# Example 2 - Excel by hn6D35bR

VIEWS: 0 PAGES: 7

• pg 1
```									Microsoft Excel 11.0 Answer Report
Worksheet: [c and tan(phi) lognormal.xls]Sheet1
Report Created: 9/12/2007 10:55:41 PM

Target Cell (Min)
Cell            Name         Original Value Final Value
\$J\$24 Beta                              1.2826      0.8348

Cell          Name           Original Value Final Value
\$L\$7     Design Point                   2.4399      2.1851
\$L\$8     Design Point                  -0.9228    -0.8258

Constraints
Cell        Name                Cell Value      Formula       Status    Slack
\$J\$19 FS TRANSPOSE OF X                 1.0000 \$J\$19=1       Not Binding     0
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [c and tan(phi) lognormal.xls]Sheet1
Report Created: 9/12/2007 10:55:41 PM

Final Reduced
\$L\$7        Design Point       2.1851   0.0000
\$L\$8        Design Point      -0.8258   0.0000

Constraints
Final Lagrange
Cell        Name              Value Multiplier
\$J\$19 FS TRANSPOSE OF X        1.0000  -4.2796
Microsoft Excel 11.0 Limits Report
Worksheet: [c and tan(phi) lognormal.xls]Limits Report 1
Report Created: 9/12/2007 10:55:41 PM

Target
Cell     Name         Value
\$J\$24 Beta             0.8348

Cell     Name          Value     Limit    Result    Limit    Result
\$L\$7    Design Point    2.1851    2.1851   0.8348    2.1851   0.8348
\$L\$8    Design Point   -0.8258   -0.8258   0.8348   -0.8258   0.8348
FORM ANALYSIS OF AN INFINITE SLOPE: EXAMPLE 2

Variable      Distribution     Mean      SD         COV                    Mean Values
H          deterministic     5.0000                                     H       5.00
tan(f')       lognormal        0.5774 0.1732      0.3000                  f'     30.00
c'          lognormal       10.0000 3.0000      0.3000                  c'     10.00
g         deterministic    17.0000                                     g      17.00
b         deterministic    30.0000                                     b      30.00
FS      1.27
Variable Distribution          Mean      SD    Design Point    X
H      deterministic       5.0000             5.0000                  H       5.00
ln(tan(f'))    normal          -0.5924   0.2936   -0.8258    -0.7952       f'     28.94
ln(c')      normal           2.2595   0.2936    2.1851    -0.2533       c'      9.58
g      deterministic      17.0000            17.0000                  g      17.00
b      deterministic      30.0000            30.0000                  b      30.00
FS      1.22
XT
-0.7952        -0.2533                                     H       5.00
f'     23.65
Correlation Matrix                                     `   c'      8.89
ln(tan(f'))   ln(c')                                        g      17.00
ln(tan(f'))       1.00          0.00                                       b      30.00
ln(c')          0.00          1.00                                       FS      1.00

b      0.835
pf    20.20%
InverseMatrix
1          2
1           1.0000     0.0000
2           0.0000     1.0000

```
To top