Example 2 - Excel by hn6D35bR

VIEWS: 0 PAGES: 7

									Microsoft Excel 11.0 Answer Report
Worksheet: [c and tan(phi) lognormal.xls]Sheet1
Report Created: 9/12/2007 10:55:41 PM


Target Cell (Min)
    Cell            Name         Original Value Final Value
  $J$24 Beta                              1.2826      0.8348


Adjustable Cells
    Cell          Name           Original Value Final Value
  $L$7     Design Point                   2.4399      2.1851
  $L$8     Design Point                  -0.9228    -0.8258


Constraints
   Cell        Name                Cell Value      Formula       Status    Slack
  $J$19 FS TRANSPOSE OF X                 1.0000 $J$19=1       Not Binding     0
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [c and tan(phi) lognormal.xls]Sheet1
Report Created: 9/12/2007 10:55:41 PM


Adjustable Cells
                                 Final Reduced
   Cell              Name        Value Gradient
  $L$7        Design Point       2.1851   0.0000
  $L$8        Design Point      -0.8258   0.0000

Constraints
                                 Final Lagrange
   Cell        Name              Value Multiplier
  $J$19 FS TRANSPOSE OF X        1.0000  -4.2796
Microsoft Excel 11.0 Limits Report
Worksheet: [c and tan(phi) lognormal.xls]Limits Report 1
Report Created: 9/12/2007 10:55:41 PM


            Target
   Cell     Name         Value
  $J$24 Beta             0.8348


          Adjustable               Lower     Target    Upper    Target
   Cell     Name          Value     Limit    Result    Limit    Result
  $L$7    Design Point    2.1851    2.1851   0.8348    2.1851   0.8348
  $L$8    Design Point   -0.8258   -0.8258   0.8348   -0.8258   0.8348
FORM ANALYSIS OF AN INFINITE SLOPE: EXAMPLE 2

Variable      Distribution     Mean      SD         COV                    Mean Values
   H          deterministic     5.0000                                     H       5.00
 tan(f')       lognormal        0.5774 0.1732      0.3000                  f'     30.00
   c'          lognormal       10.0000 3.0000      0.3000                  c'     10.00
    g         deterministic    17.0000                                     g      17.00
    b         deterministic    30.0000                                     b      30.00
                                                                           FS      1.27
 Variable Distribution          Mean      SD    Design Point    X
     H      deterministic       5.0000             5.0000                  H       5.00
ln(tan(f'))    normal          -0.5924   0.2936   -0.8258    -0.7952       f'     28.94
   ln(c')      normal           2.2595   0.2936    2.1851    -0.2533       c'      9.58
     g      deterministic      17.0000            17.0000                  g      17.00
     b      deterministic      30.0000            30.0000                  b      30.00
                                                                           FS      1.22
                          XT
                -0.7952        -0.2533                                     H       5.00
                                                                           f'     23.65
                Correlation Matrix                                     `   c'      8.89
               ln(tan(f'))   ln(c')                                        g      17.00
ln(tan(f'))       1.00          0.00                                       b      30.00
  ln(c')          0.00          1.00                                       FS      1.00

                                                                           b      0.835
                                                                           pf    20.20%
                  InverseMatrix
                   1          2
    1           1.0000     0.0000
    2           0.0000     1.0000

								
To top