; Commissioning of A VFD Controller For The Performance Analysis of A 2 Pole Induction Motor
Documents
Resources
Learning Center
Upload
Plans & pricing Sign in
Sign Out
Your Federal Quarterly Tax Payments are due April 15th Get Help Now >>

Commissioning of A VFD Controller For The Performance Analysis of A 2 Pole Induction Motor

VIEWS: 14 PAGES: 7

International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: editor@ijaiem.org, editorijaiem@gmail.com Volume 1, Issue 3, November 2012 ISSN 2319 - 4847

More Info
  • pg 1
									International Journal of Application or Innovation in Engineering & Management (IJAIEM)
       Web Site: www.ijaiem.org Email: editor@ijaiem.org, editorijaiem@gmail.com
Volume 1, Issue 3, November 2012                                        ISSN 2319 - 4847



      Commissioning of A VFD Controller For The
      Performance Analysis of A 2 Pole Induction
                        Motor
        Ram Singh1, Navdeep Choudhary2, Alok Mishra3, Ketandeep Jamwal4, Mukund Madhav5
                                     1
                                      A.P, Electrical Engineering, BHSBIET – Lehragaga 1
                       HOD & A.P of. Electronics & Communication Engineering, BHBIET –Lehragaga 2
                                         Design Engineer in TATA Power Corp. Mumbai
                               th
                       B-tech 4 year, Electronics & Communication Engineering, BHBIET –Lehragaga4
                       B-tech 4th year, Electronics & Communication Engineering, BHBIET –Lehragaga5




                                                        ABSTRACT
 In this paper performance of the induction motor under various load condition have been presented. The motor is controlled
using a sensorless VFD control drive. The specification of the motor tested and controller drive is given in the section IV.
Section I and II gives a brief summary of a VFD controller and induction motor. Later in section III the commissioning of the
control drive has been presented. Various torque speed and torque current characteristics have been presented in section IV for
various load condition. The tested motor is then used in an electromechanical drive for a launcher.

    1. INTRODUCTION
 VARIABLE FREQUENCY DRIVE
The variable frequency drive controller is a solid state power electronics conversion system consisting of three distinct
sub-systems: a rectifier bridge converter, a direct current (DC) link, and an inverter. Voltage-source inverter (VSI)
drives (see 'Generic topologies' sub-section below) are by far the most common type of drives. Most drives are AC-AC
drives in that they convert AC line input to AC inverter output. However, in some applications such as common DC bus
or solar applications, drives are configured as DC-AC drives. The most basic rectifier converter for the VSI drive is
configured as a three-phase, six-pulse, full-wave diode bridge.




                           Figure 1 block diagram of the induction motor with VFD controller
In a VSI drive, the DC link consists of a capacitor which smooths out the converter's DC output ripple and provides a
stiff input to the inverter. This filtered DC voltage is converted to quasi-sinusoidal AC voltage output using the
inverter's active switching elements. VSI drives provide higher power factor and lower harmonic distortion than phase-
controlled current-source inverter (CSI) and load-commutated inverter (LCI) drives. The drive controller can also be
configured as a phase converter having singlephase converter input and three-phase inverter output.[7] Controllers
have been improved to exploit quantum solid state power switching device improvements in terms of voltage and
current ratings and switching frequency over the past six decades. Introduced in the 1983,[8] the insulated-gate bipolar
transistor (IGBT) has in the past two decades come to dominate VFDs as an inverter switching device.[9][10][11] In
variable-torque applications suited for Volts per Hertz (V/Hz) drive control, AC motor characteristics require that the
voltage magnitude of the inverter's output to the motor be adjusted to match the required load torque in a linear V/Hz
relationship. Some V/Hz control drives can also operate in quadratic V/Hz mode or can even be programmed to suit
special multi-point V/Hz paths.[12][13] The two other drive control platforms, vector control and direct torque control

Volume 1, Issue 3, November 2012                                                                                    Page 62
International Journal of Application or Innovation in Engineering & Management (IJAIEM)
       Web Site: www.ijaiem.org Email: editor@ijaiem.org, editorijaiem@gmail.com
Volume 1, Issue 3, November 2012                                        ISSN 2319 - 4847

(DTC), adjust the motor voltage magnitude, angle from reference and frequency[14] such as to precisely control the
motor's magnetic flux and mechanical torque. Although space vector pulse-width modulation (SVPWM) is becoming
increasingly popular,[15] sinusoidal PWM (SPWM) is the most straightforward method used to vary drives' motor
voltage (or current) and frequency. With SPWM control (see Fig. 1), quasi-sinusoidal, variable-pulse-width output is
constructed from intersections of a saw-toothed carrier frequency signal with a modulating sinusoidal signal which is
variable in operating frequency as well as in voltage (or current).[16][9][17] Operation of the motors above rated
nameplate speed (base speed) is possible, but is limited to conditions that do not require more power than the nameplate
rating of the motor. This is sometimes called "field weakening" and, for AC motors, means operating at less than rated
V/Hz .
OPERATOR INTERFACE
The operator interface provides a means for an operator to start and stop the motor and adjust the operating speed.
Additional operator control functions might include reversing, and switching between manual speed adjustment and
automatic control from an external process control signal. The operator interface often includes an alphanumeric
display and/or indication lights and meters to provide information about the operation.


    2. INDUCTION MOTOR
Three-phase induction motors are the most common and frequently encountered machines in industry
     simple design, rugged, low-price, easy maintenance
     wide range of power ratings: fractional horsepower to 10 MW
     run essentially as constant speed from no-load to full load
     Its speed depends on the frequency of the power source
     not easy to have variable speed control
     requires a variable-frequency power-electronic drive for optimal speed control




                                          Figure 2 a view of induction motor

An induction motor has two main parts:
    1. a stationary stator
         consisting of a steel frame that supports a hollow, cylindrical core
         core, constructed from stacked laminations, having a number of evenly spaced slots, providing the space for
              the stator winding
    2. a revolving rotor

         composed of punched laminations, stacked to create a series of rotor slots, providing space for the rotor
             winding
         one of two types of rotor windings
         conventional 3-phase windings made of insulated wire (wound-rotor) » similar to the winding on the stator
         aluminum bus bars shorted together at the ends by two aluminum rings, forming a squirrel-cage shaped
             circuit (squirrel-cage).


    3. STARTER DRIVE /COMMISIONING SOFTWARE
The STARTER drive/commissioning software supports the commissioning and maintenance of SINAMICS G120
converters. It provides operator guidance designed to simplify and speed up commissioning, combined with
comprehensive, user-friendly functions for the relevant drive solution.




Volume 1, Issue 3, November 2012                                                                              Page 63
International Journal of Application or Innovation in Engineering & Management (IJAIEM)
       Web Site: www.ijaiem.org Email: editor@ijaiem.org, editorijaiem@gmail.com
Volume 1, Issue 3, November 2012                                        ISSN 2319 - 4847




                                     Figure 4 view of Siemens companies vfd drive


    4. PERFORMANCE ANALYSIS OF THE INDUCTION MOTOR
TECHNICAL SPECIFICATIONS OF MOTOR TESTED
                      Table.1 technical specification of the motor drive used

                       Sl no    Factors                                Ratings
                       01       Power                                  3.7 kw
                       02       Full load current                      7.1 a
                       03       Speed                                  2900 rpm
                       04       Voltage                                415 v, 3 phase
                       05       Power factor                           0.82
                                                                       Nosdf/1103 2308978
                       06       Serial no.


TECHNICAL SPECIFICATION OF DRIVE USED
                     Table 2 technical specification of the control drive used

                            SL NO.      FACTORS             DETAILS
                            01          COMPANY             SIEMENS
                            02          POWER               4 KW
                            03          I/P VOLTAGE         380-480 V
                            04          I/P CURRENT         13.4 A
                            05          FREQUENCY           50 HZ
                            06          MODEL NO.           6SL 3224 - OBE24 - OUAO
TEST SET UP
The following figure shows the test set for the evaluation of the performance of the induction motor in the motor testing
cell. It include the mounting bench over which both the motor and dynamometer are horizontally coupled. The three
phase star connected connections of the motor input are connected to the three phase output connections of the drive
which generates the PWM signals.the three phase input connections to the drive are made from the three phase 440 v
main supply board. The earthing facility is provided for both motor and drive. Initially the dynamometer is not loaded
but then also the motor rotate with a torque at no laod due to the coupling with the dynamometer. The cooling pipes are
connected to the dynamometers for cooling purpose during the test.




                               Figure 4 view of test set up for the induction motor tested

Volume 1, Issue 3, November 2012                                                                               Page 64
International Journal of Application or Innovation in Engineering & Management (IJAIEM)
       Web Site: www.ijaiem.org Email: editor@ijaiem.org, editorijaiem@gmail.com
Volume 1, Issue 3, November 2012                                        ISSN 2319 - 4847


COMMISSIONING OF THE CONTROL DRIVE
 The drive was commissioned as per the specification of the motor under test using the following steps:
   Start the drive and press P>displays r000> change it to P0010 using increase button.
   Press P>displays In000>change to In001.
   Press P>displays P0010>change to P0300>displayIn000>change to 1(to select motor type)
   Press P>display P0300>change to P0304>press P>displays 0.0>change it to the rated voltage of the motor (415
       v).
   Press P>display P0304>change to P0305>press P>display 0.0 >change it to motor rated current (7.1 A)
   Press P>display P0305>change it to P0307>press P >display 0.0?change it to motor rated power (3.7 kw)

Similarly set the other factors of the motors in the drive using the following table:
                               Table 3 parameters used for the quick commissioning of the drive




                                   Table 4 commissioning parameters of the vfd drive used




After commissioning is done and the motor starts rotating the parameters which can be read and noted from the drive
display are given in the table below along with their respective parameters:


Volume 1, Issue 3, November 2012                                                                         Page 65
International Journal of Application or Innovation in Engineering & Management (IJAIEM)
       Web Site: www.ijaiem.org Email: editor@ijaiem.org, editorijaiem@gmail.com
Volume 1, Issue 3, November 2012                                        ISSN 2319 - 4847




                      Chart .1 readable parameters of the vfd drive used
MOTOR PERFORMANCE AT NO LOAD
                Table 5 observation table for no-load test of the induction motor
                           Sr                                      Motor                                       Drive                   Dynomometer
                           No.      Time Speed Torque I/P Vtg.   Current Freq. Power Temp.    I/P VoltageCurrent Freq. dc Voltage Speed Power Torque
                                                 (N-m) (Volts)    (Amps) (Hz) (kW) (Deg. C)     (Volts) (Amps) (Hz) (Volts)                (kW) (N-m)
                                 1 14:00 299       0      46         2.8     5    0    24         423 0.4 50 587 298 0.01 0.34
                                 2 14:05 599 1.1 86                  2.5 10 0.07 24               424 1.1 50 586 597 0.01 0.34
                                 3 14:10 899 1.3 127                2.41 15 0.12 25               424 2.1 50 583 897 0.02 0.34
                                 4 14:15 1199 1.42 168              2.43 20 0.18 25               424 3.3 50 580 1196 0.04 0.37
                                 5 14:20 1499 1.87 209              2.53 25 0.29 27               424        6       50 582 1494 0.01 0.13
                                 6 14:25 1799 1.43 250              2.23 30 0.27 30               424 7.6 50 586 1797 0.05 0.2
                                 7 14:30 2099 1.51 291              2.57 35 0.33 30               423 9.1 50 581 2096 0.03 0.07
                                 8 14:35 2399 1.62 332              2.61 40 0.4 31                423 10.8 50 580 2396 0.02 0.05
                                 9 14:40 2699 1.78 373              2.64 45 0.5 31                424 11.1 50 577 2695 0.02 0.04
                                 10 14:45 2999 1.78 400             4.67 50 0.56 32               424 12.1 50 577 2996 0.02 0.08




                    Figure 5 torques – speed plot obtained from the no load test’s observations




             Figure 6 torque – current plot obtained from the no load test’s observations
MOTOR PERFORMANCE UNDER FULL LOAD
              Table 6 observation table for full-load test of the induction motor tested
                                   Sr                                   Motor                                    Drive                   Dynomometer
                                   No.    Time Speed Torque I/P Vtg. Current Freq. Power Temp.             C
                                                                                                 I/P Voltageurrent Freq. dc Voltage Speed Power Torque
                                                      (N-m) (Volts) (Amps) (Hz) (kW) (Deg. C)      (Volts) (Amps) (Hz) (Volts)              (kW) (N-m)
                                      1    15:30 299     0      47      2.7      5    0    48        423 0.4           50   591 284 0.05 1.44
                                      2    15:35 599 4.46 87 2.98 10 0.28 49                         424 1.1           50   585 569 0.1 1.74
                                      3    15:40 899 5.87 128 3.54 15 0.55 50                        424 2.1           50   582 858 0.17 1.95
                                      4    15:45 1199 7.11 169 4.05 20 0.89 51                       424 3.3           50   573 1148 0.26 2.12
                                      5    15:50 1499 8.16 210 4.52 25 1.27 52                       424       6       50   570 1440 0.35 2.34
                                      6    15:55 1799 9.07 251 4.98 30               1.7   53        424 7.6           50   556 1732 0.54 3.04
                                      7    16:00 2099 9.86 292 5.29 35 2.15 53                       423 9.1           50   564 2027 0.66 3.1
                                      8    16:05 2399 10.54 333 5.59 40 2.63 53                      423 10.8 50            564 2323 0.87 3.55
                                      9    16:10 2699 11.14 374 5.86 45 3.13 51                      424 11.1 50            563 2619 1.13 4.6
                                     10    16:15 2999 11.7 414 6.1              50 3.65 49           424 12.1 50            562 2916 1.42 4.76




Volume 1, Issue 3, November 2012                                                                                                                         Page 66
International Journal of Application or Innovation in Engineering & Management (IJAIEM)
       Web Site: www.ijaiem.org Email: editor@ijaiem.org, editorijaiem@gmail.com
Volume 1, Issue 3, November 2012                                        ISSN 2319 - 4847




Figure 7 toque v/s speed plot of the tested induction                                                                           Figure 8 toque v/s current plot of the tested
     motor under full load test                                                                                                    induction motor under full load test

MOTOR PERFORMACE UNDER 110% OVER LOAD
             Table 7 observation table for the over-load test of the tested induction motor
                                 Sr                                       Motor                                   Drive                   Dynomometer
                                 No.    Time                                                               C
                                                 Speed Torque I/P Vtg. Current Freq. Power Temp. I/P Voltage urrent Freq. dc Voltage Speed Power Torque
                                                        (N-m) (Volts) (Amps) (Hz) (kW) (Deg. C) (Volts) (Amps) (Hz) (Volts)                  (kW) (N-m)
                                    1    16:20      299    0      47 2.76          5    0    34     423 0.4             50   578 285 0.05 1.21
                                    2    16:22      599 4.8       86 3.09 10 0.39 37                424 1.1             50   573 568 0.09 1.5
                                    3    16:25      899 6.9 127 3.96 15 0.59 40                     424 2.1             50   560 857 0.16 1.76
                                    4    16:27     1199 7.58 168 4.26 20 0.95 41                    424 3.3             50   553 1146 0.24 1.9
                                    5    16:30     1499 8.71 209 4.76 25 1.36 41                    424         6       50   551 1438 0.36 2.45
                                    6    16:35     1799 9.69 250 5.23 30 1.82 42                    424 7.6             50   551 1732 0.54 2.98
                                    7    16:40     2099 10.53 291 5.6             35   2.3   43     423 9.1             50   550 2027 0.8 3.75
                                    8    16:45     2399 11.25 332 5.92 40 2.81 44                   423 10.8 50              548 2322 1.11 4.4
                                    9    16:50     2699 11.87 373 6.2             45 3.34 45        424 11.1 50              548 2620 1.38 4.96
                                   10    16:55     2999 12.6 412 6.53 50 3.93 46                    424 12.1 50              547 2914 1.67 5.44




                   Figure 9 toque v/s speed plot of the tested induction of the tested induction motor




                   Figure 10 toque v/s current plot of the tested induction motor under over-load test

    5. CONCLUSSIONS
 The following conclusions were made after undergoing the above tests for the induction motor of siemence company :
    The characteristic performance of the induction motor under no-load test was satisfactory as compared with
         the ideal characteristics.
    The characteristic performance of the induction motor under full-load test was satisfactory as compared with
         the ideal characteristics.
    The characteristic performance of the induction motor under over-load test was satisfactory as compared with
         the ideal characteristics.
    The characteristic performance of the induction motor under endurance test was satisfactory as compared with
         the ideal characteristics.
    The motor is suitable to be used in the required area of the launcher.
    The drive is having satisfied performance with easier commissioning system and cooling systems.


Volume 1, Issue 3, November 2012                                                                                                                                   Page 67
International Journal of Application or Innovation in Engineering & Management (IJAIEM)
       Web Site: www.ijaiem.org Email: editor@ijaiem.org, editorijaiem@gmail.com
Volume 1, Issue 3, November 2012                                        ISSN 2319 - 4847

REFRENCES
 [1] A. E. Fitzgerald, et al., "Electric Machinery," 5th Ed., McGraw-Hill, 1990.
 [2] IEEE Standard 112-1991, "IEEE Standard Test Procedure for Polyphase Induction Motors and Generators,"
   Institute of Electrical and Electronics Engineers, Inc.
 [3] G. R. Slemon,"Modelling Induction Machines for Electric Drives," IEEE Trans. on Industry Applications, Vol.
   25, No. 6, pp. 1126-1131, Nov. 1989.
 [4] D. W. Novotney, et al.(Editor), "Introduction to Field Orientation and High Performance AC Drives," IEEE IAS
   Tutorial Course, 1986.
 [5] A. M. Trzynadlowski, “The Field Orientation Principle in Control of Induction Motors,” Kluwer Academic
   Publishers 1994.
 [6] J. Holtz, "Pulse Width Modulation for Electronic Power Conversion," Proceedings of IEEE, Vol.82, No.8,
   p.1194-1214, Aug. 1994. 10
 [7] R. DeDonker and D. W. Novotney, “The Universal Field Oriented Controller,” IEEE Trans. Industry
   Applications, Vol. 30, No.1, pp.92-100, Jan. 1994.




Volume 1, Issue 3, November 2012                                                                       Page 68

								
To top