SOLID WASTE MANAGEMENT

Document Sample
SOLID WASTE MANAGEMENT Powered By Docstoc
					  SOLID WASTE MANAGEMENT

  INTRODUCTION-

There has been a significant increase in MSW (municipal solid waste)
generation in India in the last few decades. This is largely because of
rapid population growth and economic development in the country. Solid
waste management has become a major environmental issue in India. The
per capita of MSW generated daily, in India ranges from about 100 g in
small towns to500 g in large towns. Although, there is no national level
data for MSW generation, collection and disposal, and increase in solid
waste generation, over the years, can be studied for a few urban centers.
For example, the population of Mumbai grew from around 8.2 million in
1981 to 12.3 million in 1991, registering a growth of around 49%. On the
other hand, MSW generated in the city increased from 3 200 tonnes per
day to 5 355 tonnes per day in the same period registering a growth of
around 67%. This clearly indicates that the growth in MSW in our urban
centers has outpaced the population growth in recent years. This trend
can be ascribed to our changing lifestyles, food habits, and change in
living standards. MSW in cities is collected by respective municipalities
and transported to designated disposal sites, which are normally low lying
areas on the outskirts of the city. The limited revenues earmarked for
the municipalities make them Ill-equipped to provide for high costs
involved in the collection, storage, treatment, and proper disposal of
MSW. As a result, a substantial part of the MSW generated remains
unattended and grows in the heaps at poorly maintained collection centre.
The choice of a disposal site also is more a matter of what is available
than what is suitable. The average collection efficiency for MSW in
Indian cities is about 72.5% and around 70% of the cities lack adequate
waste transport capacities (TERI 1998).
The insanitary methods adopted for disposal of solid wastes is,
therefore, a serious health concern. The poorly maintained landfill sites
are prone to groundwater contamination because of leachate production.
Open dumping of garbage facilitates the breeding for disease vectors
Such as flies, mosquitoes, cockroaches, rats, and other pests. The
municipalities in India therefore face the challenge of reinforcing their
available infrastructure for efficient MSW management and ensuring the
scientific disposal of MSW by generating enough revenues either from
the generators or by identifying activities that generate resources from
waste management.
                     The key issues involved in the solid waste management
are growth in population and increasing garbage generation, waste
collection system, segregation of waste at source in as many categories as
practical, scientific processing of waste material depending on nature,
developing infrastructure for solid waste and disposal and processing,
decentralize means to process waste to avoid multiple transfer and
facilitate disposal etc.

  IMPORTANCE OF SOLID WASTE MANAGEMENT –
      Solid waste management not only comes from industrial units. It
also comes from various sources. Every man with the operation of daily
domestic work creates solid waste for disposal. A study in united state
shows that solid waste per person per day in 1920 is 1.2kg. It increases
2.3kg in 1970 and about 3.6kg in 1980.
           This shows that solid waste per person is mounting due to
number of reasons.
Solid waste disposal creates a problem primarily in highly populated areas.
The more concentrated the population. The greater the problem.

City                                  Solid waste generated
Mumbai                                6000 tones per day.
Thane                                  700 tones per day.
Hydrabad                               2000 tones per day.
Delhi                                  4000tones per day.


                 In India, generation of municipal solid waste (MSW),
industrial, hazardous waste, biomedical waste have been increasing due to
population growth, life style changes and economic development. On the
other hand, waste management responses have not kept pace with the
increasing quantities of waste resulting in (a) a high proportion of
uncollected waste, and (b) poor standards of transportation, storage,
treatment and disposal. The insanitary methods adopted for disposal of
solid wastes is a serious health concern with significant environmental,
social and health costs associated with it. Open dumping of garbage
facilitates the breeding of disease vectors such as flies, mosquitoes,
cockroaches, rats, and other pests. The poorly maintained landfill sites
further, are prone to groundwater contamination because of leachate
production.
 Practically every citizen is now search of clear air and pleasant
environment. The land pollution problem has grown enormously in the
recent years due to waste dumping civics administration are facing the
problem for hygiene disposal waste. Those calls for separate efforts of
not only the civics administration but participation of several
responsibilities publics groups and industrial lists.
          As the cities are growing in size and problems seen as the
generation of plastic waste, various municipal waste treatment and
disposal methods are now being used to try resolving these problems.
Garbage generation in household can be recycled and reused to prevent
creation of waste at sources and reducing amount of waste thrown into
the community dustbins.
ABSTRACT-

Municipal Solid waste management (MSWM) constitutes a serious problem
in many third world Cities. Most cities do not collect the totality of
wastes generated, and of the wastes collected, only a fraction receives
proper disposal. The insufficient collection and inappropriate disposal of
solid wastes represent a source of water, land and air pollution, and pose
risks to human health and the environment.
Over the next several decades, globalization, rapid urbanization and
economic growth in the developing world tend to further deteriorate this
situation.
Items that we no longer need or don’t have any further use are falling in
the category of waste and we tend to throw them away. In early days
people were not facing such big problems of disposal because of
availability of space and natural material but now a day’s congestion in
cities and use of non-biodegradable materials in our day life create many
problems. It is directly deals with our hygiene and psychology. So proper
management of solid waste has become unavoidable.
The present seminar deals with various topics related with solid waste
such as Its Types, Methods, Transportation, Collection, Reuse, and
Recycling of solid waste. The advantages and disadvantages of recycling,
reusing landfilling, incineration process, composting, transportation and
also keys to reduce it etc.
                  WASTE-
                              It is a matter for which a specific owner ceases to have
                  use for it. It is also any unwanted or discarded matter. It can be in
                  a solid, liquid or in a gaseous form. A product, material or container
                  is not considered waste until someone throws it away.



   SOLID WASTE-
                   It is non liquid waste arising from domestic, trade, industrial,
agricultural, mining, construction activities and from public services. Or
            Solid waste may be defined as “unwanted material disposed by man, which
can neither flow into streams nor escapes immediately into the atmosphere.” These
cause pollution in water, air and soil. Or
             “Solid waste management is defined as it includes all the activities that
seek to minimize the health, environmental and aesthetic impacts of solid waste.” Or
           “The process of removing the discarded materials from in habited places in
a timely manner to prevent the spread of disease, and to dispose the discarded
materials in a manner that environmentally acceptable.” Or
             “The orderly execution of functional elements such as collecting,
transporting, processing and disposing of solid waste.”



   SOURCES OF SOLID WASTE-
                                 There are many sources from which the solid waste
comes. All living thing creates waste. In natural systems, trees animals and other
organisms contribute to waste.Humen creates waste as they alter natural system
through extraction, processing and use of natural resources.
From the study of various corporations it is clear that each person creates 44 tons of
waste per year. Each person generates 90,000 pounds of waste in a lifetime. The
sources are as follow-

1) Municipal:-
          Street sweeping, sewage treatment plant waste, waste from school and
other institutions.

2) Domestic:-
          Garbage, rubbish and occasional large waste from house.
3) Commercial:-
            From different stores and offices.

4) Industrial:-
             From manufacturing plants.

5) Mining:-
         From coal mining, stripmining etc.

6) Agricultural:-
               From farms grasslands and gardens.



       Different Types of Solid Waste-

      Municipal Solid Waste

      Industrial Waste

      Hazardous Waste

      Hospital Waste

      Construction and Demolition Waste

      Waste from electrical and electronic equipment (WEEE)

      Agricultural Waste
Municipal solid waste-

Municipal solid waste consists of household waste, construction and
demolition debris, sanitation residue, and waste from streets. This
garbage is generated mainly from residential and commercial complexes.
With rising urbanization and change in lifestyle and food habits, the
                      amount of municipal solid waste has been increasing
                      rapidly and its composition changing. In 1947 cities
                      and towns in India generated an estimated 6 million
                      tones of solid waste; in 1997 it was about 48 million
                      tones. More than 25% of the municipal solid waste
                      is not collected at all; 70% of the Indian cities lack
adequate capacity to transport it and there are no sanitary landfills to
dispose of the waste. The existing landfills are neither well equipped nor
well managed and are not lined properly to protect against contamination
of soil and groundwater.

Over the last few years, the consumer market has grown rapidly leading
to products being packed in cans, aluminum foils, plastics, and other such
nonbiodegradable items that cause incalculable harm to the environment.
In India, some municipal areas have banned the use of plastics and they
seem to have achieved success. For example, today one will not see a
single piece of plastic in the entire district of Ladakh where the local
authorities imposed a ban on plastics in 1998. Other states should follow
the example of this region and ban the use of items that cause harm to
the environment. One positive note is that in many large cities, shops have
begun packing items in reusable or biodegradable bags. Certain
biodegradable items can also be composted and reused. In fact proper
handling of the biodegradable waste will considerably lessen the burden
of solid waste that each city has to tackle.

There are different categories of waste generated, each take their own
time to degenerate (as illustrated in the table below).
   The type of litter we generate and the approximate time it takes to
                               degenerate

 Type of litter          Approximate time it takes to degenerate the
                         litter

 Organic waste such as   A week or two.
 vegetable and fruit
 peels, leftover
 foodstuff, etc.

 Paper                   10–30 days

 Cotton cloth            2–5 months

 Wood                    10–15 years

 Woolen items            1 year

 Tin, aluminum, and other 100–500 years
 metal items such as cans

 Plastic bags            One million years?

 Glass bottles           undetermined



TYPES OF MUNCIPAL WASTE-

 Biodegradable waste: food and kitchen waste, green waste, paper.

 Recyclable material: paper, glass, bottles, cans, etc.

 Inert waste: construction and demolition waste, rocks, debris etc.

 Composite wastes: waste clothing, Tetra Paks, waste plastics such as
  toys.
   Domestic hazardous waste ; medication, e-waste, paints, chemicals,
    light bulbs, fluorescent tubes, fertilizer and pesticide containers,
    batteries .

        Composition of Municipal Waste-




  Hazardous waste-

Industrial and hospital waste is considered hazardous as they may contain
toxic substances. Certain types of household waste are also hazardous.
Hazardous wastes could be highly toxic to humans, animals, and plants;
are corrosive, highly inflammable, or explosive; and react when exposed to
                certain things such as gases.

                India generates around 7 million tonnes of hazardous
               wastes every year, most of which is concentrated in four
               states: Andhra Pradesh, Bihar, Uttar Pradesh, and Tamil
               Nadu.

Household wastes that can be categorized as hazardous waste include old
batteries, shoe polish, paint tins, old medicines, and medicine bottles.
Hospital waste contaminated by chemicals used in hospitals is considered
hazardous.
These chemicals include formaldehyde and phenols, which are used as
disinfectants, and mercury, which is used in thermometers or equipment
that measure blood pressure. Most
Hospitals in India do not have proper disposal facilities for these
hazardous wastes.
In the industrial sector, the major generators of hazardous waste are
the metal, chemical,
Paper, pesticide, dye, refining, and rubber goods industries.
Direct exposure to chemicals in hazardous waste such as mercury and
cyanide can be fatal
The main disposal route for hazardous waste is landfill, incineration, and
physical or chemical treatment. On the recovery
Side, a significant proportion of hazardous waste is recycled or burnt as a
fuel.

  Hospital waste-

                Hospital waste is generated during the diagnosis,
                treatment or immunization of human beings or animals and
                also in the research activities in these fields as well as in
                the production and testing of biological. It may include
                wastes like sharps, soiled waste,
Disposables, anatomical waste, cultures, discarded medicines, chemical
wastes, etc. This is in the form of disposable syringes, swabs, bandages,
body fluids, human excreta, etc.
This waste is highly infectious and can be a serious threat to human
health if not managed in scientific and discriminate manner. It has been
roughly estimated that of the 4 kg of waste generated n a hospital at
least 1 kg would be infected

Surveys carried out by various agencies show that the health care
establishments in India are not giving due attention to their waste
management. After the notification of the Bio-medical Waste (Handling
and Management) Rules, 1998, these establishments are slowly
streamlining the process of waste segregation, collection, treatment, and
disposal. Many of the larger hospitals have either installed the treatment
facilities or are in the process of doing so.



  Electronic Waste-

      E-waste is one of the fastest growing waste streams in the world. In
developed countries, currently, it equals 1% of total solid waste generation
and is expected to grow to 2% by 2010. In USA, it accounts 1% to 3% of
the total municipal waste generation. In EU, historically, E-waste is growing
three times faster than average annual municipal solid waste generation. A
                  recent source estimates that total amount of E-waste
                  generation in EU ranges from 5 to 7 million tonnes per
                  annum or about 14 to 15 kg per capita and is expected to
                  grow at a rate of 3% to 5% per year. In developing
                  countries, it ranges 0.01% to 1% of the total municipal
                  solid waste generation. In China and India, though annual
generation per capita is less than 1 kg, it is growing at an exponential pace.
The increasing “market penetration” in developing countries, “replacement
market” in developed countries and “high obsolescence rate” make E-waste
as one of the fastest waste stream. Environmental issues and trade
associated with E-waste at local, trans boundary and international level has
driven many countries to introduce interventions.

  Indian Scenario-

 The increase of electronic products, consumption rates and higher
obsolescence rate leads to higher generation of electronic waste (e-
waste). The increasing obsolescence rates of electronic products added
to the huge import of junk electronics from abroad create complex
scenario for solid waste management in India. The e-waste inventory
based on this obsolescence rate and installed base in India for the year
2005 has been estimated to be 146180.00 tonnes. This is expected to
exceed 8, 00,000 tonnes by 2012.Sixty-five cities in India generate more
than 60% of the total e-waste generated in India. Ten states generate
70% of the total e-waste generated in India. Maharashtra ranks first
followed by Tamil Nadu, Andhra Pradesh, Uttar Pradesh, West Bengal,
Delhi, Karnataka, Gujarat, Madhya Pradesh and Punjab in the list of e-
waste generating states in India. Among top ten cities generating e-
waste, Mumbai ranks first followed by Delhi, Bangalore, Chennai, Kolkata,
Ahmedabad, Hyderabad, Pune, Surat and Nagpur. There are two small
WEEE/E-waste dismantling facilities are functioning in Chennai and
Bangalore. There is no large scale organized e-waste recycling facility in
India and the entire recycling exists in un-organized sector.
Classification of solid waste-

         Refuse.

         Hazardous waste.

         Radio-active waste.

   Refuse-

Refuse contains garbage rubbish, ashes, dead animals, industrial waste
etc.

   Hazardous waste-

Industrial, hospital waste certain types of household waste are also
hazardous

   Radio-active waste-

Waste from nuclear power plant, nuclear reactor, atomic research centre
etc.

Besides the above mentioned classification based on type of waste the
refuse may be classified depending upon source.

   Household waste

   Street waste

   Trade waste

        KEY ISSUES INVOLVED

               Growth in population and increasing garbage generation

               Waste collection system
            Scientific processing of the waste material depending on
             their nature
            Developing infrastructure for solid waste disposal and
             processing developing information collection and
             processing system



      Effects of solid waste-

 Large quantities of solid waste are subjected to uncontrolled,
  unscientific and incomplete combustion which in turns results in
  release of no. of pollutants in atmosphere which cause air pollution.

 Large quantities of chemicals are quickly pushed into drains rivers
  causing immense damage to man health and ecology.

 Dumping of agricultural solid waste may pollute streams and
  waterways.

 Pollution of ground water which takes place when leachate from
  refuse dump enters in to surface or ground water.

 Municipal workers are found to be infected due to intentional
  parasites.

 Mining solid waste is most dangerous particularly for the mine
  workers. They suffer from toxic reactions in the physiological
  process of human body. Bronchitis, throat blocking, lung cancer,
  headache diseases etc.

 Solid waste produces foul smell, breeds, insects and organism
  besides aesthetic value of the land.

 Solid waste changes the properties of air, soil and water.

 Solid waste creates the water pollution problems.
Solid Waste Treatment-

        Waste Prevention and Minimization-

Prevention means eliminating or reducing the quantity of waste which is
produced in the first place, thus reducing the quantity of waste which
must be managed. Prevention can take the form of reducing the quantities
of materials used in a process or reducing the quantity of harmful
materials which may be contained in a product. Prevention can also include
the reuse of products.

Prevention is the most desirable waste management option as it eliminates
the need for handling, transporting, recycling or disposal of waste. It
provides the highest level of environmental protection by optimizing the
use of resources and by removing a potential source of pollution.

Minimization includes any process or activity that avoids, reduces or
eliminates waste at its source or results in re-use or recycling. It can be
difficult to draw a clear distinction between the terms "Prevention" and
"Minimization".

Waste prevention and minimization measures can be applied at all stages
in the life-cycle of a product including the production process, the
marketing, distribution, or utilization stages, up to discarding the product
at the end-of life stage.

By examining each stage in the life cycle of a product, it may be possible
that the
quantities of waste produced at each stage can be reduced. During the
design stage of a product, consideration can be given to the types of
materials to be used, the quantity of materials and the recyclability of
the product once it reaches its end of life. The use of efficient processes
in terms of energy and material requirements during the manufacture of a
product are other important considerations. Consideration can also be
given to minimizing the packaging for the product.

  Re-use-

Re-use means the use of a product on more than one occasion, either for
the same purpose or for a different purpose, without the need for
reprocessing. Re-use avoids discarding a material to a waste stream when
its initial use has concluded. It is preferable that a product be re-used in
the same state e.g., returnable plastic pallets, using an empty glass jar
for storing items and using second hand clothes. Reuse is normally
preferable to recycling as there isn't the same requirement for the
material to have gone through a detailed treatment process thus helping
to save on energy and material usage.

  Ways to Reuse-

   Using durable coffee mugs.

     Using cloth napkins or towels.

     Refilling bottles.

   Reusing boxes.

     Purchasing refillable pens and pencils.

        ADVANTAGES OF REUSE-

   Energy and raw materials savings as replacing many single use
    products with one reusable one reduces the number that need to be
    manufactured.

   Reduced disposal needs and costs.
   Refurbishment can bring sophisticated, sustainable, well paid jobs to
    underdeveloped economies.

   Cost savings for business and consumers as a reusable product is
    often cheaper than the many single use products it replaces.

   Some older items were better handcrafted and appreciate in value.

        DISADVANTAGES OF REUSE-

   Reuse often requires cleaning or transport, which have
    environmental costs.

   Some items, such as freon appliances or infant auto seats, could be
    hazardous or less energy efficient as they continue to be used.

   Sorting and preparing items for reuse takes time, which is inconve

        Recycling-




                       Recycling involves the treatment or reprocessing of a
                       discarded waste material to make it suitable for
                       subsequent re-use either for its original form or for
other purposes. It includes recycling of organic wastes but excludes
energy recovery. Recycling benefits the environment by reducing the use
of virgin materials. Many different materials can be recycled. Waste
materials can either be recycled for use in products similar to their
original use (e.g., paper recycling) or can be recycled into a product which
is different from the original use (e.g., recycling plastic bottles into
fleece jackets or using construction and demolition waste as road
aggregate. In the EU up to 13% of municipal waste is recycled.
  Benefits of Recycling-

   Conserves resources for our children's future.

     Prevents emissions of many greenhouse gases and water pollutants.

     Saves energy.

     Supplies valuable raw materials to industry.

     Creates jobs.

     Stimulates the development of greener technologies.

     Reduces the need for new landfills and incinerators



        Composting-




                      Composting is an excellent method of recycling
                      biodegradable waste from an ecological point of
                      view. Composting is in fact the controlled biological
decomposition of organic matter, such as food and yard wastes, into
humus, a soil-like material. Composting is nature’s way of recycling organic
waste into new soil, which can be used in vegetable and flower gardens,
landscaping and the like. However, many large and small composting
schemes have failed because composting is regarded as a disposal
process,
and not a production process.
Environmental problems may arise when waste is composted without
noncompostible matter like metals and plastics being removed. Hazardous
substances like heavy metals may then be found in the compost, which in
turn may be taken up in the food chain when compost is used on
agricultural land. To prevent this situation, sorting at the composting
plant or even at the household level might be called for.

  Benefits of Composting-

   Keeps organic wastes out of landfills.

     Provides nutrients to the soil.

     Increases beneficial soil organisms (e.g., worms and centipedes).

     Suppresses certain plant diseases.

     Reduces the need for fertilizers and pesticides.

     Protects soils from erosion.

     Assists pollution remediation

        Landfilling-




              Provided that there is no shortage of land with suitable
              geological formations, landfill remains the principal final
disposal route for the majority of wastes, even in highly industrialized
countries. Most municipal wastes are landfilled with little or no
treatment. Co-disposal of small quantities of hazardous materials with
municipal wastes is widely practiced and considered safe because the
amount of toxic material is low in relation to the total volume of waste.
                        The main environmental problem associated with
                        landfilling is pollution of groundwater. Rainwater
                        percolating through solid waste tends to carry
                        large amounts of pollutants to groundwater
                        aquifers. Thus, wells drawing from the aquifers will
be extracting groundwater contaminated by the leachate; such a situation
is often difficult to remedy. Studies have shown that the leachate from
solid wastes may have a pollution load up to 15 to 20 times higher than
domestic wastewater.

Landfill tends to predominate as a waste disposal mode because it is
regarded as an effective but low-cost method of disposal, also for
hazardous waste. Even where other methods are more suitable for
environmental reasons, the higher capital and (short-term) running costs
mean that they cannot compete without government intervention.
However,
such cost calculations take no account of the longer term. In the long run,
landfill of hazardous materials may impose a larger financial burden than
other methods because of the high cost of ensuring that the site remains
                            secure for the time it takes for the waste to
                            be rendered harmless.

                            Most solid wastes are now being disposed of in
                            sanitary landfills. A sanitary landfill is a site
where solid wastes are placed on or in the ground at a carefully selected
location by means of engineering techniques that minimize pollution of air,
water and soil, and other risks to man and animals. Aesthetic
considerations are also taken into account.

Most sanitary landfill designs attach considerable importance to
preventing polluted water (leachate) from escaping from the site. Most
designs include expensive and carefully constructed impermeable layers
which prevent leachate moving downwards into the ground and drainage
systems to bring the leachate to a treatment plant or a storage tank.
However, if the tank is not emptied before it overflows, or if the plant is
not working, the leachate control system actually makes the pollution
worse than from an open dump, because all the leachate is concentrated
in one place, giving natural purification systems very little chance of
reducing the pollution impact.


  Incineration-

 Incineration is a waste treatment technology that involves the
                   combustion of organic materials and/or substances.
                   Incineration and other high temperature waste
                   treatment systems are described as "thermal
                   treatment". Incineration of waste materials converts
                   the waste into incinerator bottom ash, flue gases,
particulates, and heat, which can in turn be used to generate electric
power. The flue gases are cleaned for pollutants before they are
dispersed in the atmosphere.
 Incineration with energy recovery is one of several waste-to-energy
(WtE) technologies such as gasification, pyrolysis and anaerobic digestion.
Incineration may also be implemented without energy and materials
recovery. There are many medical queries about air emissions, and local
communities still have worries with modern incinerators.
 In some countries, incinerators built just a few decades ago often did
not include a materials separation to remove hazardous, bulky or
recyclable materials before combustion. These facilities tended to risk
the health of the plant workers and the local environment due to
inadequate levels of gas cleaning and combustion process control. Most of
these facilities did not generate electricity.
 Incinerators reduce the volume of the original waste by 95-96 %,
depending upon composition and degree of recovery of materials such as
metals from the ash for recycling. This means that while incineration does
not completely replace landfilling, it reduces the necessary volume for
disposal significantly.
 Incineration has particularly strong benefits for the treatment of
certain waste types in niche areas such as clinical wastes and certain
hazardous wastes where pathogens and toxins can be destroyed by high
temperatures. Examples include chemical multi-product plants with
diverse toxic or very toxic wastewater streams, which cannot be routed
to a conventional wastewater treatment plant.



Incinerators in India-
                   An incinerator capable of generating 3.75 MW power
                   from 300TPD MSW was installed at Timarpur, Delhi in
                   the year 1987.It could not operate successfully due to
                   low net calorific value of MSW. The plant is lying idle
                   and the investment is wasted.

  Advantages of incineration-

           Complete destruction of pathogenic bacteria.
           No odour and dust nuisance.
           Cost recovery by selling steam power.
           Can be located near the city so less transportation required.
           Less space for disposal.

Disadvantages of incineration-

     Costly required lot of technical knowledge.
     Waste should have high calorific value.
     Disposal by dumping in sea.
     The bulky and lighter parts don’t settle down.
     Emission of gases from incinerator plant creates air pollution
      problems
COLLECTION OF WASTE-

Waste collection is the component of waste
management which results in the passage of a waste
material from the source of production to either the
point of treatment final disposal. Waste collection also includes the
kerbside collection of recyclable materials that technically are not waste,
as part of a municipal landfill diversion program.



        Storage and seperation of refuse-

          In India the temporary storage of refuse is done in the house
          and the industries/business centers indivisually by living there
          in small containers. It is then taken out from the houses or
          business permises and dump into the refuse collection boxes or
          chembers provided along the streets for this perpose.
                       The refuse from various storage of multistoried
buildings is collected by a speacially designed duct for it. Persons living on
each story drop their refuse in the collection chute of refuse duct. The
refuse reaches the collection chambers at ground, from where it is taken
out.
             The storage bins of galvanised iron, mild steel etc. are use
for temporary collection of refuse.They Should be water-tight and dust
resistant. Usually refuse containers of 50,60,70 and 100 litre capacity
are used.

            Frequency of collection-
  For the collection of solid waste that contains garbage,the maximum
period should not be greather than.
    The normal time for the accumalation of the amount that can be
     placed in the containers of resonable size.
                       The time it takes from fresh garbage to purify
                         and emit foul odoures under avarage storage
                         conditions.
                       The length of the fly-breeding cycle, which during
      the hot months less than 7 days.
     From cities the refuse should be collected daily expect holidays.
     During summer it should be collected twice a day, where as in cold
      season it it should be collected atleast once a day.
     The collection of refuse from business areas should be done in non
      working hours preferably in the nights to avoid nuisance.
     In case of residential areas, it may be done in daytime to avoid
      noise,nuisance.
     Frequency of solid waste collection depends on the amount of waste,
      climate,cost and public request.

        Seperation of refuse-
           The separation of refuse mainly depends upon the method of
          disposal systems-

    Single bin system-
In single bin system all the solid waste collected that is dry
and wet is gathered in one bin.

    Double bin system-
In double bin system dry and wet solid waste are separated and collected
into separate bins.

    Triple bin system-
In triple bin system dry solid waste is again separated
into two bins on their reusable properties and wet solid
waste is again separated.
                 Collection of refuse-

   Refuse from the refuse chambers may be taken any of following agencies.
      By municipality paid workers.
      By contractor with his own trucks.
     Usually the collection of refuse from the roadside refuse containers
     and bins, and its proper disposal is the responsibility of local bodies or
     municipalities.
     The refuse is collected in closed trucks, tractors and trailers out of
     the town for disposal.

      Guidelines-

   Waste Management at Source-

  Solid waste at source according to the community and activities therein should be
managed as per the guidelines given below:

      Household waste-

   • Do not throw any solid waste in the neighbourhood, on the streets, open spaces, and
vacant lands, into the drains or water bodies.
   • Keep food waste/biodegradable waste in a non corrosive container with a cover (lid).
   • Keep dry, recyclable waste in a bin or bag or a sack.
   • Keep domestic hazardous waste, if and when generated, separately for disposal at
specially notified locations.

      Multi-storied buildings, commercial complexes, private- societies-

   • Provide separate community bin or bins large enough to hold food/ biodegradable
waste and recyclable waste generated in the building or society.
   • Direct the members of the association to deposit their waste in community bin

   Slums-
   • Use community bins provided by the local body for deposition of food and
biodegradable waste.
      Shops, offices, institutions, etc.

   • If situated in a commercial complex, deposit the waste in bins provided by the
association.
   • Keep dry and wet biodegradable waste separately.



      The Hotels & restaurants-
   Container used should be strong, not more than 100 litre in size, should have a handle
on the top or handles on the sides and a rim at the bottom for easy handling

      Vegetable & fruit markets-
  • Provide large containers, which match with transportation system of the local body.
  • Shop keepers not to dispose of the waste in front of their shops or open spaces.
  • Deposit the waste as and when generated into the large container placed in the
market.

      Meat & fish markets-
   • Not to throw any waste in front of their shops or open spaces around.
   Keep non-corrosive container/containers not exceeding 100-litre capacity with lid
handle and the rim at the bottom and deposit the waste in the said containers as and
when generated.
   • Transfer the contents of this container into a large container provided by the
association.

      Street food vendors-

   • Not to throw any waste on the street, pavement or open spaces. Keep bin or bag for
the storage of waste that generates during street vending activity
   • Preferably have arrangements to affix the bin or bag with the hand–cart used for
vending.

      Marriage halls, community halls, kalyanamandapas-

   • Not to throw any solid waste in their neighbourhood, on the streets, open spaces,
and vacant lands, into the drains or water bodies.
   • Provide a large container with lid which may match with the transportation system of
the local body and deposit all the waste generated in the premises in such containers.
      Hospitals, nursing homes, etc.-

    • Not to throw any solid waste in their neighbourhood, on the streets, open spaces,
and vacant lands, into the drains or water bodies.
    • Not to dispose off the biomedical waste in the municipal dust bins or other waste
collection or storage site meant for municipal solid waste.
    • Store the waste as per the directions contained in the Government of India,
Ministry of Environment, Biomedical Waste (Management & Handling)
    Rules, 1998

       Construction/ demolition waste-
       Not to deposit construction waste or debris on the streets, footpaths, pavements,
       open spaces, water bodies etc.
   • Store the waste within the premises or with permission of the authorities just
outside the premises without obstructing the traffic preferably in a container if
available through the local body or private contractors.

      Garden waste-

   • Compost the waste within the garden, if possible. Trim the garden waste once in a
week on the days notified by the local body.
   . Store the waste into large bags or bins for handing over to the municipal authorities
appointed for the purpose on the day of collection notified.




      Dos and Don’ts -

   1) Carry your own cloth or jute bag when you go for shopping.

   2) Say no to all plastic bags as far as possible.
   Replace with paper, cloth and jute bags

   3) Reuse the soft drinks pet bottles.
4) Segregate the waste in the house as wet and dry. Keep two garbage
bins and see to it that the biodegradable and the non-biodegradable
material is put into separate bins and disposed of separately.

5) Dig a compost pit in your garden and put all the biodegradable waste
into it to provide you with rich manure for your garden.

6) See to it that all garbage is thrown into the municipal bin for further
disposal of municipal solid waste. Do not litter on road or in offices,
theatres, market places and/or any other common public places. When you
go out, do not throw paper and other wrappings or even leftover food
here and there; make sure that it is put into a dustbin.

7) Do not throw the waste/litter on the streets, drains, open spaces,
water bodies, etc.

8) Community storage/collection of waste in flats, multi-storied buildings,
societies, commercial complexes, etc.

9) Manage excreta of pet dogs and cats appropriately.

10) Provide waste processing/disposal at a community level.

11) Organize public education and awareness programs. Increase
awareness in Children by interesting education programs in schools.
Surat - a success story-

The rapid urbanization and rise in population in Surat
led to the growth of slums, increase in garbage and
overflowing drains. In 1994, Surat was struck by an
outbreak of a virulent disease somewhat like the plague.
The disease caused panic countrywide and while the
citizens blamed the municipality, the civic authorities in
turn blamed the citizens for their lack of civic sense. It
was a harsh reminder of what negligence in the area of
solid waste management can lead to.

But what was most amazing was that within a span of 18 months the city
made a complete reversal from a dirty, garbage-strewn city to become
one of the cleanest cities in the country. This transformation was
possible thanks largely to the Surat Municipal Corporation and the
efforts of the community. Community participation played a key role in
the rapid implementation of decisions taken by the corporation.

Subsequent to the disaster, the attitudes of the citizens changed and
they diligently tried to improve its living conditions. Institutional changes
were the first thing to happen. The city was divided into six zones to
decentralize the responsibilities for all civic functions. A commissioner
was appointed for each zone with additional powers. The officials
responsible for solid waste management were made accountable for their
work; and field visits were made mandatory for them each day. The solid
waste management department and other related departments were made
to work and cooperate with one another. Grievance redressal cards were
issued to people so that complaints could be registered. The complaint
was attended to within 24 hours and the card returned to the citizen. In
addition to the administrative changes, the changed laws had an important
role to play in improving the conditions by also making the citizens aware
of and responsible for certain preventive actions. Indeed, these are some
of the very basic changes that need to be introduced in the functioning
of all urban local bodies. Initially, the Gujarat Government’s Municipal Act
did not have any provision to penalize littering. However, after the plague,
the government realized that it was important to impose such a penalty in
order to make people aware of their responsibility in maintaining their
city’s cleanliness. Thereafter, a fine of Rs 50 was imposed for every
offence of littering and it was doubled for every subsequent offence. The
city roads were swept twice a day and the corporation, in an appreciable
attempt, has engaged private sweepers to cover different inner areas of
the town. Private contractors are also actively involved in the transport,
collection, and disposal of solid waste.

With this vigorous cleanliness drive through regular garbage collection
and sweeping of roads and other public areas undertaken by the municipal
corporation, success was achieved. But this successful turnaround could
not have been achieved without the support and cooperation of the
people. Surat has thus become a model city and the working of its
municipality an example for other municipal corporations to follow and
implement in their respective cities.
Conclusion-
                From the above discussion we can conclude that the
present methods of collection and disposal of solid waste are not
sufficient to handle the solid waste problems. The methods of collection
or the house to house collection of solid waste is necessary to change the
ugly sight of overflowing dust on the roads. The present practices of
transporting the solid waste are very unhygienic and unscientific. It
should be changed.
               Present method of solid waste disposal has some limitations
so we should use the new techniques or methods vermicomposting and
vermiculture etc. This method should be adopted for avoiding
environmental pollution. i.e. pollution of water, air,land and also to earn
some money.
               Energy recovery can be done from solid waste. We should
adopt the methods, which can recover energy from solid waste.
              Lastly the main thing is that every person should decide to
produce least waste to keep environment clean. Increase awareness in
peoples through interesting programs.
REFRENCES-

              Solid waste engineering principals and management
               issues-By Rolf eliassen.

              www.google.com/images.

              www.flickr.com.

              www.mpcb.com

              water supply and sanitary engg- By G.S.Birdi

              Environmental studies- By- B.V Kulkarni, Sharvil
               shah.

				
DOCUMENT INFO
Shared By:
Categories:
Tags:
Stats:
views:63
posted:11/16/2012
language:English
pages:35
Puneet  Arora Puneet Arora - www.archibooks.tk
About www.ARCHIBOOKS.TK