cheatsheet

Document Sample
cheatsheet Powered By Docstoc
					N0 = kT                  k = 1.38x10-23                      0° C = 273.15° K                                 X      ln(x)    log2(x)    log10(x)
                                                                                                            0.25   -1.39     -2.00      -0.60
N = N0W                  C = 2Wlog2M                         C = Wlog2(1+SNR)                               0.50   -0.69     -1.00      -0.30
                                                                                                            0.75   -0.29     -0.42      -0.12
                                                                                                            1.00   0.00      0.00       0.00
Eb /N0 = S/(kTRb)                                                                                           1.25   0.22      0.32       0.10
                                                                                                            1.50   0.41      0.59       0.18
x(t )  n 0 an cos( 0 nt )  n 1 bn sin( 0 nt )
                                                                                                          1.75   0.56      0.81       0.24
                                                                                                            2.00   0.69      1.00       0.30
            T                                           T                                                   2.25   0.81      1.17       0.35
         1                                            2
         T                                           T
a0          x(t )dt                   an                x(t ) cos( 0 nt )dt                              2.50   0.92      1.32       0.40
           0                                            0                                                   2.75   1.01      1.46       0.44
            T                                                                                               3.00   1.10      1.59       0.48
         2
         T
bn          x(t ) sin( 0 nt )dt                           cn  an  bn
                                                                               2          2                 3.25   1.18      1.70       0.51
                                                                                                            3.50   1.25      1.81       0.54
           0
                                                                                                            3.75   1.32      1.91       0.57
              b                                                   4 d 
                                                                                                   2
                                                                                                            4.00   1.39      2.00       0.60
 n   arctan n 
              a                                       L  10 log                                        4.25   1.45      2.09       0.63
               n                                                                                       4.50   1.50      2.17       0.65
                                                                           2                                4.75   1.56      2.25       0.68
                                                1 
           T
   1                                                                                  V2
P          x(t )                           P   cn                              P
                          2
                              dt                                                                            5.00   1.61      2.32       0.70
   T        0
                                                2 n 0                                R                     5.25   1.66      2.39       0.72
                                                                                                            5.50   1.70      2.46       0.74
       P             
10 log  out
       P              d  7.14 Kh K  1.33
                      
                                                                                                            5.75
                                                                                                            6.00
                                                                                                                   1.75
                                                                                                                   1.79
                                                                                                                             2.52
                                                                                                                             2.59
                                                                                                                                        0.76
                                                                                                                                        0.78
        in                                                                                                6.25   1.83      2.64       0.80
                                                                  T
                                                                                                            6.50   1.87      2.70       0.81
x(t )  n   Fn e
                  
                                                                   x(t )e
                                    jn 0t                                          jn 0t
                                                  Fn        1
                                                             T                                dt            6.75   1.91      2.75       0.83
                                                                 t 0                                       7.00   1.95      2.81       0.85
                                                                                                          7.25   1.98      2.86       0.86
                     f (t )e  jt dt                                        F ( )e
                                                                                               jt 
F ( )                                                f (t )         1
                                                                      2                               d   7.50   2.01      2.91       0.88
                t                                                                                    7.75   2.05      2.95       0.89
                                                                                                            8.00   2.08      3.00       0.90
if y (t )  x(t )  h(t ) thenY ( )  X ( ) H ( )                                                        8.25   2.11      3.04       0.92
if y (t )  x(t ) cos(2f c t ) then                                                                        8.50   2.14      3.09       0.93

         Y ( f )  0.5 X  f  f c   X  f  f c 
                                                                                                            8.75   2.17      3.13       0.94
                                                                                                            9.00   2.20      3.17       0.95
                                                                                                            9.25   2.22      3.21       0.97
 sin(ax)dx                  1
                              a    cos(ax)              cos(ax)dx                   1
                                                                                      a   sin(ax)           9.50   2.25      3.25       0.98
                                                                                                            9.75   2.28      3.29       0.99
 e dx  e
    ax            1 ax
                  a                                                                                         10     2.30      3.32       1.00
                                                                                                            20     3.00      4.32       1.30
                                                                                                            30     3.40      4.91       1.48
S/N = 6n+1.8 (1+naf(t))c(t), DSB-LC                                                                         40     3.69      5.32       1.60
                                                                                                            50     3.91      5.64       1.70
                                                                                                            60     4.09      5.91       1.78
e j  cos  j sin                                                                                        70     4.25      6.13       1.85
                                                                 n f Am                                     80     4.38      6.32       1.90
Bt  2(   1) Bm                              f
                                                                                   n p Am               90     4.50      6.49       1.95
                                                 Bm
                                                                  2B                                       100    4.61      6.64       2.00
 (t )  n p m(t)  (t )  n f m(t                                                                         200    5.30      7.64       2.30
                                                                                                            300    5.70      8.23       2.48
I i  log 2 ( Pi )
              1
                                   H   Pi log 2 ( Pi )
                                                    1                                                       400    5.99      8.64       2.60
                                             i                                                              500    6.21      8.97       2.70
                                                                                                            600    6.40      9.23       2.78
                                                                                                            700    6.55      9.45       2.85
                                                                                                            800    6.68      9.64       2.90
                                                                                                            900    6.80      9.81       2.95
                                                                                                            1000   6.91      9.97       3.00

				
DOCUMENT INFO
Shared By:
Categories:
Tags:
Stats:
views:7
posted:9/21/2012
language:Unknown
pages:1