Your unknown metal should be one of the by Ax2YAZF



Density is a property of all substances. It is a relationship between the substance's mass and
size; this relationship is described mathematically by the equation,

                                               d = m/v

where d is the density, m is the mass of the substance, and v is the volume of the substance.
Density is an example of an intrinsic property, that is, a property that relates to the essential
nature or constitution of the substance. Some properties, called extrinsic properties, depend on
the amount of substance present, along with the essential nature or constitution of the
substance. In addition to density, we find that color, temperature, malleability (the ability to be
beaten into a flat sheet), and ductility (the ability to be drawn into a thin wire), are also examples
of intrinsic properties. Mass, volume, and electrical charge are extrinsic properties. Since
intrinsic properties are independent of the amount of the substance, they can be used to
classify or identify the substance.


Part I. Density of Liquids

1.   From your lab drawer, select four clean 10 X 75 mm test tubes. (Note that the 10 mm and
     75 mm are the width and length of the test tubes. The 10 X 75 mm size is the smallest of
     the three sizes in your drawer.)

2.   Fill one test tube about 1/3 full with the liquid reagent labeled "A".

3.   Fill two test tubes about 1/3 full with distilled water to which a very small amount of yellow
     food coloring has been added to give the water a color. (Unless otherwise instructed,
     always use distilled water in your experiments, since tap water contains iron, scale, and
     other contaminants which may affect your experiment.)

4.   Fill one test tube about 1/3 full with the liquid reagent labeled "B".

5.   Mix the contents of the test tube containing reagent A with one of the test tubes containing
     distilled water. Which liquid, A or the water, is more dense? Save the contents of the test

6.   Mix the contents of the test tube containing reagent B with the other test tube containing
     distilled water. What do you observe? Save the contents of this test tube.

7.   In a 20 X 150 mm test tube, carefully (drop by drop) place two full droppers of each of the
     three liquids down the side of the tube. Observe the three layers.


     Part II. Density of Solids

1.   Obtain an unknown (record your unknown number!!!) from the stockroom window and
     record the unknown's number.

2.   Determine the mass of the unknown by the following procedure:

     a. Weigh a plastic weighing boat (which can be found wrapped in your towel) and record
         the weighing boat's mass on the Report page.

     b.   Place the unknown sample in the weighing boat and record the mass.

     c.   By subtraction, calculate the mass of the unknown, and record the result.

     You might think that it would be easier to simply place the sample directly on the balance
     and weigh it. Maybe so for an inert solid, such as your sample, but one usually weighs
     powders, crystals, etc., that may corrode an unprotected balance pan. Not only would this
     shorten the service life of the balance, but the corrosion would contaminate your sample.
     We therefore get into the habit of using a weighing boat or glass container every time we
     weigh on the balance.

3.   Place 3 to 5 mL of distilled water into a graduated cylinder (you may need a larger volume
     of water and larger graduated cylinder) and record the volume to the nearest 0.05 mL (this
     requires that you estimate the distance between the 0.2 mL marks on the cylinder).

4.   Carefully add the unknown to the graduated cylinder, making certain that you do not splash
     any water out of the cylinder as you add the unknown. Also ensure that you do not break
     the glass cylinder by dropping the unknown directly into it. The unknown must be
     completely submerged. Record the new volume.

5.   Calculate the volume of the unknown by doing the necessary subtraction. Record the

6.   Calculate the density of the unknown and record the result.

7.   Use Section B of the CRC Handbook of Chemistry and Physics to identify your unknown
     based on the density that you calculated. Your unknown metal should be one of the

     Mg Magnesium                                        Al Aluminum
     Ca Calcium                                          Cu Copper
     Fe Iron                                             Ni Nickel
     Zn Zinc                                             Sn Tin
     Li Lithium                                          Bi Bismuth
     Pb Lead                                             Ag Silver
     Au Gold                                             U Uranium


Part III. Penny-Power

In this section, you will be using some of the information and techniques from the previous parts
of the experiment to help you solve a problem. Imagine it is the year 2190, and many available
energy sources have been depleted. However, a new technology has evolved that uses certain
metals to generate the needed energy. Those metals are aluminum, zinc and lead.

In addition, the economic systems of the world have been unified into one currency, known as
the ‘plastic code.’ Bills and coins have not been produced for over 150 years, so copper has
become a ‘precious’ metal and of interest historically. Your team of scientists has discovered an
old bank vault with bags of pennies. You wish to find out if the pennies contain the metals that
are needed for the new technology. Since the coins are also of value as a historical collection,
you decide to use the property of density to identify the metal in the coins.


1. Obtain your bag of coins. You may also be supplied with samples of several metals to use in
    your investigation.

2. You and your partner must design an experimental procedure to solve the problem.

    * Note that you must not use color to eliminate any metals. It is possible that the pennies
    are coated and so the property of color may not be an indication of the metal present.

3. The design must include a clearly-numbered stepwise procedure and neatly recorded data.

4. After your plan has been approved by the instructor, follow it to solve the problem.



                   Date _________________           Name _______________________________


1.    Which is more dense, Reagent A or water? _____________
      What observation led you to this conclusion?

2.    What did you observe when you mixed reagent B and water?

3.    Rank the three liquids (A, B and water) in order of increasing density. Label the drawing
      below as you would see them placed in a graduated cylinder.

         _____________               _____________                  ______________
     (least dense)                                                  (most dense)





4.    Complete the following table. Remember to include units and to report numerical values
      with the correct number of significant figures.

         UNKNOWN # ____________

 mass of weighing paper                               initial volume of water
 mass of paper and                                    volume of water and
 unknown                                              unknown

 mass of unknown                                      volume of unknown

5.    Show the setup and calculation for the density of your unknown (use rules for significant


6. Identify of your unknown:
    Page of the CRC Handbook on which your unknown's density appears.

     Record the color from the CRC listed for your unknown.

     Does it match your sample?

     Do you believe the density you have calculated was accurate enough to identify your
     sample? Explain.

7.   Suppose bubbles of air stuck to the side of your unknown when it was submerged in the
     water. Would the density of your unknown be more, less or the same as you have
     calculated? Explain your answer in complete English sentences.


        Penny bag # ___________         Instructor's initials __________

Write your stepwise procedure below and get your instructor's initials above before proceeding.
Record your data neatly in a table and show your calculations.


8.   Complete the table using the CRC to find the densities.

 ELEMENT                                     DENSITY                      PAGE # OF CRC

9.   Will you take your bag of pennies to the Historical Society or to the Energy Department?

     Explain. (Recall that copper is a precious metal and of historical interest, while zinc is a
     metal needed to generate energy.)


To top