Docstoc

A Survey on QOS and energy efficient routing protocols in WSN

Document Sample
A Survey on QOS and energy efficient routing protocols in WSN Powered By Docstoc
					International Journal of Application or Innovation in Engineering & Management (IJAIEM)
       Web Site: www.ijaiem.org Email: editor@ijaiem.org, editorijaiem@gmail.com
Volume 1, Issue 2, October 2012                                         ISSN 2319 - 4847



      A Survey on QOS and energy efficient routing
                   protocols in WSN
                                               Mrs. Sunita S. Nandgave
                                          Lecturer in Dept. of Computer Engineering
                              G. H. Raisoni College of Engineering & Management, Pune, India.




                                                       ABSTRACT
Recent advances in wireless sensor networks have led to many new protocols specifically designed for sensor networks where
energy awareness is an essential consideration. Most of the attention, however, has been given to the routing protocols since
they might differ depending on the application and network architecture. This paper surveys recent energy efficient routing
protocols for sensor networks, we have summarized recent research results on energy efficient routing in sensor networks
which comes under QOS based category i also included whether the protocol is utilizing flat or multi-hop transmission scheme.
Keywords: Routing protocols, QOS routing, Energy efficiency.

    1. INTRODUCTION
Energy efficiency is a major concern in Wireless sensor Networks (WSN)[8]. As sensor nodes are typically battery
powered, the energy usages has to be carefully managed in order to prolong the lifetime of the system. A sensor node in
a WSN has two major functions 1) to collect and produce data from its physical environment and 2) to route data from
itself and neighboring nodes towards a base station which collects all data produced by the WSN for further processing.
We assume an ad-hoc, multi-hop network which is the common approach for large network deployments, where we
cannot afford the energy required to transmit data directly from the node to the base station. In this paper we are
interested in energy-aware routing in such networks.

   1.1 Application of Wireless Sensor Network:
The areas of applications of WSNs vary from civil, healthcare, and environmental to military. Examples of applications
include target tracking in battlefields [7], habitat monitoring [18], civil structure monitoring [28], forest fire detection
[13] and factory maintenance [24]. Different attributes, where it may contain delay sensitive and delay tolerant data.
For example, the data generated by a sensor network that monitors the temperature in a normal weather monitoring
station are not required to be received by the processing center or the sink node within certain time limits. On the other
hand, for a sensor network that used for fire detection in a forest, any sensed data that carries an indication of a fire
should be reported to the processing center within certain time limits. Furthermore, the introduction of multimedia
sensor networks along with the increasing interest in real-time applications have made strict constraints on both delay
and throughput in order to report the time-critical data (in such applications) to the processing center or sink within
certain time limits and bandwidth requirements without any loss. These performance metrics (i.e. delay and bandwidth)
are usually referred to as Quality of Service


    2. APPLICATIONS OF WIRELESS SENSOR NETWORK
The areas of applications of WSNs vary from civil, healthcare, and environmental to military. Examples of applications
include target tracking in battlefields [7], habitat monitoring [18], civil structure monitoring [28], forest fire detection
[13] and factory maintenance [24]. Different attributes, where it may contain delay sensitive and delay tolerant data.
For example, the data generated by a sensor network that monitors the temperature in a normal weather monitoring
station are not required to be received by the processing center or the sink node within certain time limits.
On the other hand, for a sensor network that used for fire detection in a forest, any sensed data that carries an
indication of a fire should be reported to the processing center within certain time limits. Furthermore, the introduction
of multimedia sensor networks along with the increasing interest in real-time applications have made strict constraints
on both delay and throughput in order to report the time-critical data (in such applications) to the processing center or
sink within certain time limits and bandwidth requirements without any loss.



Volume 1, Issue 2, October 2012                                                                                   Page 86
International Journal of Application or Innovation in Engineering & Management (IJAIEM)
       Web Site: www.ijaiem.org Email: editor@ijaiem.org, editorijaiem@gmail.com
Volume 1, Issue 2, October 2012                                         ISSN 2319 - 4847

These performance metrics (i.e. delay and bandwidth) are usually referred to as Quality of Service (QoS) requirements.
Therefore, enabling real-time applications in sensor networks requires energy and QoS awareness in different layers of
the protocol stack in order to have efficient utilization of the network resources and effective access to sensors readings.
Thus QoS routing is an important topic in sensor networks research, and it has been under the focus of the research
community of WSNs.
For surveys on Quality of Service based routing protocols for WSNs. The unique properties of the WSNs have been
taken into account. These routing techniques can be classified according to the protocol operation into negotiation
based, query based, QoS based, and multi-path based. The negotiation based protocols have the objective to eliminate
the redundant data by include high level data descriptors in the message exchange. In query based protocols, the sink
node initiates the communication by broadcasting a query for data over the network.
The QOS based protocols allow sensor nodes to make a tradeoff between the energy consumption and some QOS
metrics before delivering the data to the sink node . Finally, multipath routing focused on the use of multiple paths
primarily for load balancing, fault tolerance, bandwidth aggregation, and reduced delay. Focus is on supporting quality
of service through multi-path routing.

  2.1 Multipath routing
Importance of multipath routing is that it Improves end-to-end reliability, Avoid congested paths. Multipath Routing is
the spreading of traffic from a source node to a destination node over multiple paths through the network.
Benefits of multipath routing

    2.1.1. Load balancing
As stated in [11] one of the reasons for which classical multipath routing has been explored is to provide load
balancing. Load balancing can be achieved by splitting the traffic across multiple paths. This use of multipath routing
is applicable to WSNs. Load balancing can spread energy utilization across nodes in the sensor network, potentially
resulting in longer lifetimes. Furthermore, load balancing helps in avoiding congestion and bottleneck problems.

    2.1.2. Reliability and fault tolerance
Reliability means that the probability that a message generated at one place in the network can actually routed to the
intended destination. Reliability is a big issue in WSNs, because data transmission is subject to lost due to several
reasons: various kinds of interference, media access conflicts, network topology changes, etc. These reasons affect the
wireless radios to correctly decode the wireless signals.
One of the reasons behind developing multipath routing is to provide route failure protection, and increase resiliency to
route failures. Discovering and maintaining multiple paths between the source destination pair improves the routing
performance by providing alternative routes. When the primary path fails, an alternative path will be used to transfer
the data.

  2.1.3. Highly aggregated bandwidth
Bandwidth may be limited in a WSN, routing over a single path may not provide enough bandwidth for a connection.
However, if data are routed over multiple paths simultaneously, the overall bandwidth of the paths may satisfy the
bandwidth requirement of an application.

   2.1.4. Minimizing end to end delay
By assuming that the paths between the source destination pair are node disjoint paths where correlation between the
paths is very low, and there is no route coupling between different routes (this could be achieved, for example, through
the using of directional antennas), the end to end delay can be minimized by dividing the data (to be sent) into a
number of segments and using multiple paths to route segments simultaneously to the destination. Consider the
following example modeling and protocols that strive for meeting some QoS requirements along with the routing
function. In this paper, we will explore the routing mechanisms for energy efficient QOS based sensor networks
developed in recent years. Each routing protocol is discussed which comes under data-centric category. Our aim is to
help better understanding of the current QOS based routing protocols for wireless sensor networks and point out issues
that can be subject to further research.


    3. QUALITY AND RELIABILITY IN WIRELESS SENSOR NETWORKS
In a wireless sensor networks have found their applications in many crucial domains like medical, defense and
navigation system, it is important to lay due emphasis on the reliability and quality of the data transferred. Later the
protocols[11,12,14] reduced redundency to conserve nergy but the riliability issue was left untouched.The middleware
quality attributes [26] has always been an area of interest.

Volume 1, Issue 2, October 2012                                                                                  Page 87
International Journal of Application or Innovation in Engineering & Management (IJAIEM)
       Web Site: www.ijaiem.org Email: editor@ijaiem.org, editorijaiem@gmail.com
Volume 1, Issue 2, October 2012                                         ISSN 2319 - 4847

   3.1 Energy aware routing
Shah et al. [29][32] proposed to use a set of sub-optimal paths occasionally to increase the lifetime of the network.
These paths are chosen by means of a probability function, which depends on the energy consumption of each path.
Network survivability is the main metric that the approach is concerned with. The approach argues that using the
minimum energy path all the time will deplete the energy of nodes on that path. Instead, one of the multiple paths is
used with a certain probability so that the whole network lifetime increases. The protocol assumes that each node is
addressable through a class-based addressing which includes the location and types of the nodes. There are 3 phases in
the protocol:
   3.1.1. Setup phase:
Localized flooding occurs to find the routes and create the routing tables. While doing this, the total energy cost is
calculated in each node. For instance, if the request is sent from node Ni to node Nj, Nj calculates the cost of the path as
follows:
               CNj, Ni =Cost (Ni)+Metric(Nj,Ni )                                   (1)
Here, the energy metric used captures transmission and reception costs along with the residual energy of the nodes.
Paths that have a very high cost are discarded. The node selection is done according to closeness to the destination. The
node assigns a probability to each of its neighbors in routing (forwarding) table (FT) corresponding to the formed
paths. The probability is inversely proportional to the cost, that is:




                                                                                        (2)
Nj then calculates the average cost for reaching the destination using the neighbors in the forwarding fable (FTj ) using
the formula:
                                                                                        (3)
                         Cost ( N j )     PNj , NiCNj , Ni
                                          iFTj
This average cost for N j is set in the cost field of the request and forwarded.

  3.1.2 Data Communication Phase
Each node forwards the packet by randomly choosing a node from its forwarding table using the probabilities.

   3.1.3. Route maintenance phase
Localized flooding is performed infrequently to keep all the paths alive. The described approach is similar to Directed
Diffusion in the way potential paths from data sources to the sink are discovered. In Directed Diffusion, data is sent
through multiple paths, one of them being reinforced to send at higher rates. On the other hand, Shah et al. select a
single path randomly from the multiple alternatives in order to save energy. Therefore, when compared to Directed
Diffusion, it provides an overall improvement of 21.5% energy saving and a 44% increase in network lifetime.
However, such single path usage hinders the ability of recovering from a node or path failure as opposed to Directed
Diffusion. In addition, the approach requires gathering the location information and setting up the addressing
mechanism for the nodes, which complicate route setup compared to the Directed Diffusion.


    4. DETAILED STUDY OF ROUTING PROTOCOLS
Routing protocols are divided into many categories like structure-based routing protocols and operation-based routing
protocols. All these sub layers like flat routing, location-based, multipath-based, query-based and negotiation-based
comes under the classes like hierarchical based routing, data-centric routing, location-based routing and network flow
quality-of-service based routing protocols.

   4.1 LEACH (Low Energy Adaptive Clustering Hierarchical)
The current interest in wireless sensor networks has led to the emergence of many application oriented protocols of
which LEACH is the most aspiring and widely used protocol [9]. LEACH can be described as a combination of a
cluster-based architecture and multi-hop routing. The term cluster-based can be explained by the fact that sensors using
the LEACH protocol functions are based on cluster heads and cluster members. Multi-hop routing is used for inter-
cluster communication with cluster heads and base stations. Simulation results shown in [12] that multi-hop routing
consumes less energy when compared to direct transmission.


Volume 1, Issue 2, October 2012                                                                                  Page 88
International Journal of Application or Innovation in Engineering & Management (IJAIEM)
       Web Site: www.ijaiem.org Email: editor@ijaiem.org, editorijaiem@gmail.com
Volume 1, Issue 2, October 2012                                         ISSN 2319 - 4847




  Figure 1 LEACH operation showing set-up, steady state phases using multi-hop, also showing direct transmission.

The operations that are carried out in the LEACH protocol are divided into two stages, the setup phase and the steady-
state phase.
Set-up Phase: In the set up phase, all the sensors within a network group themselves into some cluster regions by
communicating with each other through short messages. At a point of time one sensor in the network acts as a cluster
head and sends short messages within the network to all the other remaining sensors. The sensors choose to join those
groups or regions that are formed by the cluster heads, depending upon the signal strength of the messages sent by the
cluster heads. Sensors interested in joining a particular cluster head or region respond back to the cluster heads by
sending a response signal indicating their acceptance to join. Thus the set-up phase completes [12].
Steady State Phase: As soon as a cluster head is selected for a region, all the cluster members of that region send the
collected or sensed data in their allotted TDMA slots to the cluster head. The cluster head transmits this collected data
in a compressed format to the base station which completes the second phase, called the Steady State Phase. Once the
steady-state finishes the data transmission to the sink, the whole process comes to an end and a new search for the
forming of cluster heads for a region and new cluster-member formation begins. In short, it can be said that a new
set/up phase and steady state starts with the end of data transmission done to the sink. This alternative selection of
cluster heads within the region, which is carried among the sensors in a self-organized way helps in reducing or
lowering the energy that is utilized.

   4.2 PEGASIS (Power Efficient Gathering in Sensor Information Systems)
Wireless sensor nodes sense data and send it directly to the base station or they perform a clustering procedure as in
LEACH. LEACH is known for cluster formation which contains cluster members sensing the data and the cluster head
which gathers the data collected in a fused manner (all the data is sent as a single packet) to the base station. This
procedure has gained in conserving a lot of energy that would otherwise be wasted. PEGASIS is an extension to
LEACH; it has better ways of conserving energy which last even more than using cluster mechanism in LEACH [12].
If we have nodes in the network which are at some distance from the base station, the easiest and the simplest way of
transmitting the sensed data to the base station is to transmit it directly, which may lead to quicker depletion of energy
in all the nodes. The nodes at a large distance away from the base station are depleted quicker than the nodes which are
closer to the base station as they need some extra energy to reach the farthest base station. Another approach where
energy is consumed in low amounts is by forming cluster heads and cluster members using the sensor nodes in the
network. Cluster members perform the sensing and computing the data (Data Fusion) and the cluster heads transmit
the fused data to the base station. All the nodes in the network take their chance to act as cluster heads to send the fused
data to the base station; again the farthest cluster head needs some extra energy to send the data to the base station.
The key idea in using PEGASIS is that it uses all the nodes to transmit or receive with its closest neighbor nodes. This
is achieved by the formation of a chain as shown in the Figure 2 below. All the nodes which collect the data fuse it with
the data received by the neighbor node and transmit it to the next-nearest neighbor.
From the simulation reported in [13], it is clear that PEGASIS improves on LEACH by saving energy at different
stages, such as for example cluster-member forming and cluster heads. Here all the nodes have an equal chance of
becoming the leader once and transmit data to the base station in one round. An energy balance is estimated on the
nodes in the network which conserves lot of energy. The amount of nodes that die during the chain process is reduced
when compared to LEACH for all types of network sizes and topologies. The network lifetime is increased, as all the
nodes actively participate and deplete the equal amount of energy on the whole [13].



Volume 1, Issue 2, October 2012                                                                                  Page 89
International Journal of Application or Innovation in Engineering & Management (IJAIEM)
       Web Site: www.ijaiem.org Email: editor@ijaiem.org, editorijaiem@gmail.com
Volume 1, Issue 2, October 2012                                         ISSN 2319 - 4847




                                Figure 2 Formation of chain using nodes in PEGASIS




                            Figure 3 Flow of Data in PEGASIS forming Chain to reach BS

   4.3 SAR (Sequential Assignment Routing)
Sequential Assignment Routing (SAR) is the first of its kind which concentrates more on the energy efficiency and
QOS factors. Creating multiple paths from the nodes to the sink helps in achieving a more energy efficient structure
and also maximizes the fault tolerance of the network. Multiple paths are created in a tree structure as shown in the
Figure 4 below, each rooted from the nearest neighbors’ of the sink node. Each node tries to increase the tree or extend
its roots by adding all those other neighbor nodes connecting the sink node. Nodes in the network which are low in
energy reserves and which do not support real time factors like redundancy, bounded latency are deleted or ignored to
be added as paths towards the sink. When a tree construction is completed we can see that every node has multiple
paths from it through other nodes to reach some other node or to reach the sink. Using this structure, every node is
capable of transmitting to all the other nearest single hop neighbor’s.




                           Figure 4 SAR Implementation: A Path exits from node to sink.

SAR maintains a path table which has all the best cost paths of the neighbor nodes. Whenever a node has to perform
transmission, it checks for the best suitable and least cost path. SAR shows an optimized performance focusing on
lowering of the energy consumption of each packet without considering its priority. A routing table update revolves
around the network so as to update all the routing tables of the network in order to find out the depleted nodes in the
network and ignore any further communication through the ruined path.

SAR creates multiple trees where the roots of each tree is at one hop neighbor from the sink, A set of algorithms are
used for performing organization, management and mobility management in the network so that it avoids overhead of
the network traffic. SAR adapts quickly to node failures in the network, by using an handshaking procedure that

Volume 1, Issue 2, October 2012                                                                               Page 90
International Journal of Application or Innovation in Engineering & Management (IJAIEM)
       Web Site: www.ijaiem.org Email: editor@ijaiem.org, editorijaiem@gmail.com
Volume 1, Issue 2, October 2012                                         ISSN 2319 - 4847

enforces routing table consistency within the upstream and the downstream neighbor on each path, such that whenever
there is an failure in the network the path table gets updated so that the new paths are elected to reduce traffic
overheads and loss of data by utilizing more than the required energy [26].

   4.4 SPEED Routing Protocol
The SPEED protocol has different components which control the network adaptation layer to avoid                      traffic
congestions, and route data packets safely through the MAC layer
1) Application API and Packet Format
2) A delay estimation exchange scheme
3) A Non deterministic Geographic Forwarding Algorithm (NGF)
4) A Neighborhood Feedback Loop (NFL)
5) Backpressure Rerouting
6) Last mile processing




                          Figure 5 SPEED showing the Neighbor Set and Forward Set Nodes

The SPEED protocol operation can be defined by using the basic component of the protocol structure, Non
deterministic Geographic Forwarding. Let us assume a sensor field in which a number of sensors are scattered all the
way. If a node says I want to transmit data to particular destination nodes, it first has to find out all the sensors which
are in the nearest first hop forwarding neighbor distance. It finds all the nodes that are at the nearest first hop distance
in the radio range of node I. All these nodes are termed as NS (I) and the source node I is at distance of L from the
destination node. All these nodes which are in the radio range of node I and at a distance of the next hop forwarding
node to the destination are termed as Lnext. These nodes which are near to the destination and also in the radio range of
node I are termed as the Forwarding candidate set FSi (Destination).




                 Figure 6 The backpressure rerouting process when the nodes 9 and 10 in congestion.

A backpressure rerouting procedure is started to stop further dropping of the data packets if congestion occurs at a
node. Before these packets are routed to the nearest neighbor in FSi, NGF divides the FSi region into two sub regions
one having all those nodes which have the relay speed larger than a certain threshold speed which is set as S (setpoint),
and the other nodes are not up to the threshold speed to forward packets. Always packets are chosen with higher relay
speed as the next hop forwarding candidate. If there are no nodes in the first sub region then the NFL component is
used to calculate the relay ratio which is used as feedback by the NGF. A packet is not dropped in SPEED, as it keeps
on searching for an alternative route by implementing back pressure rerouting [27].


    5. PROPOSED MODEL
The existing energy efficiency model for the sensor network shows considerable improvement in one or more objectives
to suite the specific application, still there needs a lot of work to be done on energy efficient model in terms of low
clustering overhead, distributed cluster heads, continuous packet delivery, reduced data fusion cost. In this paper we are
proposing a new hybrid protocol model which considers all these factors in the routing mechanism for the wireless
sensor network. The following are the steps involved for the proposed hybrid model.

Volume 1, Issue 2, October 2012                                                                                  Page 91
International Journal of Application or Innovation in Engineering & Management (IJAIEM)
       Web Site: www.ijaiem.org Email: editor@ijaiem.org, editorijaiem@gmail.com
Volume 1, Issue 2, October 2012                                         ISSN 2319 - 4847

     1. Clustering based on k-means algorithm.
     2. Improved cluster head selection through RSS (Received Signal Strength) value.
     3. Alternate CH (Cluster Head) selection for continuous packet delivery.
     4. Shortest path to the super cluster further reduces the power consumption.
     5. Aggregation techniques for reduced data fusion cost.
By incorporating small changes in each step, we hope this hybrid model may improve the efficiency of routing protocol
for Wireless sensor networks. Future work will be using compression techniques for step 5.

                                               Table 1: Routing protocols

                    Characteristics                      Transmission scheme
                    Routing protocol             QOS     Flat                 Multi hop
                    LEECH                        Low     Multi hop, cluster heads directly transmit to
                                                         sink
                    PEGASIS                      Low     Multipath, only if the neighbors are at a larger
                                                         distance than single hop
                    SAR                          High    Multi hop, Trees are constructed either from
                                                         node to sink or sink to node
                    SPEED                        High    Mutli hop, if no node failures or congestions
                                                         occur



    6. CONCLUSION
Routing in sensor networks has attracted a lot of attention in the recent years and introduced unique challenges
compared to traditional data routing in wired networks. In this paper, we have summarized recent research results on
data routing in sensor networks which comes under QOS based category We also included in the table whether the
protocol is utilizing flat or multihop transmission scheme, since it is an important consideration for routing protocols in
terms of energy saving and traffic optimization.

REFERENCES

[1] Jalel Ben Othman, Bashir Yahya ,“ Energy efficient and QoS based routing protocol for wireless sensor networks”,
     Department of Computer Science, PRISM Laboratory, University of Versailles Saint Quentin, 45 Avenue des
     Etats-Unis, 78000 Versailles, France
[2] K. Akkaya, M. Younis, “An energy aware QoS routing protocol for wireless sensor networks”, in: The Proceedings
     of the 23rd International Conference on Distributed Computing Systems Workshops, Providence, RI, USA, May
     19_22, 2003, pp. 710_715.
[3] R. Min, et al., "Low Power Wireless Sensor Networks", in the Proceedings of International Conference on VLSI
    Design, Bangalore, India, January 2001.
[4] Chaczko, Z., Ahmad, F., Mahadevarr, V "Wireless sensors in network based collaborative environments ”,
    Information Technology Based Higher Education and Training, 2005, 6th International Conference ITHET 2005.
    Page(s): F3A/7 - F3A13.2005.
[5] R. H. Katz, J. M. Kahn and K. S. J. Pister, “Mobile Networking for Smart Dust,” in the Proceedings of the 5th
    Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom’99), Seattle, WA,
    August 1999.
[6] W. Ye, J. Heidemann and D. Estrin, "An Energy-Efficient MAC Protocol for Wireless Sensor Networks", in the
    Proceedings of IEEE Infocom 2002, New York, NY, June 2002.
[7] Yan-Xiao Li, Hao-Shan Shi, Shui-Ping Zhang; "An Efficient Energy Aware MAC Protocol for Wireless Sensor
    Network " , International Conference ICMULT.2010.
[8] A. Woo and D. Culler. "A Transmission Control Scheme for Media Access in Sensor Networks," in the Proceedings
    of the 7th Annual ACM/IEEE International Conference on Mobile Computing and Networking (Mobicom'01),
    Rome, Italy, July 2001.
[9] W. R. Heinzelman, et al., "Energy-Scalable algorithms and protocols for Wireless Sensor Networks", in the
    Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP'00), Istanbul,
    Turkey, June 2000.
[10] Eugene Shih, et al., "Physical layer driven protocol and algorithm design for energy-efficient wireless sensor
    networks", in the Proceedings of the 7th Annual ACM/IEEE International Conference on Mobile Computing and
    Networking (Mobicom'01), Rome, Italy, July 2001.

Volume 1, Issue 2, October 2012                                                                                 Page 92
International Journal of Application or Innovation in Engineering & Management (IJAIEM)
       Web Site: www.ijaiem.org Email: editor@ijaiem.org, editorijaiem@gmail.com
Volume 1, Issue 2, October 2012                                         ISSN 2319 - 4847

[11] L. Subramanian and R. H. Katz, "An Architecture for Building Self Configurable Systems," in the Proceedings of
    IEEE/ACM Workshop on Mobile Ad Hoc Networking and Computing, Boston, MA, August 2000.
[12] F. Ye et al., “A Two-tier Data Dissemination Model for Large-scale Wireless Sensor Networks,” in the
    Proceedings of Mobicom’02, Atlanta, GA, Septemeber, 2002
[13] S. Tilak et al., “A Taxonomy of Wireless Microsensor Network Models,” in ACM Mobile Computing and
    Communications Review (MC2R), June 2002.
[14] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, "Energy-efficient communication protocol for wireless
    sensor networks," in the Proceeding of the Hawaii International Conference System Sciences, Hawaii, January
    2000.
[15] M. Younis, M. Youssef and K. Arisha, “Energy-Aware Routing in Cluster-Based Sensor Networks”, in the
    Proceedings of the 10th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer
    and Telecommunication Systems (MASCOTS2002), Fort Worth, TX, October 2002.
[16] A. Manjeshwar and D. P. Agrawal, “TEEN : A Protocol for Enhanced Efficiency in Wireless Sensor Networks," in
    the Proceedings of the 1st International Workshop on Parallel and Distributed Computing Issues in Wireless
    Networks and Mobile Computing, San Francisco, CA, April 2001.
[17] W. Heinzelman, “Application specific protocol architectures for wireless networks”, PhD Thesis, MIT, 2000.
[18)] C. Intanagonwiwat, R. Govindan and D. Estrin, "Directed diffusion: A scalable and robust communication
    paradigm for sensor networks", in the Proceedings of the 6th Annual ACM/IEEE International Conference on
    Mobile Computing and Networking (MobiCom'00), Boston, MA, August 2000.
[19] D. Estrin, et al., “Next century challenges: Scalable Coordination in Sensor Networks,” in the Proceedings of the
    5th annual ACM/IEEE international conference on Mobile Computing and Networking (MobiCom’99), Seattle,
    WA, August 1999.
[20] S. Lindsey and C. S. Raghavendra, "PEGASIS: Power Efficient GAthering in Sensor Information Systems," in the
    Proceedings of the IEEE Aerospace Conference, Big Sky, Montana, March 2002.
[21] S. Lindsey, C. S. Raghavendra and K. Sivalingam, "Data Gathering in Sensor Networks using the Energy*Delay
    Metric", in the Proceedings of the IPDPS Workshop on Issues in Wireless Networks and Mobile Computing, San
    Francisco, CA, April 2001.
[22] K. Akkaya and M. Younis, “An Energy-Aware QoS Routing Protocol for Wireless Sensor Networks,” in the
    Proceedings of the IEEE Workshop on Mobile and Wireless Networks (MWN 2003), Providence, Rhode Island,
    May 2003.
[23] B. Krishnamachari, D. Estrin, S. Wicker, "Modeling Data Centric Routing in Wireless Sensor Networks," in the
    Proceedings of IEEE INFOCOM, New York, NY, June 2002.
[24] Y. Yao and J. Gehrke, “The cougar approach to in-network query processing in sensor networks,” in SIGMOD
    Record, September 2002.
[25] W. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive protocols for information dissemination in wireless
    sensor networks,” in the Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile
    Computing and Networking (MobiCom’99), Seattle, WA, August 1999.
[26] D. Braginsky and D. Estrin, "Rumor Routing Algorithm for Sensor Networks," in the Proceedings of the First
    Workshop on Sensor Networks and Applications (WSNA), Atlanta, GA, October 2002.
[27] C. Schurgers and M.B. Srivastava, “Energy efficient routing in wireless sensor networks,” in the MILCOM
    Proceedings on Communications for Network-Centric Operations: Creating the Information Force, McLean, VA,
    2001.
[28] M. Chu, H. Haussecker, and F. Zhao, "Scalable Information-Driven Sensor Querying and Routing for ad hoc
    Heterogeneous Sensor Networks," The International Journal of High Performance Computing Applications, Vol.
    16, No. 3, August 2002.
[29] R. Shah and J. Rabaey, "Energy Aware Routing for Low Energy Ad Hoc Sensor Networks", in the Proceedings of
    the IEEE Wireless Communications and Networking Conference (WCNC), Orlando, FL, March 2002.

Authors Profile

                    Mrs. Sunita S. Nandgave received his B.E. degree from BAMU University, Aurangabad in 2003. This
                    author is Research Associate appearing M.E. Computer from MAE Alandi, Pune.




Volume 1, Issue 2, October 2012                                                                             Page 93

				
DOCUMENT INFO
Shared By:
Stats:
views:51
posted:11/21/2012
language:
pages:8
Description: International Journal of Application or Innovation in Engineering & Management (IJAIEM),Web Site: www.ijaiem.org Email: editor@ijaiem.org, editorijaiem@gmail.com