Docstoc

FZ Jülich Corporate Design

Document Sample
FZ Jülich Corporate Design Powered By Docstoc
					Mitglied der Helmholtz-Gemeinschaft




                                      The Central Tracker of the
                                          PANDA Detector
                                                    Andrey Sokolov
                                                 IKP FZ Jülich, Germany
                                                The X International Conference on
                                                Instrumentation for Colliding Beam
                                                             Physics

                                                       Novosibirsk, Russia
                                                        28.02-5.03.2008
Outline
• Overview of FAIR project
• Layout of PANDA detector
• PANDA Central Tracker:
    Micro-Vertex Detector
    Straw Tube Tracker
• Conclusions and Outlook.




29.2.2008               Andrey Sokolov   2
29.2.2008   Andrey Sokolov   3
Facility for Antiproton and Ion Research
                             GSI, Darmstadt

                             -   heavy ion physics;
                             -   nuclear structure;
                             -   atomic and plasma physics;
                             -   cancer therapy.




                                    FAIR: New facility

                                    - heavy ion physics;
                                    - higher intensities & energies;
29.2.2008          Andrey Sokolov
                                    - antiproton physics.            4
FAIR
                                                     Primary Beams
                              New                    • 238U28+ : 1012/s @ 1.5-2 Age;
             Existing                                • 238U92+: 1010/s @ up to 35 AGeV
                                                     • Protons : 2 x1013/s @ 30 GeV;
                  SIS 18        SIS 100/300            up to 90 GeV;
                                                     • 100-1000 times present intensity.
    UNILAC
                  FRS
               ESR                         Secondary Beams
                                           • Broad range of radioactive beams;
                   HESR        Super        up to 1.5 - 2 AGeV;
                               FRS         • intensity up to 10 000x over present;
                                           • Antiprotons 0 - 15 GeV.
                  CR                 Storage and Cooler Rings
                            FLAIR    • Radioactive beams;
                RESR                 • e-– A (or p-A) collider;
                                     • 1011 stored and cooled antiprotons
                           NESR       0.8 - 14.5 GeV/c;
Key Technical Features
                                     • Future: Polarized antiprotons (?).
• Cooled beams;
• Rapidly cycling superconducting magnets;
• Parallel Operation.
 29.2.2008                          Andrey Sokolov                                   5
High Energy Storage Ring
                    Parameters of HESR

                    • Injection of p at 3.7 GeV;
                    • Beam momentum - 1.5-14.5 GeV/c;
                    • Storage ring for internal target
                      operation;
                    • Luminosity up to L~ 2x1032 cm-2s-1;
            PANDA
                    • Beam cooling (stochastic & electron);
                    • Energy resolution down to 4·10-5.




                                                     ECM




29.2.2008            Andrey Sokolov                        6
The Physics Overview
• Charmonium and open charm spectroscopy;
• Charmed hybrids and glueballs:
   - Many narrow states are predicted;
• Interaction of charmed particles with nuclei:
   - Meson mass modification in the nuclear matter;
• Hypernuclei:
   - Double hypernuclei production via Ξ-baryon
     capture;
• Many further options:
       - Wide angle compton scattering;
       - Baryon-Antibaryon production;
       - CP-Violation (Λ,D).
29.2.2008                    Andrey Sokolov           7
Antiproton ANnihilations at DArmstadt: PANDA

Detector requirements:
•    nearly 4π solid angle for PWA;
•    high rate capability: 2x107 interactions/s;
•    efficient event selection;
•    good momentum resolution ≈ 1%;
•    vertex info for D, K0, Σ, Λ;
•    good PID (γ, e, μ, π, Κ, p);
•    photon detection 1 MeV – 10 GeV.



29.2.2008                  Andrey Sokolov          8
PANDA Detector




29.2.2008        Andrey Sokolov   9
PANDA Detector
              Pellet or Cluster Jet Target




                                                           Forward Spectrometer
                                                              Dipole magnet for forward
 Target Spectrometer:                                         tracks
            Superconducting solenoid for high pt
            tracks.
29.2.2008                                 Andrey Sokolov                                  10
PANDA Detector: PID
                                       Muon Detectors




                                                           Forward RICH



    Barrel DIRC
                  Barrel TOF         Endcap DIRC        Forward TOF
    (G.Shepers)
29.2.2008                      Andrey Sokolov                         11
PANDA Detector: Calorimeters




        PWO Calorimeters,
                            Forward Shashlyk EMC   Hadron Calorimeter
          (P.Semenov)
29.2.2008                       Andrey Sokolov                     12
PANDA Detector: Tracking




                                                     Drift Chambers
      PANDA Central Tracker
        Micro vertex
                       Tracker            GEM Detectors
         Detector
29.2.2008                    Andrey Sokolov                           13
Micro-Vertex Detector: Challenges
• Provide an information about secondary vertices from
  charm and strange particles decays:
      c123μm for D0, c8.71cm for 0  high precision and
       large sensitive volume;
• Broad momentum range of the outgoing particles:
      low material budget to minimize multiple scattering;
• Asymmetric particle flux due to the fixed target nature of
  experiment:
       specific detector layout;
• Continuous beam operation:
       triggerless operational mode;
• High event rate (up to 107evt/s);
• Particle identification.
29.2.2008                           Andrey Sokolov              14
Micro-Vertex Detector




            Beam




                                     Target pipe

        Beam pipe

29.2.2008           Andrey Sokolov             15
Micro-Vertex Detector




        4 Barrel Layers

29.2.2008                 Andrey Sokolov   16
Micro-Vertex Detector




                              6 Forward Disks
29.2.2008         Andrey Sokolov                17
Micro-Vertex Detector: Pixel Part




      Hybrid pixels 100x100 µm2;
      120 modules;
      Maximum rate up to 10
       Mhits/s/module;
                                                         Stecker             Pigtail      Sensor + Flex



      ~10 M channels;
       ToT;
                                                            MCC


                                              FE-Chip




      0.15 m2;                                                                                Wire-Bonds




      ~1% X0 per layer.                                           Kapazitäten + Widerstände




29.2.2008                     Andrey Sokolov                                                                18
Micro-Vertex Detector: Pixel Part
Front-End chip:
• ATLAS front end chip as a starting point;
• Custom pixel front-end chip – TOPIX (TOrino PIXel) in
  0.13µm CMOS:
    TOPIX1 – only analogue part (2005);
    TOPIX2 – preamp + buffers (2007).
• Maximum hit rate up to 2 MHits/s  data rate 200Mbit/s;
• Thickness ~ 200µm.

Sensor:
• Epitaxial silicon sensors:
    50µm , 75µm, 100µm under testingin Torino.

29.2.2008                Andrey Sokolov                19
MVD: Strip Part




• ~400 modules;
• ~0.5m2 active area;
• ~70.000 readout channels.
29.2.2008               Andrey Sokolov   20
MVD: Strip Part
Microstrip readout:

• 128-channel ASIC for strips;
• Prototype n-XYTER chip for DETNI (GSI);
   Fast timing shaper/amplifier with comparator (1ns
     time resolution);
   Slow channel for analog r/o with peak detector;
   Token ring readout of hit channels.
• Next iteration with lower power consumption;
• Self-triggering operation mode.

Sensor:
• Silicon double side strip sensor with pitch 100µm.
29.2.2008                 Andrey Sokolov                21
MVD: Spatial resolution




29.2.2008         Andrey Sokolov   22
MVD: Particle Identification




29.2.2008         Andrey Sokolov   23
MVD Support Structure




      It’s planned to build the support structure out of the
                       2mm Carbon foam.
29.2.2008                     Andrey Sokolov                   24
STT Assembling and Installation




29.2.2008        Andrey Sokolov   25
Tracker: TPC Option
• Multi-GEM stack for
  amplification and ion backflow
  suppression;
• Gas: Ne/CO2 (+CH4/CF4);
• 100k pads of 2 x 2 mm2;
• 50-70µs drift, 700 events
  overlap.
Simulations:
• p/p ~ 1%;
• dE/dx resolution ~ 6%.
Challenges:
• space charge build-up;
• continuous sampling;
• Field homogeneity better 2%;
• ∫Br /Bz dz < 2mm.
    29.2.2008               Andrey Sokolov   26
Straw Tubes Tracker
•~4100 straws;
•30µm Al-mylar tube, Ø=10mm, l=1.5m;
•Rin= 16cm, Rout= 42cm;
•Gas filling Ar/10%CO2;
•Light detector with X/X0 ~ 1.0-1.3%.

Axial layers:
• r < 150µm, A ~ 99%;
 Skewed layers:
• z ~ 3mm, A   ~ 90-95%;

Momentum resolution:
pt / pt ~ 1.2 %
29.2.2008                Andrey Sokolov   27
STT Layout

                                                  10mm




            Self-supporting straw layers at ~1 bar overpressure.

29.2.2008                        Andrey Sokolov                    28
PANDA Detector
             Straw Tube Tracker




29.02.2008          Andrey Sokolov   29
COSY-TOF Straw Tube Tracker

                     • 3120 straw tubes in 15 planar
                       double layers ;
                     • Aligned at  = 0°, 60°, 300° for
                       3d-reconstruction;
                     • Gas: Ar/CO2(10%), p=1.2bar;
                     • Active volume: 1m2 x 30cm;
                     • Resolution: r  100 µm;
                     • Efficiency:   99%;
                     • Radiation length: X/X0 1.3%;
                     • Lowest detector weight ~ 15kg
                           total stretching force ~
                           3200 kg!
                     • Operates in vacuum.

            1m
29.2.2008        Andrey Sokolov                       30
COSY-TOF STT: Cosmic Ray Test




                                                       limited ionisation clusters
                                                       near tube wall




         Spatial resolution  ~ 100µm                 Radial efficiency  ~ 98%


29.2.2008                            Andrey Sokolov                                  31
STT Particle Flux Density




     Recoil protons from the target produce a charge load up to
                           0.4C/cm/year.
29.2.2009                      Andrey Sokolov                     32
STT Aging Beam Test
                     • 32 straws in doble layer;
                     • 3 gas mixtures:
                         Ar+10%CO2;
                         Ar+30%CO2;
                         Ar+30%C2H6.
                     • Proton beam:
                         3GeV/c;
                         up to 8106 protons/s;
                         beam spot  ~4cm.
                     • Gas gain .5-1105.
                     • Accumulated charge up to
                       1.2Q/cm (~3 years of PANDA
                       operation).


29.2.2008       Andrey Sokolov                 33
STT Aging Test




                                  Maximum gain drop
                                  less than 10%!


29.2.2008        Andrey Sokolov                   34
Conclusions
•FAIR project has been officially started.
• PANDA will be a versatile detector for charm physics.
•The design and prototyping of MVD is on the good way:
    Two prototypes of the front end pixel chip are
      released.
    The prototope for the strip front end chip is under
      construction.
•The MVD design comprises the good spatial resolution
 with PID capabilities.
•The straw tubes is suggested as option for PANDA tracker.
•Due to the new technique STT will have very low material
 budget combining with the good spatial resolution and
 efficiency.
•The beam test shows sufficient radiation hardness of STT.
29.2.2008                Andrey Sokolov                 35
Outlook
• TOPIX3 prototype should be ready by the end of this
  year;
• Half-cylinder full length STT prototype should be finished
  in the next year;
• The PANDA TDR will be ready in the beginning 2010;
• PANDA commissioning in 2015.




29.2.2008                 Andrey Sokolov                  36
The PANDA Collaboration
            More than 420 physicists from 55 institutions in 17 countries




     U Basel                      U & INFN Genova           U Pavia
     IHEP Beijing                 U Glasgow                 IHEP Protvino
     U Bochum                     U Gießen                  PNPI Gatchina
     U Bonn                       KVI Groningen             U of Silesia
     U & INFN Brescia             U Helsinki                U Stockholm
     U & INFN Catania             IKP Jülich I + II         KTH Stockholm
     Cracow JU,TU, IFJ PAN        U Katowice                U & INFN Torino
     GSI Darmstadt                IMP Lanzhou               Politechnico di Torino
     TU Dresden                   U Mainz                   U Oriente, Torino
     JINR Dubna                   U & Politecnico & INFN    U & INFN Trieste
        (LIT,LPP,VBLHE)             Milano                  U Tübingen
     U Edinburgh                  U Minsk                   U & TSL Uppsala
     U Erlangen                   Moscow, ITEP & MPEI       U Valencia
     NWU Evanston                 TU München                SMI Vienna
     U & INFN Ferrara             U Münster                 SINS Warsaw
     U Frankfurt                  BINP Novosibirsk          U Warsaw
     LNF-INFN Frascati            LAL Orsay
29.2.2008                               Andrey Sokolov                               37

				
DOCUMENT INFO
Shared By:
Categories:
Tags:
Stats:
views:3
posted:9/14/2012
language:English
pages:37