Anexo A1 Annex A1

Document Sample
Anexo A1  Annex A1 Powered By Docstoc
					Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1   1

                     Anexo A1 / Annex A1

                      Resúmenes / Abstracts
     Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                                                         3

The use of biochemical and molecular techniques for the identification and
analysis of bacteria in composting alpeorujo, N. J. Russell and C. E. Jones ....... A1-5

Composting and bioremediation, C. Balis and M. Antonakou ........................... A1-13

Fluidised/moving beds: applications to driers and gasifiers, J. M. Aragón,
M. C. Palancar, M. Serrano and J. S. Torrecilla................................................. A1-19

Olive oil waste: could microbial fermentation be the solution?, E. P.
Giannoutsou and A. D. Karagouni...................................................................... A1-23

Treatment processes for liquid and solid waste from olive oil production,
B. Stölting and F. W. Bolle................................................................................. A1-29

Moisture sensor and control devices, P. Daniil .................................................. A1-37

Actividades del equipo de "Aprovechamiento de Subproductos y
Tratamiento de Residuos", R.. Borja .................................................................. A1-39

Plantas de cogeneración por gasificación de la biomasa “llave en mano", S.
Querejeta............................................................................................................. A1-43

Situación actual de los residuos líquidos de almazara. depuración y
aprovechamiento integral, A. Lara...................................................................... A1-47

The generated situation by the O.M.W. in Andalusia
Antonio Lara Feria.............................................................................................. A1-55

FLAIR-FLOW Project, R. Gormley ................................................................... A1-65

Paenibacillus jamilae, una solución en la biorremediación de los residuos
de la molturación de la aceituna, A. Ramos-Cormenzana, M.Aguilera y M.
Monteoliva-Sánchez. .......................................................................................... A1-69

The recycling and reuse of olive mill waste, G. Martinez and C. J.
Williams.............................................................................................................. A1-75

Grupo TOLSA: perfil de la compañía, A. Álvarez e I. Cabrera ......................... A1-77
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                 5

    The use of biochemical and molecular techniques for the identification and
                   analysis of bacteria in composting alpeorujo

                            N.J. Russell* and C.E. Jones1

        Department of Biological Sciences, Wye College University of London,
                        Wye, Ashford, Kent TN25 5AH, UK
 Present address: USF Elga, Process Water Group, Research and Development
                       High Street, Lane End, High Wycombe, UK

*Author for correspondence
Tel: +44-1233-812401 Extn 411
Fax: +44-1233-813140

It has been proposed that composting is the most efficient system for the bioremediation
of alpeorujo, a toxic waste product of the two-phase olive oil production process. For
example, the use of plant germination index as a quantitative measure has demonstrated
that the composting process detoxifies alpeorujo (Balis et al., 1999). In collaboration

Balis and co-workers have shown that the detoxification effect of the composting
process can be linked to a reduction in polyphenols (Fig. 1), which are present in
alpeorujo and other forms of olive wastes and are known to be phytotoxic to plants
(Gonzalez et al., 1990). The data in Figure 1 also show that reduction in phytotoxicity
through the reduction in polyphenol concentration is most pronounced in the latter half
of the composting process, when the thermophilic phase ends and the maturation phase

It is during this maturation phase that mesophilic or mildly thermophilic bacteria are
believed to take over the utilisation of complex organic fractions that are not degraded
by the thermophilic bacteria typifying the early (thermophilic) stage of the compost
process (Balis and Tassiopoulou, 2000). However, direct evidence for this assertion is
required and the details of what species of bacteria are responsible are not known.
Therefore, at Wye we have made use of biochemical and molecular biological
techniques to develop protocols for the identification of key bacteria responsible for
composting and for analysis of the changes in bacterial community structure during the
process. A detailed understanding of the micro-organisms present at each of these
phases would enable easy monitoring of the efficiency of the compost system and
provide information that could be useful in controlling the process.

Bacterial identification
Traditional methods of bacterial identification depend on their cultivation in laboratory
media and the investigation of their so-called phenotypic characteristics. These include
cellular morphology, motility, reaction to specific stains, and the utilisation of different
growth substrates. More recently, analysis of the fatty acid composition of membrane
polar lipids (PLFA) has been developed as taxonomic tool (Vestal and White, 1989).
The analysis of PLFA has the advantage that it can be applied to whole ecosystems (e.g.
a compost pile) and therefore does not require laboratory cultivation of isolated
organisms, as long as there are known fatty acids specific to the organisms of interest
that can be used as marker compounds, and if the sensitivity of the detection method is
sufficient. Even so, it can be difficult to achieve better than reliable identification at the
genus level with an indication of the species, using such methodology.

Nowadays, molecular methods based on DNA base sequences are used widely for the
reliable identification of bacteria and other (micro)organisms to the species level. As
with PLFA analysis, this methodology can be applied directly to whole ecosystems.
Such so-called molecular methods need only the DNA to be present, so can detect both
culturable and unculturable organisms. In combination with the technique of
polymerase chain reaction (PCR), which can amplify a single piece of DNA to an
amount sufficient for biochemical analysis, molecular methods can be made extremely
sensitive and discriminatory.

Bacterial isolates from alpeorujo
Work carried out at Wye as part of the IMPROLIVE project has used a combination of
microbiological and biochemical (phenotypic) tests, together with molecular (DNA-
based genotypic) methods, to identify the bacteria present in alpeorujo compost piles
and the changes which occur during the composting process. On the basis of these tests
six groups were identified. They are all rod-shaped bacteria, and are Gram positive
except Group 5 which are pseudomonas. Groups 2 and 4-6 are motile, and Groups 2
and 3 produce spores. All except Group 6 can grow on alpeorujo (Table 1). Since
bacteria that grow in the osmotically-stressful conditions of the alpeorujo waste product
should be tolerant of low water activity, the responses of the bacterial isolates to
increasing concentrations of salt or sucrose (to lower water activity) were tested. The
results are summarised in Tables 2 and 3, and have been submitted for publication in
more detail elsewhere (Jones et al., 2000).

Standard molecular taxonomic techniques were employed to identify bacteria isolated
from the thermophilic stage of the composting process, using the partial sequence of
16S rRNA genes amplified from the bacterial DNA. These sequences can be matched
against those of other bacteria in data bases, and the results for the thermophilic bacilli
isolated from alpeorujo are summarised in Table 4. Although this method could be
used to identify bacteria isolated and purified from any stage of the compost process, it
is unlikely that all bacteria responsible could be isolated using classical microbiological
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                      7

isolation techniques. For this reason, methods were developed for the direct
identification of bacteria present in alpeorujo that did not depend on bacterial isolation
and cultivation. These methods are based on the analysis of either bacterial fatty acids
or DNA. The aim was to give a picture of the microbial community in the waste and
how it might change during composting..

Bacterial community analysis by comparison of bacterial membrane fatty acids
Different bacteria contain characteristic fatty acid compositions (Harwood and Russell,
1984) and these can be used not only as an aid in the identification of isolated (cultured)
bacteria but also as probes of their presence in biological samples such as alpeorujo,
particularly if there are specific fatty acids that are unique to a particular genus or group
of organisms ((Vestal and White, 1989). Comparisons of the fatty acid content of
bacteria isolated from the alpeorujo have been previously used to aid their identification
(Jones et al., 2000). For example, this technique has been used by other workers to
identify the bacterial community at key stages of the compost process (Bossio et al.,
1998). Our initial studies concentrated on the identification of thermophilic Bacillus
species, because large numbers were known exist in compost, and also because their
fatty acid profiles typically contain large proportions of branched-chain components
that are absent from plant lipids (Harwood and Russell, 1984). It was anticipated that
quantification of the appearance and decline of these fatty acids would give an
indication of the progression of the compost process, particularly the thermophilic
phase. The same technique could then be modified so that other bacteria (e.g.
thermophilic and thermotolerant Actinomycetes spp.) that are also potentially
responsible for the degradation processes found in composting, could be identified by
looking for other “marker” fatty acids. Unfortunately, despite the stringent procedures
employed to remove the large amounts of plant material, the methodology could not be
made sufficiently sensitive enough to detect changes in the populations of the
thermophilic bacilli.

Bacterial community analysis by comparison of bacterial 16S rDNA sequences
In view of the limitations of the methods of bacterial community analysis described
above a method for analysing bacterial profiles using a molecular was employed. In
using this approach a range of obstacles had to be overcome, namely obtaining
uncontaminated bacterial DNA from the compost samples that was free of humic acids
and polyphenols, and achieving sufficient and accurate amplification of the 16S rRNA
gene. In addition, some method development was necessary in order to separate the
individual 16S rRNA genes from different bacteria, with a view to their subsequent

Published DNA-extraction methods were tested using compost samples and one method
(used previously by other workers for soil) was modified and a DNA purification step
added, which combination provided DNA of sufficient purity to carry out the
polymerase chain reaction (PCR) that amplifies the bacterial 16S rRNA genes in the
extracted DNA. The DNA-purification step was introduced in order to remove humic
acid and polyphenol contaminants. However, even after using this purification step it

was found that the DNA was of insufficient quality to perform PCR. This problem was
solved by diluting the DNA solution to a concentration which was at the lower limits
for PCR amplification but the contaminants were no longer inhibitory to the Taq
polymerase enzyme that performs the DNA amplification. Following this protocol
permitted amplification of the rRNA genes derived from the DNA of the mixed
bacterial population present in a range of compost samples.

Separation of individual bacterial 16S rRNA genes
A commonly used method of separating PCR products of a range of (micro)organisms is
denaturing gradient gel electrophoresis (DGGE), but this method can have problems of
resolution and the production of reproducible quality gels is difficult (Schweiger and
Tebbe, 1998). As a result, the alternative approach of single stranded conformational
polymorphism (SSCP) was employed. This method, although used extensively in other
fields, has been used rarely in bacterial community analysis and is potentially easier to
use routinely than DGGE (Schweiger and Tebbe, 1998). The development of an SSCP
system to identify individual bacteria within a community was undertaken and
optimised. A range of problems were experienced and overcome during this
optimisation and, although sensitivity needs to be improved, the methodology is ready
to be applied in the identification of the succession of bacterial species during alpeorujo

Acknowledgements: We are indebted to the European Union for funding (Contract
Number FAIR CT96-1420) and to Professor Costas Balis, Harokopio University,
Athens, Greece for the supply of composting alpeorujo. His untimely death has robbed
us of his sound advice, enthusiasm and friendship. This paper is dedicated to his


Balis C, Nikolarou S, Coppens S, Mari J and Jones CE (1999) Composting of the 2-
phase olive mill residues. Symposium of Hydroponics and Composting; Composting of
Organic Matter, Halkidiki, Greece.

Balis C and Tassiopoulou V (2000) Triggering effect of hydrogen peroxide on
composting and a new method for assessing stability of composts in a thermally
insulated microcosm system. (Submitted for publication).

Bossio DA, Scow KM, Gunapala N and Graham KJ (1998) Determinants of soil
microbial communities: Effects of agricultural management, season and soil type on
phospholipid fatty acid profiles. Microbial Ecology 6, 1-12.

Gonzales MD, Moreno E, Quevedo-Sarmiento J and Ramos-Cormenzana A (1990)
Studies of antibacterial activity of wastewaters from olive oil mills (alpechin):
Inhibitory activity of phenolic and fatty acids. Chemosphere 20, 423-432.
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                                  9

Harwood, J.L. and Russell, N.J. (1984) Lipids in Plants and Microbes. George Allen &
Unwin, London, 162pp.

Jones CE, Murphy PJ and Russell NJ (2000) Diversity and osmoregulatory responses of
bacteria isolated from two-phase olive oil extraction waste products. (Submitted for

Schweiger F and Tebbe CC (1998) A new approach to utilize PCR-SSCP for 16S rRNA
gene based microbial community analysis. Applied and Environmental Microbiology
64, 4870-4876.

Vestal, J.R. and White, D.C. (1989) Lipid analysis in microbial ecology. BioScience 39,

                         20                              80

                         18                              70
    mg TAE / g compost

                                                              Compost Temp (°C)

                         10                              40

                          8                              30
                          0                              0
                              0   50             100   150
                                                                                  mg TAE / g compost
                                       Time (days)                                Compost temp

Figure 1 Reduction in polyphenol content of alpeorujo during composting

N.B. Fluctuations in compost temperatures after 35 and 48 days are due to mechanical
turning of compost piles.

Table 1 Growth of bacterial isolates obtained from composting alpeorujo on alpeorujo
and alpeorujo-liquid-fraction

                                            Waste product

                       Group           ALF      ALP     ALP*

                          1             +           +   ++

                          2            +++      ++      +++

                          4            +++      +++     +++

                          5             +           +       +

Bacteria were grown on plates of solid medium made up with 2% bacteriological agar
containing ALF (1-5% alpeorujo liquid fraction, a 50% aqueous extract of alpeorujo),
or ALP (1-5% alpeorujo), or ALP* (5-10% alpeorujo) as the carbon/energy source for
growth. Growth was monitored visually as poor (+), good (++) or abundant (+++).

Table 2 Effect of salt concentration on growth of bacteria isolated from composting

                                       NaCl concn (wt %)

                       Group           4            6       8   10

                          1            +        ++      +/-     -

                          2            +++      +++     +++     +++

                          4            +++      ++      ++      +/-

                          5            +        -       -       -

Growth was tested in nutrient broth (Oxoid) medium containing the concentration of
NaCl shown to lower water activity. Growth was scored as: -, no growth; +/-, marginal
growth; +, poor growth; ++, good growth; +++, same growth as control lacking salt.
   Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                  11

Table 3 Effect of sucrose concentration on growth of bacteria isolated from
composting alpeorujo

                                               Sucrose concn (wt %)

                         Group         10      20         30   40

                           1           +++     ++         +    -

                           2           +++     +++        ++   -

                           4           +++     +++        ++   -

                           5           +++     ++         +    -

Growth was tested in nutrient broth (Oxoid) medium containing the concentration of
sucrose shown to lower water activity. Growth was scored as: -, no growth; +, poor
growth; ++, good growth; +++, same growth as control lacking sucrose.

Table 4 Identity of Bacillus spp. isolated from composting alpeorujo, based upon
partial 16S rDNA gene sequences

               Isolate                         Identity

                 K0                            Bacillus thermoatenulatus

                 K1                            Bacillus thermodenitrificans

                 K2                            Uncultured Bacillus sp.

                 K3                            Uncultured thermophilic Bacillus sp.

                 K4                            Bacillus thermodenitrificans

Identity was established by comparison with known sequences in available data bases.
Some of these are recorded in the data base as being “Uncultured” because they have
been identified solely on the basis of isolated DNA rather than from culturable


                               C. Balis and M. Antonakou
                        University of Harokopio, Athens (Greece)

Bacteria identification

A study of bacteria from the composting system was made. The following data were
reached on bacteria isolated from the alpeorujo composting system at Kalamata

•    Minimum / maximum growth temperatures
•    Bacterial identification
•    Changes in bacterial communities.

The main results concerned the analysis of the bacterial flora changes in a pilot-scale
compost bioremediation process. The main experimental achievements are:

1.    Data on bacteria isolated from the alpeorujo composting system of Harokopio
2.    Minimum / maximum growth temperatures.
3.    Bacterial diversity identified using biochemical techniques of lipid analysis and the
     molecular biological techniques of RFLP and SSCP.
4.    Detoxification of compost by indigenous bacteria demonstrated.
5.    Different methods of following bacterial community changes during the
     composting process were assessed.
6.    Classical microbiology (as above) - limited use.
7.    Fatty acid analysis (as above) - method needs refinement before it can be used.
8.    Molecular microbiology (RFLP, SSCP) - SSCP is more useful than RFLP.

These experiments showed that it is possible, using a combination of traditional
microbiological and modern molecular biological approaches, to follow the changes in
microbial flora within the composting material in a qualitative manner.

From previous work it has been proved that free-living N2-fixing bacteria of the genus
Azotobacter grow well in olive mill waste waters and transform the wastes into a useful
organic fertiliser and soil conditioner. Since no fresh alpeorujo was available during the
first phase of the project, it was decided to use as model substrate of the liquid fraction
of alpeorujo concentrated undiluted. As bioremediation agent the strain A of
Azotobacter vinelandii of our collection was used. The bioremediation process was
studied in an aerobic, biowheel type bioreactor, under non-sterile conditions. The pH of
the liquid was adjusted to 8.5 by adding CaO before inoculation. The inoculum was
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                  13

added at a rate of 105 cells/cm3. Five days after operation (first cycle) 70% of the
processed product was removed and replenished with fresh waste, and then a second
cycle of five days incubation period was followed.

The major experimental achievements are:
• Evaluation of phytotoxicity (Lepidium sativum tests)
 • The kinetics of nitrogen fixation, detoxification and fate of Azotobacter vinelandii
    were studied using DNA extraction and PCR-MPN techniques. The N2-fixation
    process was monitored through the acetylene reduction method. The N2-fixation
    rate reaches a peak value during the first 1-2 days of each bioremediation cycle.
• It was found that the alpeorujo liquid fraction (ALF) is very phytotoxic, and
   inhibitory to the growth of Pleurotus and other fungi and many bacteria.
• When diluted with water (10-fold or more) it can be used as substrate for
   Azotobacter, Fusarium, Geotrichum, Pleurotus and some yeasts (Candida).
• A detailed chemical analysis of alpechín was carried out before and after
   bioremediation with Azotobacter vinelandii.
• The monitoring of A. vinelandii during each bioremediation cycle. This was
   achieved using the Polymerase Chain Reaction (PCR) in combination with the Most
   Probable Number method (MPN) in samples of serially diluted total DNA extracts
   and using specific primers for A. vinelandii (strain A).
• During the process the A. vinelandii after a lag, increases gradually from 3.5 x 107
   cells/ml up to 108 cells/ml. The N2- fixation however, increases sharply from the
   start and reaches a peak value within 48 h. The removal of 70% of the processed
   OMW and its replacement with fresh OMW on day 5 induces a new flush and N2-
   fixation that reaches a second peak the following day.
• A. vinelandii though it can degrade and utilise phenolic compounds, it grows
   slowly during the first 3, because of the antimicrobial properties of OMW (Moreno
   et al., 1990; Capasso et al., 1995; Garcia-Barrionuevo et al., 1992).
• After the lag period, its population increases dramatically reaching a peak on the
   4th day.
• A simultaneous proliferation of various fast growing organisms was observed in
   plates with “Rennie” medium inoculated with the bioremediation product. This is
   indicative of OMW detoxification.

Standard bioremediation conditions are of major importance, since (1) the OMWW
quality is largely depending on the olive mill machinery and storage facilities and on the
quality of the raw material (olives), and (2) bioremediation cycles are performed during
winter time in plants that are exposed in variable environmental conditions.
Perhaps removal of all the bioremediation product at the end of each cycle followed by
new inoculation with A. vinelandii at the start of the next cycle, or even continuous
inoculation, could further guarantee the achievement of a standard bioremediation
process and product quality.

Continuous composting process
Alpeorujo unlike the extracted press cake of the 3-phase decanters is highly unsuitable
and cannot be used as Pleurotus substrate. This is due to its high concentration of
phenolics. This toxicity is more acute in the pulp fraction of alpeorujo. In the “repaso”
system the alpeorujo is subjected to a second centrifugal process to obtain the residual
olive oil. Subsequently, the de-oiled alpeorujo is further separated into (a) the woody
particulate fraction that contains the woody fragments of the endosperm, and (b) the
pulp that contains the soft tissues of the olives including the water-soluble constituents.

The olive pulp on wet basis represents the 60% of alpeorujo. It is acidic (pH 4.6–4.8),
almost black in colour mass with a moisture content of 65%-67% (wet basis), having a
smooth dough-like structure. It is rich in organic and inorganic constituents, especially
in potassium. Its chemical composition though not its structure is compatible with the
composting process. Thus the olive pulp poses quite a serious waste obstacle and
hinders the full realisation of the alpeorujo recycling. The cause of this phenomenon is
due to two limiting factors: (a) principally the absence of free porosity, and secondly (b)
the anti-microbial action of some of alpeorujo’s components.
In the course of this project it was thus necessary to investigate the possibility of
composting both alpeorujo and pulp too.

The major experimental achievements in tackling these problems are:
• Composting of alpeorujo is feasible when it is mixed with bulky material at a
   proportion 3:1.
• The mature alpeorujo compost or compost taken from the end of the thermophilic
   phase, offers an ideal microbial consortium to act as starter.
• The final product was examined by assessing maturity, pH, electric conductivity,
   phytotoxicity according to Zucconi with Lepidium sativum, and through green
   house trials.
• For alpeorujo and de-oiled alpeorujo a self-sustainable composting process was
   elaborated. Bulky material is only required for the initiation of the process. When
   the thermophilic phase is established the operation is switched to a fed-batch system
   with a cycle time of 7 days and a ratio of residual to removal volume equal to 0.30.
   Under these conditions no additional bulky material is required. Thus fresh
   alpeorujo can be fed for practically an unlimited time, and after the necessary
   maturation period the process yields a final product (alpeorujo-compost) of very
   good quality.

The composting process was monitored by recording the temperature, the sugars level,
the polyphenol content, the EC and by using the thermogradient respirometric
technique. The assessment of the quality was based on the Germination Index using
Lepidium sativum (Zucconi et al 1981), the pH, the EC, and the degradation of
polyphenols. The alpeorujo and the orujo composts in particular are alkaline in reaction.
For this reason the kinetics of their acidification using elemental sulphur was
investigated and a regression formula that allows calculations to be made for the
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                   15

amount of sulphur that is required for adjusting the pH of compost during the
maturation phase at the desired level was derived.
Triggering effects of hydrogen peroxide
An important development in this connection was the finding that hydrogen peroxide
exerts a triggering effect on the composting process. This is reflected by the fact that on
treatment with hydrogen peroxide the temperature in the composting mass commences
to ascend with a significantly faster pace than in the control–untreated–series. Similar in
response triggering effects were observed in all cases of compostable materials
examined so far that include: immature orujo compost, orujo co-composted with
alpechín, cotton gin trash, and cotton gin trash mixed with olive pulp (i.e. the de-stoned
by centrifugation fraction of de-oiled alpeorujo).

Major points of importance:

•   The long-term rise of temperature reflects intensification of microbiological activity
    in the catabolic processes.
•   The triggering effect of hydrogen peroxide cannot be ascribed solely to the extra
    oxygen that is liberated shortly after the addition of hydrogen peroxide. It is more
    likely that hydrogen peroxide, being a reactive oxygen intermediate by itself, elicits
    the formation of highly reactive hydroxyl radicals. Such mechanisms are well
    known now to operate in the biological realm.
•   The lignin moiety of lignocellulose is decomposed by Phanerochaete
    chrysosporium through a mechanism of co-metabolism.
•   The formation of glucose from the cellulose yields hydrogen peroxide, hydroxyl
    and superoxide radicals that are needed to initiate in a snowball reaction the
    breakdown of the lignin skeleton.
•   Similar evidence has been reported in the case of the brown rot fungus
    Gloeophyllum trabeum. The fungal chelator fosters the production of reduced
    metals which when in proximity to reactive oxygen species such as hydrogen
    peroxide or other oxidants, will react to form hydroxyl radicals which are capable
    of depolymerising and oxidising lignocellulose compounds.

This finding led to develop a new method for assessing compost stability.
The proposed conditions for carrying out the stability test are as follows:
1. A volume of 1.5 L of the under test material is seeded with mature compost at a rate
10% v/v.
2. The mixture is placed in a thermally insulated container of 2 L capacity where is
moistened up to 60% of its field water capacity with hydrogen peroxide solution 5%.
3. Subsequently the flask is placed in constant temperature room (20 °C).
4. The temperature in the mass is followed using a suitable thermometer (preferably an
electronic one equipped with a thin and long temperature probe).
A Thermal Stability Index (TSI) is proposed that can be calculated through a simple

The TSI values produced by this formula range from one (fully stable compost) down to
zero (unstable compost). In rare occasions it may yield negative values, This occurs
when the peak temperature exceeds the level of 60 °C and is an indication of a strongly
unstable material. The value x indicates the promptness of compostability of the test
substrate. The effect of hydrogen peroxide on the microbial population profile of the
end product was also examined.

Positive effects on plant growth. Control of soil fungal pathogens
A. vinelandii posses the ability to inducing soil suppressiveness against some notorious
soil born root pathogens such as Pythium, Phytophthora and Rhizoctonia species,
through its intrinsic ability to produce siderophores. Yet, in a series of in vitro tests
when examined against Pythium ultimum no significant suppression of growth was
noted. The only response that might be of some importance is the observation that
depending on the concentration of iron, the bacterium forms a kind of ‘hyphosphere’
around the hyphae of the fungus and produces a fluorescent substance. Nonetheless, in
the soil environment can successfully control the development of the Pythium diseases.
A similar phenomenon has been observed with Rhizoctonia solani.

Three lines of investigation were adopted:
1. The mature compost was used as potting substrate for various cultivated plants.
2. Compost extract was used as a biological control agent against the potato blight
(Phytophthora infestans (Mont.) de Bari).
3. The compost was analysed for the detection and isolation in pure culture members of
its microflora that exert an inhibitory effect against the root pathogenic fungus
Rhizoctonia solani.

The results from the first two lines of investigation are altogether promising. In fact, the
product (compost) is much liked by farmers and already there is an expressed
commercial interest for its exploitation. The compost extract gave similar or even better
control against potato blight when compared with a commercial organic preparation

The third line of investigation yielded a number of isolates that are inhibiting in vitro
the growth of Rhizoctonia solani. Most of the isolates were identified using the Bio-Log
System, and most of them belong to the genus Streptomyces. All isolates are kept in our
Culture Collection.
Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1   17


            J. M. Aragón(*), M. C. Palancar, M. Serrano and J. S. Torrecilla

                Dept. of Chemical Engineering (Faculty of Chemistry)
                         Universidad Complutense de Madrid
                               28040 Madrid (Spain)
           (*)E-mail:; Tel./Fax: +34-1-394 41 73


A new type of gas-solid contactor based on fluidised/moving beds, “flumov”, has been
designed and tested as drier and gasifier.

The flumov consists of a fluidised bed with a moving bed located in its upper part. The
fluidised bed has an increase of the section in the overboard zone, as a conventional
fluidised bed; the main difference with this one is that the overboard is filled with solid.
As the section of this zone is greater than in the fluidised one, the superficial velocity of
the gas is lower and the upper bed remains as a fixed bed (moving bed with continuous
solid feeding). The main advantages of this combined system are the filtering action of
the moving bed zone, the high residence time of the solid particles and the possibility of
preheating the solid before entering the fluidised zone in processes such as drying and
gasification. Other interesting feature is the compactness of the equipment and the
consequent reduction of investments and operation costs.

A general procedure to design flumov systems was studied. To know the fluid-dynamic
characteristics of this type of systems, different configurations and combinations of
vessel diameters were studied. The tests included the start up of the operation, measure
of pressure profiles along the flumov system, determination of residence time
distributions by solid tracers and evaluation of the filtering effects of the moving zone,
segregation of mixtures of different solids and effects of internal baffles. A parallel
study of J-valves was made to know the performance of this feed device with olives
waste materials.

The J-valves designed and tested have proved the possibility of using this type of device
to feed solids in the moving bed and to control the output of solids from the fluidised
bed. Different designs and procedures have been tested: geometry of the valve, type of
air flow (continuos, pulses), type of solid (orujillo, grinded olive-stone, sand). The most
influencing geometrical factors are the angle of inclination and length of the feeding
pipe to the J-valve. The diameter of this pipe is also important to avoid solid jams. From
the results obtained, there can be recommended, for solids such as orujillo and dried
alpeorujo, angles of about 45º, pipe diameter equal of greater than 1 inch and pipe
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                 19

length of 30-70 cm. The range of solid flow rate reached depends on the type of flow of
air, i.e. 0-10 kg/h with air pulses and 10-30 kg/h with continuos air flow. It was proved
that, to control well a low solid flow rate, it is better to use pulses of air instead of
continuous air feeding.

Drying of alpeorujo
The design of a flumov as a drier for alpeorujo was made. The drying of alpeorujo is
required before using this waste for the recovering of orujo oil by extraction with
hexane and for other processes such as the production of compost, activate coal, bio-
polymers, etc.. The classical driers, e.g. rotary kilns (trommels) and trays, have a low
thermal efficiency due to the poor air-solid contact and can present several troubles
because the alpeorujo has high moisture and sugars contents. The presence of the
moving zone allows that the fresh product feed can have a high degree of moisture.
Moreover, it favours the solid transport to the fluidised bed contactor, since part of
water is eliminated in the moving zone and the solid enters into the fluidised zone with
a relatively low degree of moisture.

The drying of alpeorujo was studied in batch, semibatch and continuous operation.
Several runs were made in both a conventional fluidised bed drier and a flumov drier
with input air between 70 and 200ºC (temperature inside the beds between 50 and 150
ºC). The fresh alpeorujo contains 50%-60 % moisture (wet basis) and the dried
alpeorujo obtained is rather homogeneous. The extracted oil from this dried solid has
the same quality as the oil obtained from alpeorujo dried in trommels. The filtering
effectiveness of the moving bed is high. In order to solve the operative problems
derived from the high moisture content of alpeorujo and the high viscosity of the
semidried one, two different solutions have been found: mixing dry and wet alpeorujo
and using pulses of a secondary air injection in the conical zone. Under these
conditions, the dry/wet mixture circulates much better into the system than the fresh wet
alpeorujo and the flow rate of solids from the moving bed to the fluidised zone is well
controlled. With that mixture, the air-solid contact is improved and the flumov drier can
operate at lower temperatures, about 60ºC, inside the fluidised zone.

From the results obtained, the flumov system is a feasible solution to dry alpeorujo. The
possibility of drying at low temperatures results in a better thermal efficiency balance,
lower costs of operation and required energy and improved solid characteristics in view
of the subsequent solid treatments.

Gasification of orujillo and crushed stones
The gasification of orujillo and stone in a flumov system was tested successfully. The
fluidised/moving system is a good concept of gasifier because the especial
configuration of the reactor zones. In the bottom part, the fluidised bed allows the
required combustion, which are exothermic reactions, necessary to maintain the thermal
balance inside the whole reactor. In the upper part, the moving bed zone does not allow
the combustion process but only the endothermic gasification processes. This is due to
the fact that the raising gas that reaches the moving bed contains a very low

concentration of oxygen and has a high temperature (800-850 ºC). Therefore the
gasification process can be performed in the moving bed.
A fluidised/moving bed gasifier was designed. The plant can process 1-5 kg/h of solids.
The control system can regulate the mass flow of air, temperature and level in the
fluidised bed and solid feed. Several temperature and pressure indicators and
transmitters are disposed to display and record the operation variables. The gasification
is made in autothermal conditions. To reach these conditions, a fraction of the feed
solid (about 50%) must be burned to maintain the high temperature required. The
electrical heating is only used during the start-up and occasionally during the operation.

The solid used for gasification was orujillo (de-oiled orujo) of mean particle size 1.4
mm. and pits (grinded stone) of mean particle size 2.57 mm. The fluidised bed was
filled with sand of mean particle size 0.21 mm. or, in some runs, with dolomite with a
mean particle size of 0.35 mm.

The ultimate analysis of orujillo and stone shows that both have about the same
composition (d.a.f. analysis: 47% C, 6% H, 1% N, 46% O, and <0.01% S). The content
of ash is about 3.2 % by weigh. One of the main elements in ashes is potassium (8-30%
in K2O), a fact of great interest to the use of these ashes as additive of fertilisers.

The main process operation variables are temperature, air/water ratio and ER
(equivalent ratio, defined as the ratio between the actual air flow rate and the theoretical
stoichiometric air which would be required for a complete burning of all the solid).
Their effects on the composition and LHV (low heating value) of the flue gas were

The actual gasification yield is about 50%. This means that about half the solid suffer
burning to self-maintain the thermal level inside the gasifier, the other 50% suffer
gasification. The LHV of the flue gas is similar to other biomass gasification processes
(between 4 and 6 MJ/Nm3). The effects of both the temperature, ER and steam/air ratio
on the composition of the flue gas have been determined experimentally in a small pilot
plant. The typical composition of the flue gas is: 7%-10% H2; 2.5%-6% CH4; 6%-18%
CO; 0.06%-1.6% C2H4 and 64%-84% of no combustible gases, mainly CO2, N2, H2O.
The use of dolomite instead of sand in the fluidised bed does not affect appreciably the
tar production in the moving bed nor the flue gas composition (10%H2, 2% CH4, 8%
CO). The operating conditions tested were:

•    Capacity of gasification: 0.6-2 kgsolid/h
•    Equivalent ratio: 0.15-0.8
•    Temperature: in the moving bed, 600-850 ºC; in the fluidised bed, 800-850 ºC
•    Throughput: 336-841 kgsolid/h m2 fluidised bed
•    Superficial air velocity (at 850 ºC and inside the fluidised bed): 0.35-1.1 m/s
•    Air mass flow rate: 320-1200 kgair/(h·m2 fluidised bed)
•    Moisture of the input solid: 5%-11% wet basis
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                 21

•   Water/air ratio (extra liquid water feeding, apart from the moisture of the fresh
    solid): 0.1-0.25 kgwater/kgair
•   Effects of dolomite on the tar production

A lot of runs were carried out to find out the best operating conditions in order to get
the best thermal efficiency (the best flue gas production and LHV):

ER: 0.2-0.3
Temperature in the moving bed: 750-800 ºC
Temperature in the fluidised bed: 800-825 ºC
Throughput: 400-500 kgsolid/h m2 fluidised bed
Air flow rate: 1.3 Nm3/h
Water/air ratio: 0.2 kgwater/kgair

An assessment of the energetic validation by gasification of orujillo and pits were made.
The gas produced in the fluidised/moving bed gasifier agree with the expected
composition of typical gasification flue gases and could be suitable for applications in
the electrical power production by means of classical explosion motors. Economical
and industrial estimations were made on the industrial design of gasifiers.

                       BE THE SOLUTION?”

                         Giannoutsou E.P. and Karagouni A.D.
                         University of Athens -Dept. of Biology

The work that has been performed by the University of Athens during the last three
years on Improlive project will be presented in this talk. Our task dealt with the
enrichment of “alpeorujo”, the two-phase system waste, with fungal or yeast protein,
through its microbial fermentation and the subsequent aminoacid production.

The experimental steps that followed comprised the following: Alpeorujo was
chemically examined and various procedures have been applied in order to isolate and
identify the microorganisms that could grow on this substrate. Subsequently, certain
microorganisms were selected according to their biotechnological interest in order to
ferment the waste. At the same time, the physiology of the selected microorganisms was
tested in order to optimize the fermentation conditions. The fermented product is
chemically tested to evaluate the changes that occurred during fermentation.

The chemical analyses of various samples of alpeorujo that were taken at different year
crops and after different treatment procedures, revealed that there are significant
differences on the chemical composition of the wastes. In order to give a clear picture
of the microorganisms that are present in alpeorujo, various techniques and
methodologies have been applied. Serial dilution and selective culture media,
application of different inoculation techniques and enrichment cultures and subcultures,
as well as variation in growth temperature and anaerobic conditions. After studying
their morphological and biochemical features, the isolated microorganisms were
classified to 27 bacteria strains, 9 yeast and 3 more fungal strains. The strains that were
selected for fermentation are the following: Agrobacterium radiobacter, Xanthomonas
maltophilia, Pseudomonas picketii, Candida boidinii, Zygosaccharomyces sp.,
Geotrichum sp. and Paecilomyces variotii. In order to study the fermentation of bacteria
and yeasts the microcosm system has been selected, while for the fungal strain of
Paecilomyces variotii the solid state fermentation bioreactor has been used.

A dynamic fed-batch microcosm system, developed in our lab and modified properly to
meet the needs of this specific substrate, has been used for the cultivation of 3 yeast and
3 bacterial strains, in order to investigate long-term growth and activity of the above
indigenous strains, under controlled conditions. This model microcosm system, which
consisted of alpeorujo, was designed to allow sampling, stirring, addition and
withdrawal of the waste material in a constant working volume and to provide a more
uniform substrate for the cultivation of microorganisms (Vionis et al., 1997). This
microcosm system, especially modified in order to serve the purpose of Improlive
project, was a prior step to solid state fermentation experiments which followed.
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                  23

As far as the bacteria is concerned, their population declined immediately after the
inoculation and showed no survival after 72 hrs. The metabolic activity was also
estimated by measuring the respiration rate, as a complementary method. In bacteria,
the respiration rates stayed in extremely low levels near the background respiration.
Yeasts could grow happily and their population increased by 4-fold. The pattern of the
respiration rate was similar to the growth kinetics of the yeast strains. Total sugars and
tannins of the fermented products had decreased just after each growth cycle of the
inoculum. Total lipids content have been increased after the fermentation in all cases.
Aroma was also produced by the yeast strains that changed the initial smell of the
waste. It is obvious that lipid enrichment and aroma production are two factors that
improved the organoleptic properties of a product intended to be used as a feed. A
simultaneous increase in pH up to 7 in all fermented products was a complementary
positive result. But the protein content of the cultures, estimated by protein nitrogen
measurement decreased at the end of the fermentation process.

A solid state system has been developed in our lab (Microbiology lab., Biology Dept.,
University of Athens), to be used in the examination of growth and activity of selected
strains of yeasts and fungi under controlled conditions. This system which consists of
16 fermentation columns is designed to allow temperature regulation by submersion of
the column in a water bath, precise regulation of air flux and possibility of continuous
analysis of gaseous effluent. Air, obtained from a compressor is filtered through a
submicronic filter. The pressure is set by a pressure regulator and is distributed to feed
16 independent bioreactors of 250 ml each. On the bottom section, a glass humidifier
with an air nozzle and water feeding composes the bioreactor, while the glass
fermentation column is on the top part. The level of water in the humidifier is
maintained at a constant value and temperature. Each fermentation column outlet is
connected to a silica gel dessiccator than to an air flowmeter and finally to a chilled
water condenser. The condenser and dessiccator remove the excess humidity, allowing
the analysis of gaseous effluents by a gas analyser. This system was used in order to
study the growth of Paecilomyces variotii and Saccharomyces cerevisiae under
controlled conditions.

The general conclusions that can be drawn after several solid state fermentation
experiments are the following: a) Not only the fresh, but also the dried alpeorujo can be
used for fermentation experiments. It is more convenient to use the second one because
it is easily handled as substrate. b) There was an increase in the protein content after
fermenting the substrate with Paecilomyces variotii while it decreased when the
fermentation was performed with Saccharomyces cerevisiae. c) The best growth
temperature is 350C for Paecilomyces variotii. d). Long-term experiments are suitable
for the best fermentation of alpeorujo substrate.

Another step which has been performed was the enrichment of alpeorujo with molasses
which is a cheap, renewable industrial by-product with a very high sugar concentration.
Solid state fermentation experiments were performed using alpeorujo as substrate and

adjusting the humidity by addition of diluted sugar beet molasses with sucrose
concentration 12.5. The changes in the chemical composition of the product appear in
Fig.1, 2, 3 and 4. The protein concentration in the fermented product increases form
14.75% in the initial dried alpeorujo sample to 21.65% after 10 days of fermentation.
This represents a 46% increase of proteins in the final product.

The aminoacid analysis of the original and the fermented samples was a very difficult
and time consuming procedure. After studying different protocols, we have concluded
in a method by Heems et al., published in 1997 in the Journal of Chromatography. The
results revealed that the profil as well as the amounts of the aminoacids change after
fermenting alpeorujo with Paecilomyces variotii. (Figure 5).

Increase in quantities and change in profile of the present aminoacids of alpeorujo has
been observed in the fermented product due to the growth of the fungus. The increase of
46% in the total protein content is very well reflected in the increase of the amounts of
aminoacids in the fermented product. Apart from this increase, there is a change in the
profile of the protein content after the fermentation showing that the protein produced
has a different aminoacid composition from that of the raw alpeorujo.

The concentration of all aminoacids in the fermented product has increased except
glutamic acid. In the FAO listed aminoacids, the higher increase appears in Tyrosine
and Methionine, whose amounts are tripled in the protein of the fermented product,
while Threonine increases by 30% and Valine by 12.5%. A lower increase appears in
Isoleucine (8%) and Aspartic acid 7%. In the fermented product, we have the
appearance of Lysine (1.34g/100g protein) which is not present in the unfermented

The general conclusions that can be drawn are the following:

•    The main constituents of alpeorujo are tannins, lipids, proteins, sugars and
     lignocellulosic materials. The chemical profile of alpeorujo makes it adequate to
     support microbial growth, by providing plenty of carbon, nitrogen and energy
     sources. The results agree with this assumption: alpeorujo is a suitable substrate for
     the growth of fungi and yeasts and metabolite production.
•    Apart from the aerobic bacteria growing at 30ºC, several thermophilic bacteria have
     been isolated and identified: Bacillus brevis, Aeromonas salmonicida,
     Corynebacterium group B. The anaerobic bacteria existing in the alpeorujo seem to
     be in close relation to Lactobacillus acidophilus (44%) and Bifidobacterium
     spp.(33%). As far as the yeasts are concerned, Candida genus was found to be the
     predominant one. Saccharomyces cerevisiae appeared in a low frequency, while
     Candida valida showed the highest frequency in the total isolated yeast
     population.Fungi were isolated from alpeorujo: Rhizopus, Penicillium and
     Synchephalastrum and Paecilomyces.
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                                       25

•   The strain of P.variotii has been proven capable of increasing the protein content
    and has an excellent ability to grow in a variety of highly polluted industrial
    effluents, such as molasses, wood hydrolysates and spent sulphite liquor. The
    growth cycle in Malt Extract Broth, at 30 ºC, gave a maximum specific growth rate
    of 0.06 h-1 and the doubling time was 11.55h. The fungus has an optimum growth at
    35 ºC, while the optimum pH was 4.
•   The enrichment of alpeorujo with molasses, which is a cheap, renewable industrial
    by-product with a very high sugar concentration, gave satisfactory results. The
    increase in the final protein content is around 45%. This increase, which has never
    been achieved in previous fermentation experiments, is a very positive result for the
    optimisation of the waste material in order to be used as an animal feed or a food
•   The industrial applications of P.variotii as a means of increasing the protein content
    seem feasible, given the excellent ability to grow in a variety of highly-polluted
    industrial effluents, such as molasses, wood hydrolysates and spent sulphite liquor.
    The enrichment of alpeorujo with molasses, which is a cheap, renewable industrial
    by-product with a very high sugar concentration could be a good solution to
    increase the final protein content and for the optimisation of waste materials in
    order to be used as an animal feed or a food additive.


     Sugars (% w/w of alpeo

                              6                             MSD P< 0.05    !






                                   Day 0       Day 2       Day 4         Day 6     Day 8      Day 10

                              Figure 1 : Changes in the sugar concentration (% w/w) after fermentation of
                              dried alpeorujo (sample A5) by Paecilomyces variotii, at 35 °C and 55%
                              () Unfermented dried alpeorujo
                              (!) Dried alpeorujo (A5)- mollase (12.5% saccharose)

     (% w/w of alpe

                           6          MSD P< 0.05   !

                                     Day 0      Day 2     Day 4          Day 6     Day 8      Day 10

                            Figure 2 : Changes in the tannin concentration (% w/w) after fermentation of
                            dried alpeorujo (sample A5) by Paecilomyces variotii, at 35 °C and 55%
                            () Unfermented dried alpeorujo
                            (!) Dried alpeorujo (A5)- mollase (12.5% saccharose)


                                                                                    MSD P< 0.05 !
                (% w/w of alp





                                     Day 0      Day 2     Day 4         Day 6    Day 8      Day 10

             Figure 3 : Changes in the lipids concentration (% w/w) after fermentation of
             dried alpeorujo (sample A5) by Paecilomyces variotii, at 35 °C and 55%
Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                  27

   () Unfermented dried alpeorujo
   (!) Dried alpeorujo (A5)- mollase (12.5% saccharose)
 (% w/w of alp

                 20      MSD P< 0.05 !




                      Day 0      Day 2   Day 4         Day 6   Day 8   Day 10

   Figure 4 : Changes in the protein concentration (% w/w) after fermentation of
   dried alpeorujo (sample A5) by Paecilomyces variotii, at 35 °C and 55%
   () Unfermented dried alpeorujo
   (!) Dried alpeorujo (A5)- mollase (12.5% saccharose)

Figure 5. Aminoacid standard profile
      Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1               29

                    Treatment Processes for Liquid and Solid Waste
                              from Olive Oil Production

               Dipl.-Ing. Birgit Stölting, Dipl.-Ing. Friedrich Wilhelm Bolle
    Forschungsinstitut für Wasser- und Abfallwirtschaft an der RWTH Aachen, Germany

The worldwide olive oil production is about 2.4 million tons per year, 78 % (about 1.3
million tons) of which are produced in the European Union. Other main producers are
Tunisia (170 000 tons), Turkey (190 000 tons), Syria (110 000 tons) and Morocco (70
000 tons). In the Mediterranean region more than 95 % of the world's olives are
harvested; the highest yield is achieved in Spain. More than 200 million of the world's
nearly 800 million olive trees are cultivated in Spain, 130 million of which are found in
Andalusia. Here about 15 % of the total arable land is used for olive cultivation.

Composition of the Olive
The olive consists of flesh (75 - 85 % by weight), stone (13 - 23 % by weight) and seed
(2 - 3 % by weight) [MAESTRO DURÁN, R., 1989].

Composition of Liquid and Solid Waste from Olive Oil Production
More than 30 million m³ of liquid and solid waste yearly result from olive processing.
Their quantities and composition vary considerably. Quality and quantity of the waste
are influenced by the following factors [COMMISSION OF THE EUROPEAN
• type of production process,
•     type of olives,
•     area under cultivation or arable soil,
•     use of pesticides and fertilisers,
•     harvest time, stage of maturity and
• climatic conditions.
In the waste from olive oil mills only constituents are found that come either from the
olive or its vegetation water, or that come from outside due to the production process.
Auxiliary agents are seldom used in the production process, moreover, their application
can be influenced and controlled by the process management. Therefore they are not
important for the composition of the waste water. However, the composition of the
olive and its vegetation water cannot be influenced so that the constituents of the
vegetation water are decisive for the pollution load to be expected.

The waste water from olive oil production is characterized by the following special
features and components [LOPEZ ET AL., 1992]:

- intensive violet-dark brown up to black colour,
- strong specific olive oil smell,
- high degree of organic pollution
- (COD/BOD5 ratio between 2.5 and 5 (hardly degradable),
- slightly acid pH,
- high polyphenol content and
- high solid matter content.

From the components mentioned, the phenols and the organic substances, which are
responsible for the high COD value, have to be considered as problematic for the
treatment of this waste water [ANNESINI, 1983].

Effects on the Environment
Besides the problems with pesticides and chemicals (which, however, in olive
cultivation are not as serious as in other fields of agriculture), the main environmental
problem is soil erosion caused by rainwater. This problem even worsens by increasing
ploughing and steeper slopes. Soil quality and structure also influence erosion caused
by rain. At present protecting measures such as planting of soil-covering species or
abstention from ploughing are hardly used.
Besides these agriculture-specific problems the waste resulting from olive oil
production and its treatment often are the reason for negative environmental effects.
Despite the existing laws and regulations there is uncontrolled disposal of the liquid
waste directly into the nearest streams or rivers. The waste water contains a high
organic load and many complex coloured organic substances which are very resistant to
biodegradation. Some effects are explained below.
Discolouring of natural waters
This is one of the most visible effects of the pollution. Tannins that come from the olive
skin remain in the waste water from the olive oil mill. Although tannins are not harmful
for man, animals or plants, they dye the water coming into contact with them dark
black-brown. This undesired effect can be clearly observed in the Mediterranean
countries (FUNG, 1997).
Degradability of carbon compounds
For the degradation of carbon compounds (BOD5) the bacteria mainly need nitrogen
and phosphorus besides some trace elements. The BOD5:N:P ratio should be 100:5:1.
The optimal ratio is not always given and thus an excess of phosphorus may occur
(BAHLO, WACH, 1995).
Threat to the aquatic life
The waste water contains a considerable quantity of reduced sugar. Should this be
discharged directly into natural waters, the result would be an increase in the number of
micro-organisms that would use the sugar as a source of substrate. The effect of this is
also the consumption of oxygen dissolved in the water, and thus they would reduce the
share available for other living organisms. This may cause an imbalance of the whole
ecosystem. Another similar process can result from the high phosphorus content.
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                  31

Phosphorus encourages and accelerates the growth of algae and increases the chances to
eutrophication, destroying the whole ecological balance in natural waters. In contrast to
nitrogen and carbon compounds, which escape after degradation as carbon dioxide and
atmospheric nitrogen, phosphorus cannot be degraded but only deposited. This means
that phosphorus is taken up only to a small extent via the food chain plant -
invertebrates - fish - prehensile birds.
The presence of such a large quantity of nutrients in the waste water provides a perfect
medium for pathogens to multiply and infect waters which have severe consequences to
the local aquatic life and humans that may come into contact with the water (FUNG,
Impenetrable film
The lipids in the waste water may form an impenetrable film on the surface of rivers,
their banks and surrounding farmlands. This film blocks out sun light and oxygen to
micro-organisms in the water, leading to reduced plant growth in the soils and river
banks and in turn erosion (FUNG, 1997).
Soil quality
The waste contains many acids, minerals and organics that could destroy the cation
exchange capacity of the soil. This would lead to destruction of micro-organisms, the
soil-air- and the air-water balance. and therefore to reduction of the soil fertility
(STEEGMANS, 1992).
The phenolic compounds and organic acids can cause phytotoxic effects on olive trees.
This is of high importance because the waste water can come into contact with the crop
because of possible flooding during the winter. The phenols, organic and inorganic
compounds can hinder the natural disinfection process in rivers and creeks (FUNG,
Due to anaerobic fermentation of the waste water, methane and other pungent gases
(hydrogen sulphide, etc.) emanate from natural waters and pond evaporation plants.
This leads to considerable pollution by odours even in greater distance (FUNG, 1997).

Treatment Methods
The great variety of components found in alpeorujo and alpechin requires different
technologies to eliminate those with harmful effects on the environment. Some methods
for the treatment of liquid and solid waste from olive oil production are presented in the
following. They correspond to the current state of art and are economically feasible.
In the first place these methods are designed to eliminate organic components and to
reduce the mass. In some cases substances belonging to other categories are also partly
removed. In practice these processes are often combined since their effects differ
In the following all possible treatment methods are examined separately for solid and
liquid waste. However, these methods have to be examined rather critically because up
to now very differing treatment methods for waste from olive oil production have been
studied with view to technology used, efficiency and costs.

Concerning the olive oil industry, it should always be considered that complicated
methods without following profitable use of the final product are not useful.
For the treatment of waste from the two-phase decanter (alpeorujo) the following
methods are used:
• Drying/ Evaporation
• Thermal treatment
• Biological treatment
    - Aerobic treatment (composting)
    - Anaerobic treatment
• Treatment by fungi
Reutilization, for example on agricultural land, or disposal, for example at landfill sites,
may follow. The following recycling methods can be used for liquid as well as solid
waste from olive oil production:
• Fertilizer production
• Livestock Feeding
For liquid waste of the olive oil production the following methods are used:
• Aerobic treatment
    - Bioremediation (Balis)
• Lagooning
• Anaerobic treatment
• Filtration
• Ultrafiltration
• Membrane filtration
• Wet oxidation
• Precipitation/Flocculation
• Adsorption
• Evaporation
• Electrolysis
These methods should not be regarded separately, they can be used in combination with
each other.

Treatment Methods for Solid Waste
Since olive mills are operated in campaigns, i.e. about three months per year, a method
has to be chosen which can also be used for other types of waste, or which has a short
starting-up time after a certain shutdown period.

In final comparison of the individual methods for solid waste treatment the advantages
of composting become clear: The process takes place without serious emissions into air,
water or soil and is therefore in conformity with the key objectives of European
environmental policy. Since operational and personal costs are rather low, this process
might also be accepted by plant operators.
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                  33

However, the costs of a composting plant strongly depend on the sales potential for the
final product in the individual countries. In Greece, for example, higher receipts from
compost selling are possible than in Spain. As a result the total costs of a plant also
change. The composting method according to BALIS combines all criteria mentioned
above. The starting-up time of the process is only two weeks, it runs in a cycle which
means that only in the beginning additional structuring material is required and the
compost itself is used later as structuring material. The final product is of high quality
and well suited to be used as fertilizer in agriculture.
Anaerobic treatment as only method is not suited for solid waste because of its low
water content; problems with mixing and clogging may arise during treatment.
Moreover, anaerobic treatment requires further treatment measures which leads to
additional costs. Another problem is the long starting-up time of the process after a
longer shutdown period. These problems were also the reason for the breakdown of
anaerobic plants in Greece. In the meantime these plants have been shut down. An
economically reasonable solution would be joint treatment in existing fermentation
plants. For this purpose, however, the local situation has to be suited, i.e. the
fermentation plant should have free capacities and be situated near the olive oil
production to avoid high transportation costs and beginning digestion of the solid waste.
Advantages of anaerobic treatment are high efficiency concerning the degradation of
organics and production of biogas which can be used as energy source.
In combustion the solid waste is used as fuel with high calorific value. However,
combustion is one of the most expensive methods. Moreover, the waste air has to be
treated, leading to additional costs.
Drying of alpeorujo should always precede composting or combustion. For combustion
this is even indispensable.

Treatment Methods for Liquid Waste
Comparing finally the individual methods for alpechin treatment, the advantages of an
anaerobic-aerobic treatment plant predominate: The process takes place without serious
emissions into air, water and soil and thus is in conformity with the key objectives of
European environmental policy. To a far-reaching extent this applies also to the other
methods presented, but these are often linked with high costs.
Besides problems with process control often arise which result from lacking plant
reliability. Such plants are not able to resist the load of the heavily polluted alpechin
(e.g. membrane processes).
Anaerobic processes are especially suited for the treatment of high-loaded waste waters
with a COD of 5 000 up to 40 000 ppm from the food and chemical industry. Moreover,
the temperature conditions in Spain as well as in the other olive oil producing countries
are optimal for anaerobic processes.
By combined use of both methods the disadvantages resulting from separate application
are nearly compensated. The first treatment step brings the advantages of the anaerobic
process concerning degradation efficiency, energy self-sufficiency and minimal excess
sludge production. The disadvantages of aerobic treatment are nearly compensated by
this preliminary stage. The high quantity of excess sludge which normally results is

strongly reduced. At the same time the aeration energy, necessary for the process, is
also considerably minimised.
To avoid the disadvantages of the long start-up period of anaerobic treatment, joint
treatment of other organic solid or liquid waste is imaginable so that all-year operation
would be possible. The biogas produced may be used for own energy supply, it may
also be sold or fed into external networks.
With regard to purification efficiency, plant reliability and costs, an anaerobic-aerobic
process is well suited for the treatment of alpechin and justifiable both from the
ecological and economic point of view.

Summary and Outlook
It is indisputable that solid and liquid waste from olive oil production has high organic
loads, and it is absolutely essential to treat them to avoid negative effects on the
During the last years a large number of treatment methods have been developed and
tested with differing success.
But the aim should always be to find a method with understandable process engineering
that is economically and ecologically feasible and in accord with the requirements of
the European Union.
After detailed evaluation of the different treatment methods it turned out that with view
to the above criteria the composting method of BALIS is suitable for the solid waste
from olive oil production, while a combination of anaerobic and aerobic biological
treatment is favourable for the liquid waste. But it is still necessary to improve
composting, anaerobic/aerobic treatment methods and the monitoring systems.
For dissemination of both process variations, it is necessary on the one hand to create a
reliable market for the high-quality compost. On the other hand, joint treatment of other
organic solid or liquid waste in digesters has to be regulated. Waste that is suited for
joint treatment has to be identified.
Furthermore, training programmes for operators of olive oil mills, advisors etc. have to
be developed and realized.
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                 35

  Andreozzi, R., et al. (1998)      Integrated treatment of olive oil mill effluents
                                    (OME): Study of ozonation coupled with
                                    anaerobic digestion; Wat. Res. Vol. 32, No. 8, pp.
  Annesini, M.C. (1983)      Treatment of olive oil wastes by distillation
                                    in: Effluent & Water Treatment Journal, June 1983
  Bahlo, K., Wach, G. (1995)        Naturnahe Abwasserreinigung. Ökobuch Verlag,
                                    Staufen bei Freiburg, 3. Aufl.
  Bell, W. (1997)                   Anwendung der EG-Öko-Auditverordnung auf die
                                    Olivenölproduktion, Diplomarbeit am FiW,
  Commission of the European        Comett U.E.T.P. Action Link, Triton on Praxis,
  Communities (1992)                Waste Water Management of Olive-Oil Factories
  Fiestas Ros De Ursinos, J.A.      Vegetation water used as a fertilizer, in: Report on
  (1986)                            the International Symposium on Olive By-Products
                                    Valorization in Sevilla, Spain
  Geissen, K. (1994)                Aufbereitung von „Alpeorujo“ aus der
                                    Olivenölproduktion in Spanien, in WESTFALIA
                                    SEPARATOR AG, Informationsschrift, Oelde
  Hamdi, M. (1993)                  Toxicity and biodegradability of olive mill
                                    wastewaters in batch anaerobic digestion
                                    in: Bioprocess Engineering, Heft 8/79
  Kroppen, N. (1999)                Die spanische Olivenölproduktion nach den
                                    Maßstäben der Europäischen Umweltpolitik,
                                    Diplomarbeit am FiW e.V., Aachen
  Lopez, R. et al. - Instituto de   Land treatment of liquid wastes from the olive oil
  Recursos Naturales y              industry (Alpechin), in: Fresenius Envir Bull 1,
  Agrobiologia de Sevilla (1992)    Basel, S. 129-134
  Maestro Durán, R. (1989)          Relationship between the composition and
                                    ripening of the olive and quality of the oil, Acta
                                    Horticulturae 286, Proc. I International
                                    Symposium on Olive Growing, Rallo, L. et al.,
                                    Cordoba, ISHS
  Pompei, C., Codovilli, F.         Risultari preliminari sul trattamento di deparazione
  (1974)                            delle acque di vegetazione delle olive per osmosi
                                    inversa; Scienza e Tecnologia Degli Alimenti, p.
  Steegmans, R. (1992)              Optimierung der anaeroben Verfahrenstechnik zur
                                    Reinigung von organischen hochverschmutzten
                                    Abnwässern aus der Olivenölgewinnung in:
                                    Forschungsinstitut für Wassertechnologie an der
                                    RWTH Aachen (Hrsg.), Forschungsbericht AZ
                                    101/81 der Oswald-Schulze-Stiftung, Aachen
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                37


                                Panayotis Daniil
               Cognito Quam Electrotechnologies Ltd., Athens, Greece

Cognito Quam is the company which contributed with its industrial electronics and
automation expertise in the effort of IMPROLIVE.

Our job was to support UCM in their reactor design and pilot plants. At the early stages
of the project it was decided that whatever we build and design must have the following

    •   It should be simple to operate (allowing to focus on the process at hand),
    •   It should be robust, reliable and dependable in operation (a typical industrial
        control requirement),
    •   It should be simple to install and commission, and,
    •   It should have low ownership and operating cost.

As a result of the above, it was desirable to have one control magnitude and in the case
of drying this was material moisture. This led to the design of our moisture sensor.

The sensor is based on the capacitive principle: the dielectric constant of water is 80
times that of air and 40 times of most organic materials. As such the instrument detects
the amount of water in the monitored volume and, assuming a more or less uniform
material, the material moisture. Although an indirect measurement method, we readily
obtain an accuracy of the order of 1%.

The main reason for choosing the capacitive principle of measurement was not its
sensitivity; it was the freedom to choose materials with which the monitored mass
comes in contact. As such the sensor was made with materials which do not react in
any way (chemical, physical or mechanical) with the processed alpeorujo.

A further advantage of this property is that our sensor is robust and can be any shape,
thus allowing its adapting to practically any situation.

It is also interesting to note that as we are detecting water mass, this can be in any
substance, form or phase.

Finally, a standard interface to control equipment is provided by the specialist
electronics that are mounted on board, as you can see in the picture.

The above ideas equally apply to control design and the result of this effort was our
Panel Controller.

Here, an added requirement was flexibility, adaptability and versatility of application.
Every plant is different in one way or another and control engineers must have the
ability to fine-tune the application, ideally in situ while checking the installation.

Once set-up, the controller operates simply and requires minimum attendance from an

All parameters must be field-programmable for maximum versatility. In the case of our
controller, the parameters include a calibration table for each analog input, the control
law and equation for each output and display legends. It is to be noted that the control
equation (or transfer function) of each output can be a logic function of all inputs and
outputs, thus providing a very powerful tool of control.

“No instrument is an island” and our controller is designed to be integrated
“seamlessly” to larger systems. Its serial communication facilities enable it to be a
member of an industrial network or a slave to a higher-level system.

With its communication features, the Panel Controller parameters can be changed “on-
the-fly” opening the possibility for truly adaptive and fuzzy control implementations.

The Controller design minimises installation costs by minimising the required wiring
and by being housed in a standard DIN panel package. Thus the minimum installation
can consist of the electrical enclosure, a supply fuse and switch and the Controller.

The target environment calls for protection and for this reason the Controller front is
protected by a PVC membrane to IP54 with the tactile switches below the surface.

Finally, the Panel Controller is accompanied by all the necessary software, including a
simulator for pre-installation testing and verification.

Our contribution evolved from mainly ergonomic considerations and from our
experience that things should be made simple (but not simpler). Thus our control
system is based on one controlling magnitude (from the moisture sensor) with all the
minor loops being of internal, “house-keeping” importance. Simplicity is further
compounded in action whereby the operator activates the “Start/Stop” switch to
start/stop overall system operation.
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                39

 Actividades del equipo de "Aprovechamiento de Subproductos y Tratamiento de

                                 Rafael Borja Padilla

   Unidad de Procesos Industriales y Medio Ambiente, Instituto de la Grasa (CSIC),
                                   Sevilla, España

Principales Líneas de Investigación

* Depuración de aguas residuales procedentes de industrias agroalimentarias mediante
procesos BIOLOGICOS, fundamentalmente ANAEROBIOS.

       AGUAS RESIDUALES: alpechines, vinazas (destilería, azúcar de caña y
remolacha), queseras, lácteas, bebidas carbonatadas, procesamiento de frutas, harinas de
pescado, aceite de palma, residuos de ganado vacuno, etc.

* Reactores anaerobios de alta velocidad, fundamentalmente con microorganismos
       - Lecho expandido y fluidizado.
       - Lecho fijo.

       Otros reactores y configuraciones estudiadas:
                       - Lecho expandido de lodos (UASB).
                       - Híbridos.
                       - Proceso en dos fases.

* Cinética y control del proceso de digestión anaerobia: influencia del soporte de
inmovilización bacteriano sobre:

         - Rutas metabólicas del proceso (cinética de degradación de ácidos grasos
volátiles y formación de metano): interacciones soporte-bacteria.
         - Actividades metanogénicas.
         - Poblaciones bacterianas que se desarrollan:
                 * Silicatos magnésicos: metanogénicas.
                 * Silicatos alumínicos: hidrolíticas.


* Depuración anaerobia o biometanización en el intervalo mesófilo y termófilo de
temperatura utilizando reactores de alta velocidad:

       - Influencia del soporte de inmovilización microbiano sobre:

                Cinética (efectos de inhibición), velocidades relativas de
        producción de metano, actividades metanogénicas,
        coeficientes de rendimiento, etc.

* Depuración integral del alpechín (continuo de tres fases y clásico de prensa):

        - Pretratamiento (eliminar compuestos fenólicos).
                 Especies fúngicas (Geotrichum candidum, Aspergillus terreus) y
bacterianas (Azotobacter chroococcum).
        - Biometanización.
        - Postratamiento aerobio.

* Influencia de los coadyuvantes tecnológicos (olivex) utilizados en el proceso de
elaboración del aceite de oliva sobre el proceso de digestión anaerobia del alpechín.

* Depuración de los condensados resultantes del proceso de concentración térmica del
alpechín por múltiple efecto: procesos aerobios y anaerobios.


* Transformación tecnológica del sector del aceite de oliva:

        - Sustitución masiva de los sistemas de 3 fases (aceite, alpechín y        orujo)
        - Por sistemas de 2 FASES: (aceite y orujo húmedo o "alperujo"):
                 + Disminución del consumo de agua.
                 + Ahorro energético.
                 + Aceite de alta calidad.

* Transformación en el 90% de las almazaras españolas.

* EFLUENTES LÍQUIDOS (Aguas de lavado de aceitunas y aceite):

        - 0.25 litros/kg de aceituna procesada: menos carga orgánica que           el
alpechín, pero requiere tratamiento.

* RESIDUO SÓLIDO (lleva incorporado el agua de vegetación del fruto):

        - Nuevo estado y comportamiento (60-70% de humedad).
        - Gran problemática para su secado y posterior extracción.

      - Procesos aerobios y anaerobios:
   Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1          41

                    - Altas eficiencias de eliminación de materia orgánica.
                    - Gran estabilidad.
                    - Requieren bajos tiempos de retención hidráulicos.

      - Procesos de biometanización en una y dos fases (inicio).
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                 43

      Plantas de cogeneración por gasificación de la biomasa “llave en mano”

                  Sebastián Querejeta Larrañaga, Técnico Comercial

 GASBI, Gasificación de Biomasa, S.L., Plaza Easo, 3 – 1º Izda., 20006 Donostia-San
   Sebastián (Gipuzkoa), Teléfono:        943 46 92 46, Fax:       943 47 26 74,


1. Diferentes procesos de aprovechamiento energético de la biomasa.
2. Proceso general de gasificación.
3. Tipos de gasificadores.
4. Proceso GASBI. Acondicionamiento de la biomasa. Gasificación. Tratamiento del
gas. Producción energética. Ratios. Rendimientos. Composición del gas.
5. Proceso GASBI aplicado a la industria oleícola.



Existen distintos tipos de procesos de aprovechamiento energético de la biomasa:
extracción directa de hidrocarburos, procesos termoquímicos y procesos bioquímicos.

La extracción directa de hidrocarburos se produce en especies vegetales que producen
en su metabolismo hidrocarburos o compuestos afines, de elevado poder calorífico, que
se pueden utilizar directamente como combustibles.

Los procesos termoquímicos tienen distintas posibilidades, la combustión directa, la
gasificación y la pirólisis. Todos ellos se producen en condiciones de altas temperaturas
y baja humedad.

Los procesos bioquímicos consisten en la transformación de la biomasa por medio de
microorganismos. Se producen con humedades altas y temperaturas bajas.


Se puede definir el término de gasificación como el proceso termoquímico que engloba
la descomposición térmica de la materia orgánica y la acción de un gas, que reacciona
principalmente con el residuo carbonoso procedente de esa descomposición térmica.
Por la gasificación se transforma un material sólido en un residuo carbonoso y un gas

susceptible de ser aprovechado como combustible o como materia prima en diversas

En el proceso de gasificación tienen lugar una gran variedad de reacciones que pueden
agruparse en tres bloques:

     •    Pirólisis o descomposición térmica: Mediante calor, la biomasa original se
         descompone en una mezcla de sólido + líquido + gas.
     •    Oxidación o combustión: Es un conjunto de reacciones de oxidación,
         homogéneas y heterogéneas, mediante las que se genera el calor necesario para
         que el proceso se mantenga.
     •    Reducción o gasificación: Es un conjunto de reacciones por medio de las
         cuales el sólido remanente se convierte en gas.


Existen distintos tipos de gasificadores según el movimiento de la biomasa, el
comburente y el gas producto:
    • Gasificación en lecho móvil en contracorriente
    • Gasificación en lecho móvil en corrientes paralelas
    • Gasificación en lecho fluidizado


La empresa GASBI, Gasificación de Biomasa, S.L ha desarrollado un proceso industrial
de valorización energética de la biomasa por medio de la gasificación. El proceso
GASBI es un proceso de aprovechamiento, recuperación y valorización energética de
residuos de biomasa, con producción conjunta (cogeneración) de energía eléctrica
(vendible en su totalidad a la red eléctrica en concepto de autogenerador eléctrico) y
energía calorífica.

El proceso industrial de GASBI está basado en la gasificación en lecho móvil. Las
plantas GASBI tienen un funcionamiento semiautomático, lo que permite reducir de
manera importante los gastos de explotación. Las plantas GASBI se suministran con
potencias eléctricas entre 600 y 1.000 kW. La potencia térmica que produce la planta es
1,4 veces la eléctrica.

La gran gama de biomasas residuales utilizables en este proceso, como pueden ser los
residuos forestales, agrícolas, ganaderos, residuos de la transformación de la madera,
papel, cartón, lodos de depuradora, cultivos energéticos, etc., permite que dichas
instalaciones sean aplicables en un gran número de sectores productivos. La posibilidad
de mezclar de manera controlada dichos residuos hace aún más versátil el proceso
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                  45


1. Acondicionamiento del Residuo

En esta etapa se consigue una homogeneidad en el tamaño de partícula, así como un
grado de humedad óptimo para facilitar la posterior gasificación en el reactor.

2. Proceso de gasificación

Una vez preparado el residuo, éste se introduce de manera automática en el reactor-
gasificador. Dicho reactor es del tipo lecho móvil en corrientes paralelas, diseñado de
manera que el gas obtenido tiene un contenido casi nulo en alquitranes.

En este reactor la oxidación de la biomasa se realiza a muy alta temperatura, y se
consigue mediante la inyección por medio de soplante de aire.

El reactor-gasificador cuenta con un extractor de cenizas, las cuales han sido inertizadas
por las altas temperaturas del proceso.

3. Tratamiento del Gas

Una vez fuera del reactor, el gas obtenido se pasa por un ciclón y un filtro para separar
las partículas que contenga. En una siguiente fase, el gas, pasa a un proceso de lavado,
enfriamiento y un posterior secado.

4. Generación Eléctrica

Mediante la combustión en motor alternativo, preparado específicamente para utilizar el
gas de la gasificación como combustible, obtenemos energía eléctrica y térmica


Las necesidades y ratios a considerar son los siguientes:

    •   Humedad de la biomasa a la entrada del gasificador: 20%
    •   kWe por kg de biomasa: 0,9
    •   Producción de gas: 2,4 Nm3 gas / kg de biomasa
    •   P.C.I. medio del gas: 1.200 kcal / Nm3 gas


Actualmente con el sistema de dos fases, ha variado enormemente el tipo de residuo
generado: del alpechín y el orujo generados en el sistema de tres fases, se ha pasado al
alpeorujo, mezcla de ambos y con una humedad superior al 60%. Esto ha requerido

grandes esfuerzos por parte de todo el sector, variando tanto el sistema de producción
del aceite de oliva como la posterior extracción del aceite de orujo. A pesar de todo, el
sector sigue generando residuos, y en cantidades muy importantes.

Ante esta situación, las plantas GASBI, pretenden dar una solución basándose, se en los
principios de subsidiariedad y autosuficiencia, permitiendo deshacerse del producto en
el punto de producción, y obteniendo beneficios.

Se va a explicar las dos posibilidades que ofrecen las plantas GASBI para el tratamiento
del alpeorujo, dependiendo del método de extracción que se utilice, la extracción con
disolventes o el repaso.

En el primer caso la planta de gasificación podría instalarse en la orujera. Para la
extracción con disolventes del aceite de orujo, el alpeorujo debe secarse hasta tener
menos del 10% de humedad para su posterior tratamiento, produciendo al final el
orujillo. Este orujillo es el combustible de la planta de gasificación. El gas resultante,
como se ha explicado, se combustiona en un motor produciendo por medio de un
alternador electricidad para el autoconsumo de la fábrica y para la venta a la red de la
energía sobrante, regulada por le Real Decreto 2818/1998 y energía térmica, necesaria
para el secado anterior a la extracción.

En el caso de que la extracción se produzca por medio de un repaso del alpeorujo y que
éste sea ya el residuo final, es posible también su aprovechamiento en la planta de
gasificación como combustible.

En este caso, como en el anterior, el calor producido, sería utilizado para el secado
previo de la biomasa hasta llegar a un 20% de humedad, máximo que permite el proceso
para su correcto funcionamiento. Por otra parte, sobraría algo de calor, entre el 15 y el
25% que se puede utilizar en el propio proceso de producción de aceite.
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                  47


                                  Antonio Lara Feria
                           Universidad de Valladolid, España


Por alpechín o jámila se entiende, en general, el residuo acuoso proveniente de los
procesos de extracción de aceite de oliva virgen. Contiene el agua de constitución de la
propia aceituna y las aguas de su lavado y procesado. Es un líquido de color negruzco y
olor fétido que suele contener, en suspensión, restos de la pulpa de la aceituna,
mucílagos, sustancias pécticas y pequeñas cantidades de aceite, un 0,5% emulsionado
de forma estable. El color del alpechín varía con el pH, siendo rojizo a pH ácido y
verdoso en alcalino. Tiene sabor amargo y aspecto brillante.

El alpechín causa graves problemas cuando es vertido a los ríos y suelos. Representa un
aporte de materia orgánica enorme, DQO entre 40.000 y 210.000 ppm y DBO entre
10.000 y 150.000 ppm. Genera una película superficial en aguas y suelos debido al
aceite presente, su degradación en la naturaleza es difícil básicamente debido a que
contiene productos con poder antibacteriano y su toxicidad para la flora bacteriana es
notable. Otro de los problemas ambientales que produce, viene dado por sus efectos
fitotóxicos, en especial para la germinación de las plantas, la caída prematura de los
frutos y la senescencia de los vegetales. Para hacerse una idea del alto poder
contaminante del alpechín, debe tenerse en cuenta que el procesado de 1.000 kg de
aceituna provoca una contaminación equivalente a una población de 300-500
habitantes. Un problema añadido en la depuración de los alpechines es la estacionalidad
de su producción. Sólo se genera durante un periodo de cinco meses al año (de
noviembre a marzo) que es el tiempo que dura la recogida y molturación de la aceituna.

Todas estas características han motivado por parte de la Administración (desde 1.983)
la total prohibición del vertido de los alpechines a los cauces públicos, facilitando la
construcción de balsas o lagunas para su eliminación por evaporación natural.

Esta medida, aunque ha provocado otro tipo de contaminación medioambiental, por los
problemas de malos olores y filtraciones en las balsas, ha hecho posible que la industria
olivarera empiece a considerar como un gasto más del proceso de obtención de aceite de
oliva virgen, la eliminación de las aguas residuales de las que son productoras, y por lo
tanto, totalmente responsables.

La implantación casi generalizada del sistema de molturación de dos fases en las
almazaras ha tenido una acogida significativa, debido, por una parte, a las ayudas de las
administraciones públicas y, por otra, a la reducción de efluentes líquidos que el sistema
consigue. El aumento de instalaciones en dos fases ha supuesto un alivio importante en

el consumo de agua en la almazara pero no tanto en la disminución de residuos líquidos
que sólo han quedado reducidos a un 30% ó 60% con relación al anterior sistema de tres
fases. Consecuentemente, las balsas no sólo no han desaparecido sino que están muy
lejos de ser eliminadas. En efecto, si se hace un pequeño recorrido por las provincias de
Córdoba y Jaén, se puede apreciar que, al finalizar la campaña, las balsas están casi al
100% de su capacidad. Es justo decir que tal situación también se debe, en parte, a las
abundantes lluvias registradas en los últimos años. Ello lleva a la lógica conclusión de
"aspirar" a veranos calurosos, para paliar los graves problemas relativos a la escasa
"capacidad disponible de balsa" antes del comienzo de cada campaña.


El impacto medioambiental del alpechín en los cauces de agua se debe a varias causas:

1. Las partículas sólidas en suspensión se depositan con el tiempo en los lechos de los
   ríos, impidiendo la llegada del oxígeno necesario a los microorganismos allí
   presentes. Sólo perduran los microorganismos anaerobios que dan lugar a una
   fermentación anaerobia de la materia orgánica con el consiguiente desprendimiento
   de gases malolientes.
2. La grasa emulsionada en el alpechín forma en el agua una película superficial,
   impidiendo su contacto con la atmósfera y, por tanto, la disolución de oxígeno en el
   agua, dificultando así mismo la penetración de los rayos solares. Estos fenómenos
   llegan a impedir el desarrollo de la vida animal y/o vegetal acuática.
3. La fase de componentes disueltos (ácidos, polifenoles, iones metálicos, etc.)
   también disminuye la capacidad de disolución de oxígeno en el agua.
4. Así mismo, la presencia de polifenoles en el alpechín le confieren una elevada
   capacidad antimicrobiana que inhibe el desarrollo de la flora responsable de los
   procesos biológicos de autodepuración.

La alta DBO5 del alpechín (50 g/l) contribuye a la captación, como se ha dicho, del
poco oxígeno que se haya podido disolver en el agua, eliminando la vida acuática del
cauce donde se ha vertido.

De todo lo expuesto anteriormente, se puede concluir que el alpechín produce diversos
impactos medioambientales sobre los distintos medios bióticos. A continuación se
resumen los más importantes.


Aguas superficiales. Debido al gran poder de inhibición sobre el desarrollo de
microorganismos, a la gran demanda biológica de oxígeno y a su enorme poder de
tintura (bastan 100 cm3 para teñir 1.000 litros), el alpechín transforma las aguas
superficiales en un medio no apto para la vida animal y vegetal.
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                   49

Aguas subterráneas.- Las balsas de desecación son generalmente excavaciones en el
terreno sin las mínimas condiciones de impermeabilización, dando lugar, por filtración,
a la contaminación de los acuíferos de la misma forma que las aguas superficiales.


En las balsas se produce una degradación del alpechín con el consiguiente
desprendimiento de gases malolientes.


Flora y Fauna. El alpechín incide sobre la flora, la fauna y los microorganismos
existentes en los cauces públicos de forma severa y, bajo determinadas situaciones, de
manera irreversible debido a su alta demanda de oxígeno y elevada capacidad
antimicrobiana que, como se ha indicado anteriormente, inhibe el desarrollo de la flora
responsable de los procesos biológicos de depuración.


Seguridad pública. La existencia de las balsas de desecación puede favorecer la
aparición de distintos insectos que actuarían como transmisores de enfermedades con
repercusiones negativas para la sanidad tanto humana como animal. Así mismo, en
todos aquellos casos en los que el transporte de los residuos generados en las almazaras
no sean conducidos a través de instalaciones fijas (tuberías, zanjas, etc.), se incrementan
los riesgos de accidentes por el mayor uso de las vías de comunicación por vehículos

Usos del suelo. La necesidad de almacenar los considerables volúmenes de alpechín
generados por cada almazara, da lugar a la existencia de balsas o piscinas de desecación
en la mayoría de los núcleos urbanos en los cuales se ubican las almazaras, con el
consiguiente coste económico y disminución de la superficie factible para otros usos.

Visuales y estéticos. Las balsas de desecación, localizadas en las proximidades e
incluso dentro de los núcleos urbanos en los cuales existen almazaras (la mayoría de los
casos en la Comunidad Autónoma de Andalucía), inciden negativamente en el paisaje y
en el entorno, generando posibles repercusiones negativas sobre diversas actividades
económicas (turismo, etc.). Basta dar un recorrido por los pueblos olivareros, hablar con
sus gentes y experimentar personalmente el aspecto lamentable y el olor fétido que
desprenden las balsas de desecación.


El procedimiento de depuración patentado por TRAINALBA, se caracteriza por aportar

RESIDUOS GENERADOS EN LAS ALMAZARAS" con las siguientes características
y ventajas:

• Eliminación total de los vertidos líquidos contaminantes, jámilas o alpechines, y
   desaparición total o parcial de las balsas.
• Secado del orujo de 2 fases por procedimientos mecánicos reduciéndolo a un orujo
   de 3 fases con el 50% de humedad. Eliminan los problemas de transporte y de
   procesado del mismo en las orujeras.
• Al no consumir combustibles fósiles, no se produce una generación neta de CO2, ya
   que el anhídrido carbónico producido en la combustión del orujo cierra el ciclo
   natural al devolver a la atmósfera el CO2 que las plantas toman del ambiente a
   través de los estomas de las hojas.


•    Recuperación de parte del aceite contenido en el orujo y en el alpechín por
     procedimientos físicos.
•    Ahorro energético de la almazara debido a la utilización del hueso como
     combustible del proceso de depuración, y la recuperación del calor del alpechín
     evaporado para otras necesidades de la almazara, como calefacción de bodegas,
     agua caliente para el proceso de extracción, calefacción de oficinas, etc.
•    Ahorro en terrenos por la desaparición de las balsas.
•    Eliminación del consumo de agua de la red pública en la almazara gracias al
     reciclaje del agua que se recupera del alpechín, para la limpieza de la almazara,
     lavado de aceituna, etc.
•    Ingresos adicionales, por la venta de energía eléctrica excedentaria, en aquellos
     casos donde la energía del proceso de depuración se obtiene de los calores
     residuales de sistemas de cogeneración eléctrica basados en el uso de grupos
     electrógenos o bien del vapor turbinado de sistemas convencionales de combustión
     de biomasa.


•    Utilización de los sólidos contenidos en el alpechín junto con orujo y otros residuos
     vegetales de la zona, como fertilizante orgánico mediante un proceso de
•    Estos sólidos de alpechín con un tratamiento adecuado se pueden emplear para
     fabricación de piensos.
•    El alpechín como materia prima se utiliza para la fabricación de abonos líquidos,
     añadiendo los correctores adecuados.
•    Las cenizas producidas en la caldera son un excelente fertilizante, ya que contienen
     los elementos minerales que han sido extraídos del suelo por el olivo.
   Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1         51


Sistemas de control y funcionamiento muy robustos y sencillos, diseñados
especialmente para que el propio personal de la almazara pueda hacerse cargo del
manejo de la planta con una mínima formación adicional.
Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                                                                                                                    53

                                       GAS o GASOIL


                                           Agua                                           ALMAZARA                        ALPECHÍN
                                                                                                                         ORUJO 2F/3F
                                        Recuperació            AGUA
                                                                                                     ENERGÍA ELÉCTRICA
                                                                                                                                       SECADO DE                   RIEGO
            CENIZAS                      CALOR                                                          USO PROPIO
                                        Sistema                                                          USO PROPIO

                                      Evaporación                                                          CALOR
  ABONOS                                                                                                                                                                    ABONO
                                                                                                         USO PROPIO
                                          CALOR                                                                                               Í

                                                             Filtrado y                                                                FANGO
                                      Caldera Sistema                                                                                    S
                                      A it Té i             Tratamiento
                                                               Fi l
                                         HUESO                                                                                         ACELERADA
                                                                                                                                       DE SÓLIDOS

                                                                                                                                        SIN SOLIDOS


                                        PLANTA DE                                                                                      PREPARACIÓN
                                                                   FANG                                 FABRICACIÓN
                                       COMPOSTAJE                                                                                       DE ABONOS
                                                                                                         DE PIENSOS
                                            Y                                                                                            LÍQUIDOS

                 AGUA CALIENTE                                                                                                                         ACEITE 2ª
            CALEFACCIÓN-INSTALACIÓN      ABONOS         Agua Red      ENERGÍA ELÉCTRICA    ACEIT                           ORUJO          ABONO
               OTRAS NECESIDADES                                         RED PÚBLICA
                                                                                                           PIENSO                                     EXTRACCIÓN
                                         SÓLIDOS         Pública                                                           3 FASES       LÍQUIDO

                                                   Diagramas de Bloques del Centro de Excelencia “El Portichuelo”
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                     55

                                  Antonio Lara Feria
                             University of Valladolid, Spain

By O.M.W. (olive mill wastewater) we mean, in general, the watery residual coming
from the transformation processes of the olive into oil. It contains the own olive water
and the water from its washing and processing. It has got a dark colour and a foetid
smell that it usually contains, in suspension, remains of the olive pulp, mucilages, peptic
substances and small quantities of oil (0,5 % emulsified in a stable way). The O.M.W.
colour varies with the pH, being reddish with acid pH and greenish with an alkaline pH.
It has bitter flavour and shining aspect.

The O.M.W. causes serious problems when it is poured into the rivers and soil. It
represents an enormous organic matter addition, (COD between 40.000 and 210.000
ppm and BOD between 10.000 and 150.000 ppm). It generates a superficial film in the
waters and soil due to the present oil and its toxicity for the flora it is remarkable. Other
environmental problems that the O.M.W. produces, are its phytotoxic effects, especially
for the plants germination, the premature fall of the fruit and the vegetables senescence.
To have just an idea of the high pollutant power of the O.M.W., it should be consider
that the process of 1.000 kg of olive it causes an equivalent contamination to a
population of 300-500 inhabitants. An added problem in the O.M.W. purification is its
seasonal production. It is only generated for a period of five months per year (from
November to March) that is the time that lasts the picking up and mill process of the

Its degradation in the nature is difficult basically because it contains products with high
antibacterial power.

All these characteristics have motivated the total prohibition of the poured O.M.W. to
the public network since 1983, facilitating the ponds and lagoons construction for its
elimination by natural evaporation.

This measure has caused another types of environmental contamination such as bad
odours and some filtration in the ponds. This has made possible that the olive industry
begins to consider like one more expense of the obtaining procedure of virgin olive oil
the elimination of the residual waters of those who are producers, and therefore,
completely responsible.

According to quantitative data of the Meeting of Andalusia, the olive mill plants
number in this community are 861 (1.994). Keeping in mind that Córdoba and Jaén
represent 80% of the total capacity of production of O.M.W. of Andalusia, we refer the
report to these two counties.
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                    57

In this way, and starting from the obtained data from the Provincial Addresses of
Agriculture of these counties, the corresponding situation of the sector to the campaign
1996/97 is summarised in the following charts.
                                   Jaén                      Córdoba
      Press system olive mill 71                 24%         31              19%
      2 Phase system olive mill 115              38%         98              59%
      3 Phase system olive mill 115              38%         30              18%
      Mixed system olive mill                                7               4%
      Total                        301           100%        166             100%
Chart 1.- Olive mill plants and extraction high technology

                                Jaén                         Córdoba
      Press system olive mill 270.000          18%           43.350          8%
      2 Phase system olive mill 645.000        43%           421.600         72%
      3 Phase system olive mill 585.000        39%           68.850          12%
      Mixed system olive mill                                47.900          8%
      Total                     1.500.000      100%          581.700         100%
Chart 2.- Tons of milled olive

                                  Jaén                       Córdoba
      Number of ponds             998                        369
      Occupied area               250 Has.                   62 Has
      O.M.W. Volume               2.500.000 m3               962.947 m3
Chart 3.- Ponds

                                 Jaén                            Córdoba
      Pressing system olive mill 189.000 m3       17%            30.345 m3        10%
      2 Phase system olive mill 225.750 m3        20%            147.560 m3       46%
      3 Phase system olive mill 702.000 m3        63%            140.100 m3       44%
      Total                      1.116.750 m3     100%           318.005 m3       100%

Chart 4.- Average quantity of O.M.W. generated
The almost widespread installation of the two phase press system in the olive mill
plants has had a great acceptance on one hand, due to the help of the public
administrations and, on the other hand, due to the reduction of effluent liquids that the
system gets. The increase of the two-phase system installations has supposed an
important relief in the consumption of water in the olive mill plant but not so much as in
the decrease of liquid residue. They have only been reduced to 30% or 60% with
relationship to the previous three-phase system. Consequently, the ponds have not only
disappeared but rather they are very far from being eliminated. Indeed, if someone
makes a small trip around the counties of Córdoba and Jaén, everyone will appreciate
that, when the campaign is concluded, and the ponds are almost to 100% of their
capacity. It is fair to say that such a situation, it has caused for the also been heavy rains
registered in the last years. That takes to the logical conclusion of aspiring to hot
summers, to palliate the serious problems relative to the scarce available capacity of raft
before the beginning of each campaign.

The O.M.W. environmental impact in the beds of water is due to several causes:

        1. The solid suspended particles, which are deposited in the channels of the
           rivers with the time, impede the arrival to the micro-organisms from the
           necessary oxygen. Those anaerobic micro-organisms produce the anaerobic
           fermentation of the organic matter with the rising effusions of smelly gases.
           These micro-organisms are the ones which last.

        2. . The fat emulsified in the O.M.W. forms on the water a superficial film
           emulsion impeding its contact with the atmosphere and, therefore, the
           oxygen break-up in the water, hindering the penetration of the solar rays
           likewise. These facts end up impeding the development of the vegetable and
           animal life.

        3. The phase of dissolved components (acids, polyphenols, metallic ions, etc.)
           it also diminishes the capacity of oxygen break-up in the water.

        4. Likewise, the polyphenols presence in the O.M.W. confers it a high
           microbeproof capacity, which inhibits the development of the flora
           responsible for the biological purification processes.

The discharge BOD5 from the O.M.W. (50 g/l) contributes to capture, like it has been
said, of the little oxygen that has been able to dissolve in the water, eliminating the
aquatic life of the bed where it has been spilled.
   Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1             59

In the following chart the comparative biological demand is shown among those poured
residues from an olive mill plant and those of other alimentary industries.

From everything that have been exposed., you can conclude that the O.M.W. produces
diverse environmental impacts on the different biotic environment. Next we summarise
the most important.

               Agricultural food manufacturing BOD5 (g/l)

                Olive mill plants (O.M.W.)           50
                Alcohol factories                    20
                Cheese factories (whey)              3
                Slaughterhouses                      2
               Sugar refineries
                Dairy factories                      1.3
                Brewery                              1.2
                Canning vegetables factories         1.0
                Residual domestic water              0.35
                Non-polluted water beds              0.003

                  45                                         BOD5

            Fig. 4.5: BOD5 from agricultural food manufacturing effluents

Superficial water: due to the great inhibition power of the micro-organisms
development, to the great biological oxygen demand and their enormous power to dye
(it is enough 100 cm3 to dye 1.000 litres), the O.M.W. transforms the superficial water
in an impossible environment for the animal and vegetable life.

Underground water: The drying ponds are generally diggings in the land without the
minimum waterproofing conditions, they produce by filtration, the contamination of the
aquifers in the same way that the contamination of the superficial water.
A degradation of the O.M.W. takes place in the ponds, with the rising effusion of
smelly gases.
Flora and Fauna: The O.M.W. impacts on the flora, the fauna and the existent
microorganisms in the public beds in a severe way. Under specific situations, in an
irreversible way due to its discharge of oxygen demand and high microproof capacity
inhibits the development of the flora responsible for the biological processes of
Public security: The existence of the drying ponds can help the appearance of different
insects. They could act as transmitters of illnesses with the negative healthy
consequences for the humans and animals. Likewise, in all those cases in which the
transport of the generated residuals in the olive mill plants, they are not driven through
fixed facilities (pipes, gutters, etc.) the risks of accidents have increased by the common
use of heavy vehicles as means of transport.

Use of the soil: The necessity to store the considerable O.M.W. volumes which are
generated by each olive mill plant, produces to the existence of ponds or drying pools.
The majority of the olive mill plants are located in urban areas, with a high economic
cost and the decrease of the feasible surface for other uses.


Drying ponds are located near and even inside the urban areas in which olive mill plants
are. Those are most of the cases in the Autonomous Community of Andalusia. They
impact negatively in the landscape and in the environment, generating possible negative
repercussions on several economic activities (tourism, etc.). It is enough to go for a trip
to the olive towns and speak with their people, and to experience the lamentable aspect
and the foetid odour that is removed from the drying ponds.
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                61

  The O.M.W. usually is an effluent or liquid residue obtained from
  the olive mill plants. Its BOD5 is twice more pollutant than the
  effluents that are obtained after it.
  O.M.W. pollutant impact is three times more pollutant than its by-
  O.M.W. production is well located (mainly in Andalusia) and it is
  seasonal production


The most important characteristic of the purification process patented by TRAINALBA
is the integral use of olive mill waste generates in the olive mill plants.

Advantages and features of process:


Total elimination of the poured pollutant (O.M.W.) and total or partial disappearance of
the ponds.

       1.      Drying of the two-phase olive cake by mechanical procedures to a
       three-phase olive cake (reducing its humidity in a 50%). That allows us to solve
       transport and processing problems in the olive cake treatment plant.

       2.      Drying of the two-phase olive cake by mechanical procedures to a
       three-phase olive cake (reducing its humidity in a 50%). That allows us to solve
       transport and processing problems in the olive cake treatment plant.

        3.      The olive oil is retrieved from the olive cake and in the O.M.W., by
        physical procedures.

        4.      Energetic saving in the olive mill due to the use of pits as fuels in
        purification process. Recovery of heat from the evaporated O.M.W. for other
        needs, such as olive mill cleaning, olive washing, etc.

        5.     The incomes for the sale of the excessive electric energy generated by
        cogeneration equipment.

        1.      Use of the contained solids in the O.M.W. and in the olive cake, plus
             the vegetables residues from the area to obtain organic fertilisers.

        2.      Use of the contained solids in the O.M.W. as row material to produce
             feed (under the accurate process and treatment).

        3.      Use of the O.M.W. as raw material to produce organic fertilisers, by
             adding the appropriate correctors.

        4.      Use of the ashes that are produced in the boiler as fertilisers, because
             they contain the mineral elements that have been extracted from the soil by
             the olive tree.

Very reliable and simple operation and control systems, specially designed so that the
olive mill staff will be able to manage and take charge of them with a little of training.
Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                                                                                                                                         63




                                              Exhaust Gas                                                                               WASTEWATER
                                              Water-cooling                                         OLIVE MILL
                                                                                                   1 EXTRATION
                                                                                                                                        OLIVE CAKE
                                             EXCHANGER              WATER
                                                                                                                 ELECTRIC POWER FOR
                                                                                                                     ITS OWN USE                      DRYING OF                      WATER
                  ASHES                         HEAT                                                               (INSTALLATION)                     WASTE BY
                                                                                                                                                       3 PHASE
                                                                                                                  WATER FOR ITS OWN
                                            Evaporation                                                           USE (INSTALLATION)

                                            Condensation                                                           HEAT FOR ITS OWN
   SOLID                                                                                                                                                                                       LIQUID
                                                                                                                   USE (INSTALLATION)

                                                                     Filtration                                                                      SLUDGE
                                             OIL SYSTEM                  &
                                                                  Final Treatment
                PLANTS                                                                                                                                   SOLID
                WASTE                            PIT                                                                                                     QUICK
                 FROM                                                                                                                                 SEPARATION

                                                                                                                                                     WITHOUT SOLIDS


                                             COMPOSTING                                                           ANIMAL FOOD                           LIQUID
                                                & SOLID                  SLUGE                                   MANUFACTURING                        FERTILIZER
                                              FERTILIZER                                                                                             CONDITIONING

                       HOT WATER                                                                                                                                                nd
              HEATING SYSTEM INSTALLATION      SOLID           Water             PUBLIC ELECTRIC                                          OLIVE         LIQUID        OLIVE OIL 2
                     & OTHER NEEDS
                                                                                                     OLIVE            ANIMAL                                          EXTRATION
                                                               Public                SUPPLY                                              BAGASSE       FERTILIZE
                                                              N t    k                                                                                     R

                                                              Block Diagram of “El Portichuelo” Excellence Centre
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                      65

                               FLAIR-FLOW PROJECT

                         An overview by Dr. Ronan Gormley
                                 Project Co-ordinator
           (Extracted from the WWW page of FLAIR-FLOW in the Internet,

FLAIR-FLOW is a specialised dissemination project of the EU currently supported by
the FAIR and INNOVATION programmes and was set up in 1991 in order to ensure
that information and results from some European food research and development (R &
D) programmes should be disseminated more widely to the end-users and especially to
small and medium-sized food enterprises.

FLAIR-FLOW operated under the FLAIR programme in 1991-1993 (see F-FE 113/93
and 114/93), the AAIR programme (1994-1997 and now FAIR (1997 - 2000).

                                   Dissemination routes
FLAIR-FLOW is operational in the 15 EU countries and in Iceland, Norway and
Switzerland. It uses a system of national network leaders and national networks for
information dissemination. The main dissemination routes are:
    1. one-page technical documents (three issued per month);
    2. reproduction of these documents in trade, popular and scientific journals;
    3. FLAIR-FLOW workshops on results from the FLAIR, AAIR, FAIR and FAR
        (Fisheries and Aquaculture Research) programmes;
    4. lectures and poster presentations by FLAIR-FLOW network personnel at
        conferences, trade shows and related events.
        The final aim is to bring the end-users and the researchers together on a person
        to person basis via the contact fax, email or phone number at the end of each
        one-page document; i.e. FLAIR-FLOW is only an alerting mechanism and does
        not provide in-depth results.

FLAIR-FLOW Web site:
FLAIR-FLOW is a pressure project in that the volume of information for dissemination,
together with the project control measures, creates a downward pressure on the network
leaders and network members. Of equal importance is the upwards feedback of
information from the end-users and for this reason the quantification of both output and
feedback has always been a priority in FLAIR-FLOW. However, it must be stressed that
quantification is difficult for logistic reasons and it is likely that the figures ( Table 1 )
are underestimates of the real situation.
Up to the end of 1997, FLAIR-FLOW has issued 260 one-page technical documents and
these have been collated in F-FE booklets 114/93, 236/96 and 274/97. These 1-page

documents have promoted the production of 2600 articles in trade and scientific
journals all over Europe. Three collated one-pagers on seafood (187A/95), food
biotechnology (190A/95) and meat (193A/95) have also been distributed. Glossy
pamphlets have been issued on the progress of FLAIR-FLOW in 1991 (F-FE 41/92),
1992 (F-FE 79/93), 1993 (F-FE 113/93), 1994 (F-FE 158/95) and 1995 (this document);
three other glossies entitled Dissemination Blueprint (F-FE 115/94), FLAIR and the
European Consumer (152/94), and FLAIR and the European Health Professional
(153/94) have also been distributed.
Since the project's inception in 1991 and the end of December 1997, 147 FLAIR-FLOW
workshops have been held with an approximate total attendance of 7800. In 1996 &
1997, a specific workshop format was adopted to target near-market results to SMEs;
the topics of these RETUER (ready-to-use European research) workshops included food
equipment cleanability and the production and presentation of ready-to-use vegetables.
Three workshops dealing specifically with seafood were also held with the co-operation
of DG XIV (Fisheries) and a booklet (199/96) on EU-funded seafood projects was
produced and distributed.
Data (Table 1) show that approximately 2600 articles have been produced in trade and
scientific journals Europe-wide based on the one-page documents. This represents a
huge additional dissemination route to the one-pagers when the readership of the
journals is taken into consideration. Circa 16000 enquiries have been documented
(Table 1) requesting follow-up information to the one-page documents and this, as
mentioned above, is probably a large underestimate. The number of enquiries received
from consumer groups has been small but fairly reflects the interest/participation of
consumer groups in FLAIR-FLOW i.e. to-date participation has been disappointing
despite strenuous efforts to change the situation.
The quantification carried out under FLAIR-FLOW in the early stages of the project
permitted the compilation of a project popularity list (FLAIR, AAIR, FAR food
research projects) (Table 2) based on the number of enquiries received for follow-up
information to the one-page documents. The results show a predominance of FLAIR
and AAIR projects (Table 2) which is to be expected as they pre-dated the FAR projects
by 2-4 years at the time of the survey and so there was time for deeper penetration of
the one-pagers for the former. The results also clearly show that the HACCP/hurdle
technology topic was by far the most requested with over three times the number of
requests than its nearest rival (Table 2). Indeed, the HACCP user guide produced by
this project remains in strong demand.

                   SME participation in EU food research programmes
Food SMEs can participate in EU R&D programmes in two main ways: firstly, as
partners in research projects in the FAIR programme, and secondly, as partners with
other food SMEs, i.e. in consortia, for the solution of common technical problems. For
example, three companies with no, or inadequate, R&D facilities in different EU
countries can form a consortium and apply to the EU for an exploratory award (up to
75% of funding supplied by the EU) to help prepare a complete proposal. If successful,
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                  67

the research to solve the common technical problem will be carried out on their behalf
at a centre of excellence in Europe and will be funded at a level of up to 50% by the
EU. This programme, called CRAFT (Cooperative Research Action For Technology), is
one of the technology stimulation measures introduced by the EU for food and related
It is a continuously open call (i.e. no time deadlines) with evaluation of proposals being
carried out three times each year - so apply now to Mr L. Breslin of the CEU (see
address below).

            •   FLAIR-FLOW is an innovative, international project based on
                networks in 18 countries for the dissemination of R&D results from EU
                food R&D programmes to the end-users.
            •   FLAIR-FLOW uses one-page technical documents on food R&D
                results; their reproduction in journals; workshops on food R&D results;
                and lectures and posters at conferences/trade shows, etc., as vehicles for
            •   FLAIR-FLOW promotes researcher/end-user contacts.
            •   Research is continuing on new dissemination routes and on procedures
                for quantifying feedback.
            •   Priority topics for future EU food research programmes are being
                identified by participants at FLAIR-FLOW workshops and by new food
                platforms within each participating country.
            •   The success rate of FLAIR-FLOW is excellent with food R&D results
                being disseminated widely throughout Europe.

                                     Contact Information

        FLAIR-FLOW Project Leader - Dr Ronan Gormley

        Project Administrator - Ms Patricia Moriarty
        Teagasc, The National Food Centre, Dunsinea, Castleknock, Dublin 15,
        Tel: +353-1-805 9500 Fax: +353-1-805 9550 e-

        EU Project Officer
        Mr L Breslin
        European Commission, Reasearch DG/B.I.1, SDME 8/12, Rue de la Loi 200, B-
        1049 Brussels, Belgium Tel: +32.2.2950477 Fax:+32.2.2964322

            Table 1: Quantification of feedback in FLAIR-FLOW EUROPE
Publications based on 1-page documents                                  2600
Enquiries from food SMEs                                                7000
Enquiries from consumer groups                                          302
Enquiries from other sources                                            8698

            TABLE 2: Project popularity list based on requests for follow-up
                      information to the one-page documents
                                                                           No. of
 Programme                             Project
FLAIR          HACCP and hurdle technology                             1630
               Micronutrient availability                              403
               Sensory analysis                                        269
               Toxicology and residues                                 197
               Dietary intake, food composition                        191
AAIR           Physiology of bacteria                                  525
               FLAIR-FLOW EUROPE                                       482
               Ready-to-eat foods                                      293
               Mycotoxins (special study)                              280
               High pressure treatment                                 179
FAR            Underutilised fish species                              237
               Upgrading fish waste                                    174
               Fish parasites                                          96
               Herring and sardine quality                             85
               Products from non-quota fish                            75
           N.B. The project names are keyword headings and not full project titles.
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1               69

  “Paenibacillus jamilae una solución en la biorremediación de los residuos de la
                           molturación de la aceituna”

           A.Ramos-Cormenzana, M.Aguilera, M. Monteoliva-Sánchez.
   Departamento de Microbiología. Facultad de Farmacia. Universidad de Granada,


Hablar de los residuos derivados de la obtención del aceite de oliva es referirse a
residuos de un elevado índice de contaminación, donde el alpechín y el alpeorujo
constituyen uno de los más difíciles de reciclar. La administración, en nuestro país,
creía haber encontrado los cauces para una correcta solución a la problemática
planteada por la contaminación del alpechín, con el establecimiento de la producción
del aceite de oliva por el sistema de dos fases, mediante el cual, ciertamente, deja de
formarse alpechín. Sin embargo, se ha comprobado que tal tipo de solución no es todo
lo acertada que parecía, al generarse un nuevo tipo de residuo, al que los científicos
hemos denominado como “alpeorujo”, y que lamentablemente plantea nuevos
problemas, y de forma preferente a los extractores-orujeros, a pesar de las nuevas
propuestas como la reutilización de residuos por métodos de cogeneración.

Frente a nuevas dificultades surgen nuevas soluciones. Hace más de 25 años que
venimos realizando investigaciones sobre la problemática del alpechín desde un punto
de vista microbiológico. En los inicios con nuestras investigaciones tan solo se
pretendía la descontaminación, pero a lo largo de sucesivas investigaciones por nuestro
grupo de trabajo hemos llegado a modificar nuestros objetivos finales, que ahora buscan
el aprovechamiento y reutilización de estos residuos. Precisamente una de nuestras
últimas investigaciones pretendía la biorremediación del alpechín mediante la
formación de biopolímeros microbianos. Como en cualquier tipo de solución
microbiana, uno de los requisitos predominantes es la capacidad de desarrollo por parte
de los microorganismos en medios con alpechín, circunstancia por la que se ensayaron
microorganismos procedentes de distintas muestras biológicas, una de las cuales fué el
compost, y que se correspondió con uno de los resultados de un proyecto de
investigación de la Unión Europea, coordinado por el Dr.N.J. Russell (U.K.)y en el que
intervino nuestro grupo de investigación. Algunos de los microorganismos estudiados
en las diferentes muestras tenían la propiedad de desarrollarse al 100% de alpechín.
Uno de ellos resulto ser un bacilo gram positivo que de acuerdo con la taxonomía
clásica parecía corresponderse al género Bacillus. Esta bacteria presentaba, además, la
enorme ventaja de ser capaz de formar exopolisacárido. Según nuestra modesta opinión,
podría ser este un hallazgo de transcendental importancia, ya que podía tratarse de un
nuevo sistema para la recuperación del alpechín, al utilizar el residuo como substrato
para la obtención de polímeros de origen microbiano, por lo que proseguimos con los

La labor de investigación que estamos desarrollando en la actualidad se basa en el
aprovechamiento de los residuos derivados de la molturación de la aceituna. En
consecuencia hemos trabajado alternativamente con alpechín y alpeorujo. Durante
mucho tiempo el alpechín fue uno de los componentes prioritarios a investigar. Dados
los excelentes resultados de nuestras investigaciones decidimos continuar con ellas
cuando se incorporó el sistema de dos fases. Nos pareció oportuno no apartarnos de la
anterior linea de trabajo y, si cabe, incorporar los residuos de la nueva tecnología a
nuestras investigaciones por dos motivos: en primer lugar siguiendo las
recomendaciones de numerosas almazaras que han incorporado el sistema de dos fases,
aunque no han sido todas; y por otro lado las dificultades inherentes a la preparación de
medios de cultivo con alpeorujo, problema que esperamos resolver con la
inmovilización de nuestros microorganismos en fase sólida y que pensamos pueda
servir al alpeorujo; además las nuevas tecnologías permiten incorporar de nuevo el
sistema de tres fases, circunstancia por la que los resultados positivos que se obtuvieran
se podrían incorporar fácilmente en procesos industriales ya existentes.

Presentación y estudio taxonómico del microorganismo “Paenibacillus jamilae”

La bacteria Paenibacillus jamilae (figura 1) es una nueva especia encontrada y descrita
por nuestro grupo de investigación que posee dos propiedades fundamentales: es capaz
de desarrollarse al 100 % de alpechín y es capaz de producir un heteropolisacárido en
elevada cantidad.

En estudios previos realizados en nuestro laboratorio se ensayaron una colección de
bacterias aisladas de un compost tratado con alpechín, para investigar su límite de
capacidad para desarrollarse en el residuo e investigar el posible interés biotecnológico
de estos microorganismos. Se seleccionaron aquellas cepas capaces de crecer en el
alpechín al 100%; investigándose en segundo lugar la capacidad de estos
microorganismos para producir exopolisacárido cuando crecían en medios de cultivo
con alpechín como única fuente de carbono y energía. Varios microorganismos
presentaban la mencionada capacidad, y entre ellos debemos reseñar a las cepas B7 y
B9, que además poseían interés por su capacidad para producir el exopolisacárido en
elevada proporción a partir del alpechín al 100% (Ramos-Cormenzana et al., 1997). Las
mencionadas cepas, por otra parte, eran fáciles de cultivar, y crecían perfectamente en
medios ordinarios de cultivo como TSA y TSB.

Se realizó un estudio inicial para situar taxonómicamente a estos microorganismos y
comprobar si correspondían con algunos de los ya existentes; como los datos eran poco
concluyentes decidimos realizar un estudio taxonómico numérico de nuestras cepas
comparativamente con las cepas de colección que consideramos más relacionadas
Bacillus subtilis, B. acidocaldarius, B. alcalophilus, B. alvei, B. anthracis, B.
azotoformans, B. badius, B. brevis, B. cereus, B. circulans, B. coagulans, B.fastidiosus,
B. firmus, B. globisporus, B. insolitus, B. larvae, B. laterosporus, B. lentimorbus, B.
lentus, B. licheniformis, B. macerans, B. maquarensis, B. marinus, B. megaterium, B.
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                   71

mycoides, B. pantothenicus, B. pasteurii, B. polymyxa, B. popillae, B. schlegelii, B.
sphaericus, B. stearotermophilus, B. thuringiensis.

En este estudio taxonómico numérico, se utilizaron como características taxonómicas
las siguientes: diámetro de la célula superior a 1.0 mm; esporas redondas; esporangio
hinchado; catalasa; cristales parasporales; utilización del citrato; reducción de nitrato a
nitrito; formación de Indol; reacción de Voges-Proskauer; crecimiento anaeróbico;
requerimiento de NaCl o KCl; capacidad de Crecimiento al 2%, 5%, 7%, o 10% de
NaCl; Formación de ácidos de la D-glucosa, L-arabinosa, D-xilosa, D-manitol;
capacidad de crecimiento a 5ºC, 10ºC, 30ºC, 40ºC, 50ºC, 55ºC, 65ºC; capacidad de
crecimiento a pH 6.8, 5.7; hidrólisis de la caseína, gelatina, almidón; formación de gas
de la glucosa; y capacidad de crecimiento en lisozima.

Una vez realizadas las pruebas de laboratorio el dendrograma se realizó utilizando el
indice de semejanza de “simple matching” por medio de la técnica de agrupamiento de
UPGMA (Sneath y Sokal, 1973), el fenograma obtenido (figura 2) nos ubicó nuestras
dos especies bacterianas y las situó como próximas a las especies: B. alcalophilus, B.
alvei, B. badius, B. brevis, B. circulans, B. coagulans, B. firmus, B. larvae, B.
laterosporus, B. lentus, B. macerans, B. maquarensis, B. pantothenicus, B. pasteurii, B.
polymyxa, B. stearotermophilus.

Los resultados de nuestras dos cepas, respecto a los microorganismos de referencia,
aconsejaban que conjuntamente con el análisis fenotípico debía procederse al análisis
de tipo genotípico. En primer lugar se realizó la determinación de la composición de
bases G + C por el método de Marmur y Doty (1962) que emplea el método de la
temperatura de fusión (Tm), y los resultados obtenidos fueron de 37.9 a 42.3 para la
cepa B7, y de 38.29 a a 41.09 para la cepa B9. Comparativamente las cepas más
próximas eran B. circulans,B. firmus, B. lentus, B. macerans, B. polymyxa, y B.
laterosporus, circunstancia por la que se prosiguieron los estudios de biología
molecular con estas cepas de referencia.

En las posteriores experiencias de hibridación de ácidos nucléicos, los resultados nos
mostraron la escasa hibridación de nuestras cepas, con las especies de Paenibacillus
descritas, lo que nos llevó a la conclusión de que se trataba de una nueva especie
perteneciente al género Paenibacillus. Nos faltaba incorporar estudios de filogenia, que
se realizaron mediante la secuenciación del ARN 16S. El análisis filogenético se realizó
con la obtención de ADNr 16S por PCR, se purificaron los productos procediéndose a
la secuenciación del gen de ARNr 16S, y se realizó posteriormente el alineamiento
global de las secuencias, el alineamiento local y la construcción del árbol filogenético;
proponiéndose el nombre de Paenibacillus jamilae, por su capacidad de crecimiento al
100% de alpechín o “jamila”, como más tradicionalmente se le conoce en Andalucía.

Hasta el momento se han depositado dos cepas de Paenibacillus jamilae en la
Colección Española de Cultivos Tipo (CECT), y una de ellas con derecho de patente.
Producción de exopolisacáridos

Con la cepa B7 realizamos el ensayo de producción de exopolisacárido (EPS). En
primer lugar estudiamos la cinética de crecimiento observando la relación biomasa
producción de EPS. Posteriormente se estudiaron en condiciones de cultivo próximas a
las previsibles tecnológicas, analizándose la influencia de la concentración del alpechín,
modificando la concentración de nitrógeno y condiciones de cultivo. Hemos trabajado
con medio autoclavado a 112ºC, pero debe indicarse que precisamente la composición
del alpechín dificulta el desarrollo de numerosos microorganismos, por lo que pensamos
podría estar indicado el trabajar con medio de cultivo de alpechín sin esterilizar; y
variando agitación, pH y temperatura, y así poder precisar las condiciones para una
buena producción de polímero.

Posteriormente se estudió la producción de EPS en un fermentador (equipo Biostat,
Braun-Biotech, melsungen AG, Alemania), dotado de los correspondientes controles de
pH, temperatura y agitación. Basados en los anteriores resultados los parámetros que se
fijaron fueron los siguientes: pH 7,0 +/- 0,2; temperatura 30ºC +/- 1ºC y una agitación
de 150 rpm. Era importante determinar la influencia de la concentración de alpechín en
la obtención de este biopolímero, pues aunque las cepas se desarrollan al 100% se
trataba de determinar las condiciones optimas. En estas condiciones se llegaron a
obtener rendimientos del orden de 30 a 40 g por litro de medio de cultivo.

Una vez obtenido el biopolímero se realizó se caracterización química, para deducir si
se trataba de algún polímero previamente descrito, o si por el contrario nos
encontrábamos con un nuevo EPS. Para ello se realizó la cromatografía líquida
preparativa, analizándose los productos finales puros. El perfil cromatográfico del EPS
nos demostraba la existencia de dos fracciones claramente diferenciadas, que
denominamos “a y b”. La masa molecular de las fracciones a y b fue determinada por
la técnica de cromatografía de exclusión molecular. Se estableció que el
exopolisacárido que correspondía a la fracción “b” presentaba una masa molecular
relativa de 5x105 Da, y a la fracción “a” de 2x106 Da (Guerra del Aguila et al., 1998).

Los posteriores análisis de las mencionadas fracciones nos llevaron a caracterizar los
componentes básicos del EPS (figura 3). La composición básica y estructura del
biopolímero, que designamos como BP-7, comprende dos heteropolisacáridos aniónicos
constituidos por glucosa, galactosa, ramnosa, xilosa, fucosa y arabinosa como
monosacáridos neutros; que además contiene ácidos urónicos y hexosaminas en elevada
proporción; junto a la presencia de grupos sulfatos, piruvato, carboxílico, y fracción
lipídica. Además uno de los heteropolisacáridos aniónicos contiene proteínas..

Propiedades del biopolímero BP-7

Una vez realizada la caracterización química nos interesaba estudiar las propiedades
reológicas del biopolímero y su posible interés industrial, para determinar si nuestro
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                  73

microorganismo podía ser interesante y servir como procedimiento rentable en la
biorremediación del alpechín y alpeorujo.

Los primeros resultados nos mostraron que la viscosidad de la solución de biopolímero
BP-7 al 1% era evidente (figura 4), lo que en principio hace interesante este compuesto,
y además posee la ventaja de no perder dicha propiedad al modificar el pH o en
presencia de sales. Otras propiedades estudiadas fueron su capacidad emulgente y su
capacidad de retención de metales. Por último, para deducir su posible aplicación
biotecnológica estudiamos la toxicidad del EPS, que ha resultado ser prácticamente nula
(figura 5).

El hecho de estar en una Facultad de Farmacia nos ha llevado a intentar comprobar su
previsible interés farmacéutico, para lo que se realizaron los análisis de la modificación
de la linfoproliferación “In vivo” (Figura 6). Los resultados se efectuaron en ratones
(Balb C), efectuándose el control de respuesta a los mitógenos LPS y Con A
(concretamente el LPS nos indica la linfoproliferación de las células B, mientras que la
Con A es el indicador de la linfoproliferación de las células T). Como quiera que el
experimento se realizó con la inoculación de Listeria monocytógenes y que los animales
tratados quedaban protegidos, debemos interpretar que el poder protector de tal acción
se debe a la formación de una citoquina, que concretamente se corresponde la
formación de interferón γ.

Todos los datos anteriores nos llevan a considerar que la especie Paenibacillus jamilae
representa una solución en la bioremediación del alpechín y alpeorujo.

Agradecimiento: parte de los resultados expuestos se han realizado gracias a la
concesión del proyecto de investigación OLI96-2189


•   Guerra del Aguila, V., Monteoliva-Sánchez, M., Ramos-Cormenzana, A. 1998.
    Isolation and partial characterization of an extracellular polysaccharide produced bu
    a strains of Bacillus grown on olive mill waste waters (alpechín). En: International
    Symposium “Biochemical Principles and Mechanisms of Biosynthesis and
    Biodegradation of Polymers”. Munster, Germany.
•   Marmur, J.;      Doty, P. 1962. Determination of the base composition of
    deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:
•   Ramos-Cormenzana, A., Guerra del Aguila, V., Monteoliva-Snachez, M. 1997.
    Productión of microbial polysaccharides in wastewater from olive oil mills. En:
    International Symposium on Environmental Biotechnology. Oostende, Belgica.
•   Sneath, P.H.A.; Sokal, R.R. 1973. Numerical taxonomy. The principles and
    practice of numerical classification. Freeman, WH Co. San Francisco.
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                75

                   Craft Fair CT98-9584 (DG XII-SSMI)

                       G. Martinez-Garcia and C. J. Williams
                   Department of Chemical and Process Engineering
                    Sheffield University, Sheffield, S1 3JD, U.K.


The waste generated by the EU olive oil industry has been estimated to be 6.8 million
tonnes/year. The traditional press process which produces liquid wastewaters and a
semi-solid cake is being replaced by the two phase decanter system which produces a
semi-solid cake. These recent developments in olive oil extraction technology have
given rise to new types of waste and made much of the existing waste treatment and
recovery options obsolete.

This collaborative research project addresses the characterisation, treatment and
potential alternative uses for the wastes produced by the olive oil production processes
in the European Community. The project involves 15 partners, including research
organisations, olive oil producers and waste treatment companies, in five countries.
The objective is to develop uses for these wastes in five different areas. The first
workpackage is investigating the extraction of value added products by solvent and
supercritical CO2 extraction.. The second workpackage is studying the use of the waste
to absorb spilt oil followed by co-incineration of the oil loaded waste for energy
recovery. The third workpackage is studying the use of the waste to adsorb metal ions
and colour pollutants from aqueous effluents. The fourth workpackage is investigating
the anaerobic degradation of the liquid wastewater for pollutant reduction and biogas
generation. The final workpackage is investigating the effect of the waste in soil
enhancement and agronomy. The outcomes of these five workpackages will be
integrated in order to find a more global solution to the treatment, understanding and
use of the olive mill wastes.

The focus of this presentation will be on workpackages three and four which are being
carried out in Sheffield. Previous laboratory experiments have shown that OMW has a
good capacity for the adsorption of metal ions such as cadmium, copper, zinc and lead
which are widespread throughout the metal plating and finishing industries. It is
anticipated that the OMW will not be used alone as an adsorbent but will be mixed with
other co-adsorbents of similar or better adsorption properties. These co-adsorbents may
have adsorbent properties or may be used as a support matrix to prevent wash out and to
reduce pressure drop across the adsorbent mass when challenged with a liquid waste
stream. Workpackage four is investigating the biological degradation of the OMW by
yeast and anaerobic bacteria. It is known that the waste from olive oil production can
be toxic and difficult to handle in digesters. However, co-digestion, the mixing of the

waste with other wastes such as pig slurry or whey from dairy processing together with
the correct choice of inoculum and operating conditions should result in both
degradation of the waste and the production of a biogas as an energy source. The
presentation will highlight research findings in these two workpackages in conjunction
with developments in the whole project.
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                77


          WORKSHOP IMPROLIVE 2000: Presente y Futuro del Alpeorujo

                           Sevilla, 13 y 14 de Abril de 2000

El Grupo TOLSA investiga, explota, procesa y comercializa arcillas especiales
(sepiolita, atapulgita, bentonita) y turba. Desarrolla una actividad integrada que va
desde la investigación geológico-minera hasta la comercialización de sus productos, sin
olvidar una dedicación profunda y permanente al reconocimiento de sus recursos
minerales y desarrollo de nuevos usos, técnicas y procesos.

El grupo TOLSA es líder europeo en la producción y comercialización de productos de
consumo y uno de los tres grupos líderes en el mundo en la comercialización de arcillas
especiales. Posee, además, el yacimiento de sepiolita más uniforme del mundo, tanto en
pureza como en homogeneidad, ubicado en el término municipal de Vicálvaro en la
Comunidad de Madrid.

Como resultado de su labor de investigación geológico-minera, a lo largo de los años, el
Grupo TOLSA dispone de importantes reservas de materias primas que superan los 150
millones de toneladas de arcillas especiales y turba que permiten garantizar la actual y
futura demanda del mercado. Estas reservas se sitúan sobre derechos mineros propios
que significan una superficie de 750.000 Ha.

El Grupo TOLSA cuenta con 695 empleados y está compuesto actualmente por un total
de 17 empresas con actividad minera y con actividad comercial, ubicadas en siete países
diferentes además de España. Su departamento de Investigación y Desarrollo se
compone de 40 personas, de las cuales 11 son titulados superiores.

En España existen tres centros de producción: Madrid, Torrejón y Vivero. Cada uno
especializado en una materia prima y en una gama de productos con una capacidad total
de producción de más de 3.000 Tm/día. En Madrid se encuentra también la Sede Social
de Tolsa, S. A. y del Grupo TOLSA y el Departamento de Investigación y Desarrollo en
la factoría cercana a la mina de Vicálvaro.

1.1.- Composición del Grupo TOLSA

El Grupo TOLSA desde 1996 está constituido por cuatro empresas en España y una en
el Reino Unido que disponen de yacimientos en explotación y plantas de tratamiento;
además existen filiales comerciales en la Unión Europea en países como Francia, Italia
y el Benelux. Recientemente se ha adquirido una empresa de extracción y fabricación
de atapulgita y fosfatos en Senegal y se han creado dos nuevas empresas dedicadas a la
extracción y fabricación de bentonitas en Marruecos y en Argentina.

                                    Grupo TOLSA

                   País                                 Compañías

                                      Tolsa, S. A., Hefran, S.A., Minas de
       ESPAÑA                         Torrejón, S.A., Turberas del Buyo y del
                                      Gistral, S.A., Sedevic, S.A. Potasas, S.A.

       ITALIA                         Tolsa Italia, S.A., Italcat, S.R.L.

                                      Tolsa France, S.A.,          Societé   Argiles
                                      Bourdonnais, S.A.

       BENELUX - ALEMANIA             Tolsa Benelux, N.V.S.A.
                                      Steetley Bentonite & Absorbents Ltd.,
                                      Steetley Woburn Ltd.
       MARRUECOS                      Argiles Bentonitiques, S.A.

       SENEGAL                        Societé Senegalaise de Phosphates de Thies

       ARGENTINA                      Tolsa Argentina

Como líder europeo de lechos absorbentes domésticos, ostenta una cuota de mercado
del 34%, que representa más de 480.000 Tm/año repartidas en 400 presentaciones, más
de 120 marcas y 50 formatos de productos en todo el mundo. En los sectores Industrial
y de Alimentación Animal ocupa un puesto destacado, con una participación superior a
140.000 Tm/año. Es el primer fabricante español que ha conseguido la homologación de
un aditivo tecnológico para alimentación animal en la Comunidad Europea (E-562).

Aprovechando al máximo los recursos mineros y humanos, el Grupo TOLSA siempre
ha prestado especial atención a la creación de nuevos productos y desarrollos basados
en sus materias primas. El resultado de esta labor innovadora es la fabricación de más
de 45 productos para más de 250 aplicaciones distintas. Todos ellos basados en las
peculiares características de un mineral como la sepiolita y otras arcillas especiales
(bentonita y atapulgita)

1.2.- Sepiolita: propiedades y aplicaciones
    Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1                  79

La sepiolita es un mineral arcilloso perteneciente al grupo de los filosilicatos conocido
como sepiolita-paligorskita. La sepiolita de Vallecas (Madrid) se viene explotando
desde finales del siglo XVI. Primero, se utilizó en la fabricación de pipas y boquillas
para tabaco, y más tarde durante el siglo XVIII, constituyó un ingrediente esencial de la
pasta cerámica de la famosa porcelana del Buen Retiro.

La sepiolita puede considerarse un mineral 2:1 aunque, a diferencia de otros minerales
2:1 con morfología laminar, su estructura tiene morfología acicular, con canales
orientados en la dirección del eje longitudinal de la partícula denominados canales
zeolíticos por analogía con los presentes en las zeolitas.

Esta especial estructura cristalina es la responsable de las dos propiedades básicas de la

- Propiedades adsorbentes
- Propiedades reológicas

Las propiedades adsorbentes son consecuencia del gran área superficial del material
(alrededor de 310 m2/g). La anisometría de las partículas, junto con las características
superficiales de la sepiolita, son las responsables fundamentales de las propiedades
reológicas del material. Estas propiedades reológicas permiten utilizarlo como
espesante y suspensionante, así como carga en algunos sistemas

La sepiolita tiene una gran variedad de aplicaciones industriales gracias a estas
propiedades físico-químicas. Estas propiedades también pueden modificarse mediante
tratamientos mecánicos, térmicos o químicos, a fin de alterar su superficie específica,
porosidad, adsorción o características de la superficie y mejorar así, determinadas
propiedades del mineral para su utilización en diversas aplicaciones tecnológicas.

A continuación, se resumen algunas de las aplicaciones de la sepiolita, desarrolladas en
el Departamento de I+D de Tolsa, S. A. y basadas en las propiedades adsorbentes de

Aplicaciones de la sepiolita basada en sus propiedades absorbentes y adsorbentes

Lechos absorbentes y lechos higiénicos para gatos
Aditivo tecnológico en alimentación animal
Absorbente industrial para el control de vertidos o derrames
Recuperación de algunos metales como el cobre
Inertización de residuos tóxicos
Tratamiento de efluentes líquidos
Procesos de purificación de keroseno
Agente decolorante de parafinas, grasas, aceites vegetales y minerales

Soporte de productos fitosanitarios: pesticidas líquidos o sólidos de bajo punto de
Soporte de catalizadores metálicos
Controlador de humedad
Producto desodorante: adsorción de moléculas responsables del mal olor
Binder en zeolitas
Filtro de cigarrillos: filtro mecánico de partículas en suspensión y de compuestos
gaseosos polares.

Y finalmente, se resumen algunas de las aplicaciones de la sepiolita, desarrolladas en el
Departamento de I+D de Tolsa, S. A. y basadas en las propiedades reológicas de ésta.

Aplicaciones de la sepiolita basada en sus propiedades reológicas

Carga en caucho, láminas asfálticas, poliésteres y resinas epoxídicas
Carga en emulsiones bituminosas y emulsiones asfalto-cemento
Aditivo en morteros, másticos, gunitas
Agente espesante
Agente suspensionante: pinturas con base acuosa y con base orgánica
Agente tixotrópico: pinturas
Lodos de sondeo
Aditivo para piensos en alimentación animal
Aditivo para alimentación animal líquida
Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1        81

                 Antonio Álvarez e Inmaculada Cabrera


                                                         Ind ustriales

             Ptos. De

   •Volúmenes consolidados todas las compañías del

                                                     GRUPO TOLSA
                                                     GRUPO TOLSA

                                                                                                  ATAPULGITA YY
                                                  INDUSTRIALES                                       BENTONITA

                 tera para gatos
            LiLitera para gatos      EXAL EXAL-H
                                    EXAL &&EXAL-H                Absorbentes para suel
                                                                Absorbentes para suelooss           Lodos de Sondeo
                                                                                                   Lodos de Sondeo
                                     Adi nsos

          Ali entaci Mascotas
         AlimmentacióónnMascotas         Grasas
                                         Grasas                   Control de Humedad
                                                                  Control de Humedad                 Ingeni ría Ci
                                                                                                    Ingenieería Civvilil

                Jardi ería
               Jardinnería           Sulfato de cobre
                                    Sulfato de cobre              Vehícul de pesti as
                                                                 Vehículoode pesticcididas

               Ferti antes
              Fertililzizantes         Pl sma seco
                                      Plaasma seco                    Construcci

             FiFitosanitariooss      Hemogl
                                     Hemogloobibinnaa                  Papel otros
                                                                      Papel yyotros

     Características estructurales de la

                                                            AGUA DE
                                                            COORDINACION                     GRUPOS
                 Capa tetraédrica
      Capa Octaédrica


       3,6Å x 10,6Å

   Actas / Proceedings - Workshop Improlive-2000 - Anexo A1/Annex A1   83

Plantas Piloto de I+D de TOLSA S.A.

Detalle de los molinos

Shared By: