using notes and text, students must correctly map 10 of 14 terms on the completed Cellular Respiration Concept Map (Blackline Masters).

TAKS Objective 2

page 6

TEKS 7.9 A

TAKS Objective 2

page 7

Biology

Cellular Respiration Role Play
Purpose: To review the "big picture" of metabolism, aiding students in understanding the relationship among glycolysis, the Kreb's cycle, and the ETC. See Diagram 1 for the simulation layout. Materials: 4 tissue boxes , 1 large piece of construction paper, stack of recipe index cards to be laminated, 1/4 lb. bag of balloons, 1 package of disposable drinking cups, colored markers, Velcro dots, printed student role cards

Safety Considerations: Students with latex allergies should be provided with an alternative activity. Students with asthma should not be assigned to an area that requires them to blow up balloons. Procedure: Teacher's prep before class: Label the index cards with the desired colors as follows then laminate:       8 index cards "NAD" 2 "FAD" Leave enough room after the "NAD" and "FAD" that an "H" could be inserted using a Velcro dot. 6 "CO2" 2 "Acetyl CoA". Cut 5 index cards into thirds Label 8 pieces with an "H" 2 pieces with "H2", and 4 with "e-". Laminate

1. Construction Paper Draw 6 "carbon" circles on the side of the paper (3 circles on each half and label under each half “pyruvic acid”). Label across the 6-C molecule “Glucose”.

GLUCOSE
PYRUVIC ACID PYRUVIC ACID

TAKS Objective 2

page 8

Biology

2. Label tissue box #1 “CO2 Waste”, tissue box #2 “NADH“, tissue box #3 “FADH2”, and tissue box #4 “e-“ 3. Inflate 2 balloons and label ATP. 4. Fill 2 cups of water Classroom Set Up 1. The classroom should be set up with a glycolysis area, transition station, Kreb's cycle area, and ETC area (see Diagram 1).

Glycolysis Area (Cytoplasm)
(Materials and People Needed) NAD Runner Enzyme Person (NAD, e-, ATP Inflated Balloons, and Glucose Molecule)

Transition Area
(Materials and People Needed) Transition Person (NAD, e -, CO2 and Acetyl CoA)

Kreb’s Cycle Area (Mitochondrial Matrix)
3 Carbon Compound People NAD Runner/FAD Runner (NAD, FAD, e-, CO2, H2 and H)

ETC (Mitochondrial Membrane)
ATP Synthase Person NAD + H Acceptor Individual Activity Script: FAD + H2 Acceptor Individual

1. Assign 13 students an assignment in theeveryone elseof the rolethe e-) Water Person (Stands in opposition to first attempt and uses play. Intermembrane Space Person (Builds up the H+ ion concentration) ATP Synthase page TAKS Objective 2 Person 9 Biology

2. Have all the students read their job assignment through one time before beginning the role play activity. 3. The first student in the glycolysis pathway receives the 6 carbon glucose molecule. The student states "I'm an enzyme that converts the 6 carbon glucose molecule into two three carbon molecules. I require ATP to do this." The student receives 2 ATP balloons and pops them and then rips the glucose molecule into two equal halves. This student will give a NAD to a NAD Runner. 4. The student then passes two equal halves of the construction paper to the next person in the transition area. 5. The student at the transition area will convert the 3-C molecule to Acetyl Co-A by attaching the Acetyl-Co-A card to both of the 3 carbon molecules (Halves of the construction paper) and then take an NAD+ index card and give it the runner who will attach an "H" to make an NADH molecule. The runner should take the NADH molecule to the NAD+H collector at the ETC. 6. Now the transition student will pass one of the Acetyl Co-A molecules into the Kreb’s cycle. Person 1 ---- “I am now citric acid a 6-Carbon Molecule” While handing off the box to person two, “I give off CO2 losing a carbon while transforming NAD to NADH” Person 2 ---- “I am now a 5 Carbon Molecule” While handing off the box to person three, “I give off CO2 losing another carbon while transforming NAD to NADH and make an ATP molecule” (Blows up a balloon) Person 3---- “I am now a 4 Carbon Molecule, I transform NAD to NADH and FAD to FADH2” Place the first box aside. Repeat with second half of construction paper. Person 1 ---- “I am now citric acid a 6-Carbon Molecule” While handing off the paper to person two, “I give off CO2 losing a carbon while transforming NAD to NADH” Person 2 ---- “I am now a 5 Carbon Molecule” While handing off the box to person three, “I give off CO2 losing another carbon while transforming NAD to NADH and make an ATP molecule” (Blows up a balloon) Person 3---- “I am now a 4 Carbon Molecule, I transform NAD to NADH and FAD to FADH2” Place the second box aside. 7. NAD+H Acceptor removes the H and the gives it to the intermembrane space. Pass an e- to the next person

TAKS Objective 2

page 10

Biology

8. FAD+H2 Acceptor removes the H2 and gives it to the intermembrane space. Place the e- in the electron box. 9. Intermembrane space collects at least 4 H molecules and passes them one at a time to the ATP Synthase. 10. ATP Synthase person blow up a balloon (ATP) for every H+ received from intermembraneous space. “I convert ADP to ATP” 11. ATP Synthase passes the H+ to the Water Person to the left who produces two H2O molecules with every 4 H+ received. After receiving 4 H+ the Water Person takes an e- from the electron box and places the e- with 4 H+ into the water box and pours a cup of water. When the first role play is complete, have students change roles and repeat the role play activity.

TAKS Objective 2

page 11

Biology

Front of Card

Glycolysis

NAD Runner

Back of Card

Job: Your job is to collect NAD and e- from the Glycolysis area and attach a H ion. Transport the NADH to the NAD + H Acceptor in the Electron Transport Chain.

Say: I collect H ions and electrons and transport them to the Electron Transport Chain

TAKS Objective 2

page 12

Biology

Front of Card

Transition Area

NAD Runner

Back of Card

Job: Your job is to collect NAD and e- from the Transition area and attach a H ion. Transport the NADH to the NAD + H Acceptor in the Electron Transport Chain.

Say: I collect H ions and transport them to the Electron Transport Chain

TAKS Objective 2

page 13

Biology

Front of Card

Kreb’s Cycle

NAD Runner

Back of Card

Job: Your job is to collect NAD and e- from the Kreb’s cycle area and attach a H ion. Transport the NADH to the NAD + H Acceptor in the Electron Transport Chain.

Say: I collect H ions and transport them to the Electron Transport Chain

TAKS Objective 2

page 14

Biology

Front of Card

Enzyme

Back of Card

Job: Your job is to lower the activation energy that allows glucose to be split into 2, 3 Carbon molecules. Say: "I'm an enzyme that converts the 6 carbon glucose molecule into two three carbon molecules. I require ATP to do this." Pick up and pop 2 ATP Balloons then rip the glucose molecule in half. Then take an NAD+ index card and give it the NAD Runner and then blow up 4 ATP Balloons.

TAKS Objective 2

page 15

Biology

Front of Card

Transition

Back of Card
Job: You will convert the 3-C molecule to Acetyl Co-A by attaching the Acetyl-Co-A card to both of the 3 carbon molecules and then take an NAD+ index card and give it the runner who will attach an "H" to make an NAD + H Acceptor. Also, place a CO2 in the “CO2 Waste”. Say: Glucose must go through some transitions before it can proceed through other stages of cellular respiration. Here the 3-C molecule becomes Acetyle Co-A. Attach the Acetyl Co-A molecule to both of the 3-C molecules. Give an NAD to the NAD Runner and get rid of CO2.

TAKS Objective 2

page 16

Biology

Front of Card

Kreb’s Cycle 6-C Molecule Citric Acid
Back of Card

Job: You are one of the intermediate carbon molecules that will eventually regenerate the starting molecule for the Kreb’s cycle. Say: “I am now citric acid a 6-Carbon Molecule.” While handing off the box to person two, “I give off CO2 losing a carbon while transforming NAD to NADH” Toss a CO2 molecule in the “Waste” box and hand an NAD to the NAD Runner.

TAKS Objective 2

page 17

Biology

Front of Card

Kreb’s Cycle 5-C Molecule

Back of Card
Job: You are the second of the intermediate carbon molecules that will eventually regenerate the starting molecule for the Kreb’s cycle. You also produce a molecule of ATP. Say: “I am now a 5 Carbon Molecule” While handing off the box to person three, “I give off CO2 losing another carbon while transforming NAD to NADH and make an ATP molecule” (Blow up a balloon) Toss a CO2 molecule in the “Waste” box and hand an NAD to the NAD Runner.

TAKS Objective 2

page 18

Biology

Front of Card

Kreb’s Cycle 4-C Molecule

Back of Card
Job: You are the last of the intermediate carbon molecules that will eventually regenerate the starting molecule for the Kreb’s cycle. Say: “I am now a 4 Carbon Molecule, I transform NAD to NADH and FAD to FADH2” Toss a CO2 molecule in the “Waste” box and hand an NAD to the NAD Runner. Place the first box aside and repeat with the second box .

TAKS Objective 2

page 19

Biology

Front of Card

NAD + H Acceptor

Back of Card

Job: You will remove the H ion and give it to the intermembranous space to assist in the H build up. You will also pass an e- to the next person Say: I assist with the build-up of H ions in the intermembrane space and pass e- down the ETC.

TAKS Objective 2

page 20

Biology

Front of Card

ETC FAD + H2 Acceptor
Back of Card

Job: You will remove the H ion and give it to the intermembrane space to assist in the H build up. You will also pass an e- to the next person Say: I assist with the build-up of H ions in the intermembrane space and pass e- down the ETC.

TAKS Objective 2

page 21

Biology

Front of Card

Intermembrane Space H+ Build Up
Back of Card

Job: This is an area of the mitochondria that allows the excessive build-up of H ions. Say: I collect an over abundance of H ions.

TAKS Objective 2

page 22

Biology

Front of Card

ATP Synthase

Back of Card

Job: You make the most ATP in cellular respiration process. You take all the built up H ions and use their energy to change ADP to ATP. Say: I convert ADP to ATP”. Blow up a balloon (ATP) for every H+ received from intermembrane space

TAKS Objective 2

page 23

Biology

Front of Card

E- Acceptor Water Producer
Back of Card

Job: You produce water by combining O2 and H ions that are used by ATP Synthase. You also contribute to the H ion concentration in the intermembrane space. Say: I produce water as a waste product of cellular respiration.

TAKS Objective 2

page 24

Biology

Respiration Review Lab Overview:
We eat food to provide our bodies with energy. However, trying to use food molecules like glucose to run our bodies is like trying to run a car wash with a five dollar bill. Your cells can only use the chemical bond energy stored in ATP molecules to run cellular operations just as the car wash will only run on dollars or quarters. Therefore, the cell must change food molecules like glucose into usable form --- ATP. This process is called cellular respiration. Let’s compare the burning of glucose in the body to the burning of a candle. Glucose molecules provide energy for the body just like the candle wax provides energy for the burning flames. The following experiments will provide some information about processes involved in the burning of a candle that also apply to the “burning” of glucose in the body. Materials per Group:
     

Large candle 500 ml Erlenmeyer Flask Matches Aluminum pie plates Water Bromothymol Blue

TAKS Objective 2

page 25

Biology

Experiment #1
Materials:  Candle  Matches  500 ml Erlenmeyer Flask  Aluminum Pie Plate Procedure/Observations: 1. Light the candle and allow it to burn. a. What provided the spark to start the candle burning? b. What provides the fuel for the burning candle? 2. Is the burning candle giving off any type of energy? If so, what kind(s) of energy are being released? 3. Place the beaker or flask over the candle. What happens? 4. What caused the candle to go out? 5. What gas is necessary for the candle to burn efficiently? 6. What provides the “spark” to get cellular respiration started in the cell? 7. Is energy released when glucose is “burned” in the cell? If so, what kind of energy is released? 8. Why isn’t heat released in large quantities in the cell? 9. Is the same gas necessary to “burn” glucose efficiently in the body as is needed to burn the candle efficiently? 10. What is the gas that is needed to break down glucose into ATP efficiently? 11. Where in the cell is glucose broken down in the presence of this gas? 12. What is the name for this type of cellular respiration? 13. How many ATP’s (net) can be gained if a glucose molecule is completely broken down with oxygen? 14. If oxygen was not present, how many ATP’s (net) could be gained from a glucose molecule being broken down? Biology

TAKS Objective 2

page 26

15. What is the term for the breakdown of glucose into ATP without oxygen? 16. Where in the cell does the process described in #15 take place? 17. Explain why it is so important that oxygen be present to breakdown glucose. 18. How long can the candle burn without oxygen? 19. How long do you think a cell can run without oxygen?

TAKS Objective 2

page 27

Biology

Experiment #2
Materials:  Candle  Matches  500 ml Erlenmeyer Flask  Bromothymol Blue  Aluminum Pie Plate Procedures/Observations: 1. Light the candle again and allow it to burn. 2. Place the flask over the candle and leave it until the candle goes out. 3. Slide the flask quickly up and over the candle and cover the bottom of the flask with your hand, trying not to let any of the contents escape. Turn the flask right side up. 4. Carefully move your hand from the top of the flask just enough to add 2 drops of Bromothymol Blue then cover the top completely again. 5. What color was the Bromothymol Blue to begin with? 6. What color did the Bromothymol Blue turn when placed in the beaker? (You may have to swirl the liquid and wait a minute or two for a change.) 7. Do you notice any water vapor on the inside of the flask? 8. Is water also a waste product (by product) of cellular respiration? 9. Bromothymol Blue is a pH indicator. Carbonic acid forms in the presence of water and high concentrations of what gas? 10. What gas was given off as a waste product of the burning candle? 11. What gas is given off as a waste product of cellular respiration?

TAKS Objective 2

page 28

Biology

Experiment #3
Materials:  Candle  Matches  500 ml Erlenmeyer Flask  Water  Aluminum Pie Plate Procedures/Observations: 1. Pour enough water in the bottom of the pan to fill the pan at least half-full. 2. Light the candle and let it burn. Set the base of the candle in to the water in the middle of the pan and let it continue to burn. 3. Place the flask over the candle, submerging it in the water. 4. What happens when the candle goes out? 5. What was removed from the air in the flask to allow space for the water to come in? 6. Carbon dioxide is released into the air during the burning of the candle. However, much of this carbon dioxide becomes dissolved in the water to form carbonic acid. This provides even more space for the water to rush in. Conclusions: 1. Write the balanced, general formula for cellular respiration.

2. ________________, ___________________ and ___________________ are the materials necessary for respiration to take place in the cell.

3. _____________________, ___________________, and ____________________ (_______________) are given off during cellular respiration.

TAKS Objective 2

page 29

Biology

Respiration Review Lab Key Overview:
We eat food to provide our bodies with energy. However, trying to use food molecules like glucose to run our bodies is like trying to run a car wash with a five dollar bill. Your cells can only use the chemical bond energy stored in ATP molecules to run cellular operations just as the car wash will only run on dollars or quarters. Therefore, the cell must change food molecules like glucose into usable form --- ATP. This process is called cellular respiration. Let’s compare the burning of glucose in the body to the burning of a candle. Glucose molecules provide energy for the body just like the candle wax provides energy for the burning flames. The following experiments will provide some information about processes involved in the burning of a candle that also apply to the “burning” of glucose in the body. Materials per Group:
     

Large candle 500 ml Erlenmeyer Flask Matches Aluminum pie plates Water Bromothymol Blue

TAKS Objective 2

page 30

Biology

Experiment #1
Materials:  Candle  Matches  500 ml Erlenmeyer Flask  Aluminum Pie Plate Procedure/Observations: 1. Light the candle and allow it to burn. a. What provided the spark to start the candle burning? Match b. What provides the fuel for the burning candle? Wax and Oxygen 2. Is the burning candle giving off any type of energy? Yes If so, what kind(s) of energy are being released? Heat & Light 3. Place the beaker or flask over the candle. What happens? Flame goes out. 4. What caused the candle to go out? Uses all of oxygen. 5. What gas is necessary for the candle to burn efficiently? Oxygen 6. What provides the “spark” to get cellular respiration started in the cell? Enzymes 7. Is energy released when glucose is “burned” in the cell? Yes If so, what kind of energy is released? ATP or chemical energy 8. Why isn’t heat released in large quantities in the cell? Would kill the cell (98.6 oF normal) 9. Is the same gas necessary to “burn” glucose efficiently in the body as is needed to burn the candle efficiently? Yes 10. What is the gas that is needed to break down glucose into ATP efficiently? Oxygen 11. Where in the cell is glucose broken down in the presence of this gas? Mitochondria 12. What is the name for this type of cellular respiration? Aerobic Respiration

TAKS Objective 2

page 31

Biology

13. How many ATP’s (net) can be gained if a glucose molecule is completely broken down with oxygen? 36 14. If oxygen was not present, how many ATP’s (net) could be gained from a glucose molecule being broken down? 2 15. What is the term for the breakdown of glucose into ATP without oxygen? Anaerobic respiration (glycolysis/fermentation) 16. Where in the cell does the process described in #15 take place? Cytoplasm 17. Explain why it is so important that oxygen be present to breakdown glucose. More efficient and make more ATP’s 18. How long can the candle burn without oxygen? not long (can’t) 19. How long do you think a cell can run without oxygen? not long (few minutes)

Experiment #2
Materials:  Candle  Matches  500 ml Erlenmeyer Flask  Bromothymol Blue  Aluminum Pie Plate Procedures/Observations: 1. Light the candle again and allow it to burn. 2. Place the flask over the candle and leave it until the candle goes out. 3. Slide the flask quickly up and over the candle and cover the bottom of the flask with your hand, trying not to let any of the contents escape. Turn the flask right side up. 4. Carefully move your hand from the top of the flask just enough to add 2 drops of Bromothymol Blue then cover the top completely again. 5. What color was the Bromothymol Blue to begin with? Blue 6. What color did the Bromothymol Blue turn when placed in the beaker? (You may have to swirl the liquid and wait a minute or two for a change.) Green (yellow-green) 7. Do you notice any water vapor on the inside of the flask? Yes 8. Is water also a waste product (by product) of cellular respiration? Yes TAKS Objective 2 page 32 Biology

9. Bromothymol Blue is a pH indicator. Carbonic acid forms in the presence of water and high concentrations of what gas? Carbon Dioxide 10. What gas was given off as a waste product of the burning candle? Carbon Dioxide 11. What gas is given off as a waste product of cellular respiration? Carbon Dioxide

Experiment #3
Materials:  Candle  Matches  500 ml Erlenmeyer Flask  Water  Aluminum Pie Plate Procedures/Observations: 1. Pour enough water in the bottom of the pan to fill the pan at least half-full. 2. Light the candle and let it burn. Set the base of the candle in to the water in the middle of the pan and let it continue to burn. 3. Place the flask over the candle, submerging it in the water. 4. What happens when the candle goes out? Water comes into the flask 5. What was removed from the air in the flask to allow space for the water to come in? Oxygen 6. Carbon dioxide is released into the air during the burning of the candle. However, much of this carbon dioxide becomes dissolved in the water to form carbonic acid. This provides even more space for the water to rush in. Conclusions: 4. Write the balanced, general formula for cellular respiration. C6 H12 O6 + 6O2  6CO2 + 6H2O + energy (ATP’s)

5. Enzymes, glucose and oxygen are the materials necessary for respiration to take place in the cell. 6. Carbon dioxide, water and ATP (energy) are given off during cellular respiration.

TAKS Objective 2

page 33

Biology

Muscle Fatigue
Working in pairs, complete the following experiment to investigate the relationship between oxygen and muscle fatigue. Use the following procedure to explore lactic acid buildup in muscles. 1. Each pair of students should receive a tennis ball. 2. Partner A holds the ball in his or her hand. Either hand is OK. 3. Partner B monitors the time for two minutes. 4. When Partner A says begin, Partner B squeezes the tennis ball with his or her hand as many times as possible until time is called at the end of two minutes. Simultaneously, Partner A will count aloud the number of times the tennis ball is squeezed. 1. Create a data table and record Partner A’s data. 2. Partners switch roles, and repeat steps 2-4. 3. Record Partner B’s data. Questions: 1. Describe how your hand felt at the end of the activity?

2. What is happening to the muscles in your hand?

3. How do swimmers overcome lactate buildup as they near the end of a race?

4. Which body systems are interacting together in this learning experience?

5. After participating in the Respiration and Muscle Rumble write a 100-150word summary about oxygen debt and muscular contractions.

TAKS Objective 2

page 34

Biology

WORD BANK 1 ATP 2 ATP 36 ATP 4 NADH 1 FADH Electron transport chain Mitochondrion Cytoplasm Fermentation Glycolysis Glucose Pyruvate Lactic acid Kreb's Cycle

TAKS Objective 2

page 35

Biology


								
To top