Nanoremediation-List of References by HC12091221258


									                           Nanoremediation-List of References

                      References in: Detailed Description of the Project

Deliyanni E.A., D.N. Bakoyannakis, A.I. Zouboulis and K.A. Matis. Sorption of As(V) ions by
    Akaganeite-type nanocrystals. Chemosphere, 50, 155-163, (2002).
Deliyanni E.A., D.N. Bakoyannakis, A.I. Zouboulis and K.A. Matis. Development and study
    of iron-based nanoadsorbents. Journal of Mining and Metallurgy, 40(B) (1), 1-9 (2004).
Eggen, T., Moeder, M., and Arukwe, (2010) A. Municipal landfill leachates: A significant
     source for new and emerging pollutants. Science of the total environment, 408, 5147-
Frost, R.L., Xi, Y., and He, H. Synthesis, characterization of palygorskite supported zero-
     valent iron and its application for methylene blue adsorption. (2010) J. Colloid Interface
     Sci. 341,153-161.
Giannoulopoulos, P. and Gintoni, E. (2008). Hydrogeological – hydrochemical
     reconnaissance survey for groundwater quality in the wider area of Asopos basin, Viotia
     Prefecture. IGME, Athens, February 2008.
He, F., and Zhang, M. (2007). Manipulating the Size and Dispersibility of Zerovalent Iron
     Nanoparticles by Use of Carboxymethyl Cellulose Stabilizers. Environ. Sci. Technol.
     41, 6216-6221.
He, F., Zhang, M., Qian, T. and Zhao, D., (2009). Transport of carboxymethyl cellulose
     stabilized iron nanoparticles in porous media: Column experiments and modelling.
     Journal of Colloid and Interface Science 334, 96–102.
Hydutsky, B., Mack, E., Beckerman, B., Skluzacek, J. and Mallouk, T. (2007) Optimization
     of Nano- and Microiron Transport through Sand Columns Using Polyelectrolyte
     Mixture. Environ. Sci. Technol. 41, 6418-6424.
Kanel, D., Nepal, B. Manning, H. Choi, (2007) Transport of surface-modified iron
     nanoparticle in porous media and application to arsenic(III) remediation. J. Nanopart.
     Res. 9, 725-735.
Katzenbach R., Fronczyk J., Garbulewski K., 2008: Evaluation of zeolite-sand mixtures as a
     reactive material towards landfill leachate. 11th Baltic Sea Geotechnical Conference.
     15.–18.09.2008, Gdańsk
Katsoyiannis I.A. and A.I. Zouboulis. (2002). Removal of arsenic from contaminated water
     sources by sorption onto iron oxide coated polymeric materials. Water Research, 36,
Katsoyiannis I.A., A.I. Zouboulis, and M. Jekel., (2004). Kinetics of bacterial As(III) oxidation
     and subsequent As(V) removal by sorption onto biogenic manganese oxides in
     groundwater treatment. Industrial & Engineering Chemistry Research (ACS), 43 (2), 486-
Katsoyiannis, I., Hug, S., Ammann A., Zikoudi, A. and Hatziliontos, C. (2007) Arsenic
     speciation and uranium concentrations in drinking water supply wells in Northern
     Greece: Correlations with redox indicative parameters and implications for groundwater
     treatment. Science of the total Environment 383, 128-140.
Li, X.Q., Elliot, D.W. and Zhang, W.X. (2006). Zero valent iron nanoparticles for abatement
     of environmental pollutants: materials and engineering aspects. Critical Reviews in Solid
     State and Materials Sciences, 31, 4, 111-122.
Lien, H.L., and Zhang, W.X. (2001). Nanoscale iron particles for complete reduction of
     chlorinated ethenes, Colloid Surf. A 191, 97.
Mueller, N. C. and Nowack, B. (2010) Nano zero valent iron – THE solution for water and
   soil    remediation?      Report      of    the    ObservatoryNANO.          Available       at
   www.observatorynano.euPonder, S., J.G. Darab, J. Bucher, D. Caulder, I. Craig, L. Davis,
     N. Edelstein, W. Lukens, H. Nitsche, L. Rao, D.K. Shuh, and T.E. Mallouk. 2001.
     "Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in
     the remediation of aqueous metal contaminants." Chem. Mater. 13:479-486.
Rivero-Huguet, M. and Marshall, W.D. (2009). Reduction of Hexavalent chromium mediated
      by micro- and nano-sized mixed metallic particles. Journal of Hazardous Materials 169,
Sarkar, S., Chatterjee, P., Cumbal, L. and SenGupta, A. (2011). Hybrid ion exchanger
      supported nanocomposites: Sorption and sensing for environmental applications.
      Chemical Engineering Journal 166, 923-931.
Schrick, Β., Hydutsky, B.W., Blough, J.T., and Mallouk, T.E. (2004). Delivery Vehicles for
      Zerovalent Metal Nanoparticles in Soil and Groundwater. Chem. Mater. 16, 2187.
Solozhenkin P.M., E.A. Deliyianni, D.N. Bakoyianniakis, A.I. Zouboulis and K.A. Matis.
    (2003). Removal of As(V) from solution by akaganeite β-FeO(OH) nanocrystals. Journal
    of Mining Science (Kluwer), 39 (3), 287-296.
Sparis, D., Mystrioti, C., Xenidis, A., Papassiopi, N. (2011). Use of bimetallic FeCu
     nanoparticles for the reduction of nitrates in aqueous solution. 3rd International
     Conference on Environmental management, Engineering, planning and Economics
     (CEPEME), Skiathos, June 19-24, 2011.
U.S.EPA. (2005) U.S. EPA Workshop on Nanotechnology for Site Remediation.
Üzüm, Ç., Shahwan, Τ., Eroğlu, Α., Hallam, K.R., Scott, T.B. and Lieberwirth, I.(2009).
      Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and
      their application for the removal of aqueous Cu2+ and Co2+ ions. Applied Clay Science,
Vlyssides, G. A., Loizidou, M. Karlis, K. P., Zorpas, A. A. and Papaioannou D. (1999)
      Electrochemical oxidation of a textile dye wastewater using a Pt/Ti electrode, Journal of
      Hazardous Materials, B70, 41-52.
Vlyssides, G. A., Karlis, P., Loizidou, M. Zorpas, A. and Arapoglou, D. (2001) Treatment of
      lechate from a domestic solid waste sanitary landfill by an electrolysis system,
      Environmental Technology, 22, 1467-1476.
Vlyssides, G. A., Loizides, J. M., Karlis, K. P., and Simonetis, I. S. (2002) Olive Stone Oil
      Production Wastes and Their Characteristics, Fresenius Envir. Bull., 11, No. 12b, 1114-
Vlyssides, G. A, and Karlis, K. P.,(2003) Characteristics of wastes from Greek currant –
      finishing industries, Fresenius Envir. Bull., 11, No. 7, 362 – 365.
Vlyssides, G. A., Karlis, K. P. and Mahnken G. (2003) Influence of various parameters on the
      electrochemical treatment of landfill leachates, Journal of Applied Electrochemistry, 33,
Vlyssides, G. A., Loukakis, H., and Karlis, K. P. (2003) Small sewage treatment works using
      a Fenton oxidation method, Environmental Technology, 24, 931-935
Vlyssides, Apostolos; Karlis, Panagiotis; Barampouti, Elli Maria; Mai, Sofia. (2004)
      Characteristics of leachates from a municipal solid waste composting plant in Kalamata
      City, Greece. Fresenius Environmental Bulletin, 13(6), 491-493.
Vlyssides, A. G.; Barampouti, E. M.; Mai, S. (2005) Wastewater characteristics from Greek
      wineries and distilleries. Water Science and Technology, Sustainable Viticulture and
      Winery Wastes Management), 51(1), 53-60.
Wang W., Zhou, M., Mao, Q., Yue, J., and Wan, X. (2010). Novel NaY zeolite-supported
      nanoscale zero-valent iron as an efficient heterogeneous Fenton catalyst. Catalysis
      Communications 11, 937–941
Xu, Y., and Zhang, W.X., (2000). Subcolloidal Fe/Ag particles for reductive dehalogenation
      of chlorinated benzenes, Ind. Eng. Chem. Res. 39, 2238.
Zhang, W.X., Wang, C.B., and Lien, H.L. (1998). Treatment of chlorinated organic
      contaminants with nanoscale bimetallic particles, Catalysis Today 40, 387.
Zouboulis A.I. and I.A. Katsoyiannis. Arsenic removal using iron oxide loaded alginate beads.
    Industrial & Engineering Chemistry Research (ACS), 41, 6149-6155, (2002).

                                 Other relevant references

Ahn S.C., Oh S.-Y., Cha D.K., (2008). “Enhanced reduction of nitrate by zero-valent iron at
      elevated temperatures”, J. Hazard. Mater. 156, pp. 17–22.
Andreou, A. (2010) “Synthesis and use of nanostructured iron for the remediation of
    groundwater contaminated with hexavalent chromium”. Dimploma thesis, Supervisor A.
    Xenides, Ass. Prof, SMMM, NTUA.
Arapoglou, D., Vlyssides, A. , Israilides, C. Zorpas, A. and Karlis, P. (2003) Detoxification of
    methyl-parathion pesticide in aqueous solutions by treatment of chemical oxidation,
    Journal of Hazardous Materials, B98, 191-199.
Bartzas, G., Xenidis, A., Papassiopi,N., Andreou, A. and Tsakiridis, P. (2010) “Removal of
      aqueous Cr(VI) ions using nanoscale zero-valent iron particles” presented in 2nd
      International Symposium on Green Chemistry for Environment and Health, Mykonos,
      Greece, September 27-29, 2010.
Birke, V., Burmeier, H., Jefferis, S. Gaboriau, H. Touze, S and Chartier R., (2007) Permeable
      reactive barriers (PRBs) in Europe: Potentials and Expectations. Italian Journal of
      Engineering Geology and Environment, Special Issue 1 (2007).
Chen Yi-Ming, Li Chi-Wanf, Chen Shiao-Shing (2005) “Fluidized zero valent iron bed
      reactor for nitrate removal” Chemosphere 59, pp. 753-759
Cheng, I.F., Muftikian, R., Fernando, Q., Korte, N., 1997. “Reduction of nitrate to ammonia
      by zero-valent iron”. Chemosphere 35, pp. 2689–2695.
Choe, S., Chang, Y.-Y., Hwang, K.-Y., Khim, J., 2000. “Kinetics of reductive denitrification
      by nanoscale zerovalent iron.” Chemosphere 41, pp. 1307–1311.
Dixit, S., and Hering, J.G. (2003). “Comparison of arsenic(V) and arsenic(III) sorption onto
      iron oxide minerals: implications for arsenic mobility”, Environ. Sci. Technol. 37, p.
Elliott, D.W., and Zhang, W.X. Field assessment of nanoscale bimetallic particles for
      groundwater treatment, Environ. Sci. Technol. 35, 4922, 2001.
Elliott, D.W., Lie, H.L., and Zhang, W.X. Degradation of lindane by zero-valent iron
      Nanoparticles. Journal of Environmental Engineering, 135 (5), 317-324, 2009.
Feng, J. and Lim, T-T. Pathways and kinetics of carbon tetrachloride and chloroform
      reductions by nano-scale Fe and Fe/Ni particles: comparison with commercial micro-
      scale Fe and Zn, Chemosphere 59, 1267–1277, 2005.
Fronczyk, J. and Garbulewski, K. (2009). Selection of material suitable for permeable
      reactive barriers in the vicinity of landfills. Ann. Warsaw Univ. of Life Sci. – SGGW,
      Land Reclam. 41, 3-9.
Furukawa, Y., Kim, J.-W., Watkins, J., Wilkin, R.T., 2002. “Formation of ferrihydrite and
      associated iron corrosion products in permeable reactive barriers of zero-valent iron.”
      Environ. Sci. Technol. 36, pp. 5469–5475.
Geng, B. Jin, Z., Li, T., and Qi, X. (2009). Preparation of chitosan-stabilized Fe0
      nanoparticles for removal of hexavalent chromium in water. Science of the Total
      Environment 407, 4994–5000.
Huang C.-P., Wang H.-W., Chiu P.-C.,(1998) “Nitrate reduction by metallic iron”, Water
      Res. 32, 2257–2264.
Joo, S.H. and Zhao, D. Destruction of lindane and atrazine using stabilized iron nanoparticles
      under aerobic and anaerobic conditions: Effects of catalyst and stabilizer. Chemosphere,
      70(3), 418-425, 2008.
Kanel, S.R., Manning, B., Charlet, L., and Choi, H. (2005). “Removal of arsenic (III) from
      groundwater by nanoscale zero-valent iron, Environ. Sci. Technol. 39, p. 1291.
Kapoor, A. and Viraraghavan, T. (1997) Nitrate Removal From Drinking Water—Review J.
      Envir. Engrg. 123, 371 (1997).
Lazaridis N.K., M. Jekel and A.I. Zouboulis*. Removal of Cr(VI), Mo(VI) and V(V) ions from
    single metal solutions by (i) sorption, or (ii) nano-filtration. Separation Science &
    Technology, 38 (10), 2201-2219, (2003).
Lehmann M., A.I. Zouboulis and K.A. Matis*. Removal of metal ions from dilute aqueous
    solutions: a comparative study of inorganic sorbent materials. Chemosphere, 39 (6), 881-
    892, (1999).
Lehmann M., A.I. Zouboulis, K.A. Matis* and A.Grohmann. Sorption of Arsenic oxyanions
    from aqueous solution on goethite: a study of the process modeling. Invited paper (for a
    Special Issue), Microchimica Acta, 151 (3-4), 269-275 (2005).
Li, F., Vipulanandan, C., and Mohanty, K.K. Microemulsion and solution approaches to
      nanoparticle iron production for degradation of trichloroethylene, Colloid Surf. A:
      Physicochem. Eng. 223, 103, 2003.
Li, J., Li, Y and Meng, Q. 2009. “Removal of nitrate by zero-valent iron and pillared
      bentonite”, Journal of hazardous materials, in press.
Li, L., Fan, M., Brown, R., et al., 2006a. Synthesis, Properties, and Environmental
      Applications of Nano-scale Iron Based Materials: a Review. Critical Reviews in
      Environmental Science and Technology, 36, 405-431, 2006.
Lien, H.L., and Zhang, W.X. Transformation of chlorinated methanes by nanoscale iron
      particles, J. Environ. Eng. 125, 1042, 1999.
Liou Y.H., Lo S.L., Lin C.J., Hu C.Y., Kuan W.H., Weng S.C., (2005). “Methods for
      accelerating nitrate reduction using zerovalent iron at near-neutral pH: effects of H2-
      reducing pretreatment and copper deposition, Environ. Sci. Technol. 3, pp 9643–9648.
Liou Y.H., Lo S.L., Lin C.J., Kuan W.H., Weng S.C., (2008). “Chemical reduction of an
      unbuffered nitrate solution using catalyzed and uncatalyzed nanoscale iron particles”, J.
      Hazard. Mater. B127, pp.102–110.
Liu, Y.Q., Majetich, S.A., Tilton, R.D., Sholl, D.S., and Lowry, G.V. TCE dechlorination
      rates, pathways, and efficiency of nanoscale iron particles with different properties,
      Environ. Sci. Technol. 39, 1338, 2005.
Liu, Υ., Phenrat, T. and Lowry, G.V. Effect of TCE concentration and dissolved groundwater
      solutes on NZVI-promoted TCE dechlorination and H2 evolution, Environ. Sci. Technol.
      41 7881–7887, 2007.
Lowry, G.V., and Johnson, K.M., Congener-specific dechlorination of dissolved PCBs by
      microscale and nanoscale zero valent iron in a water/methanol solution, Environ. Sci.
      Technol. 38, 5208, 2004.
Lukens,W., Nitsche, H., Rao, L.F., Shuh, D.K., and Mallouk, T.E. (2001). “Surface chemistry
      and electrochemistry of supported zero-valent iron nanoparticles in the remediation of
      aqueous metal contaminants”, Chem. Mater. 13, p. 479.
Matis K.A.*, A.I. Zouboulis, N.K. Lazaridis and Th.D. Karapantsios. Metal ions biosorption
    from dilute aqueous solution (the contribution of LGICT). Invited paper, International
    Journal of Environment and Pollution, 34 (1-4), 231-245 (2008)
Mondal, K., Jegadeesan, G., and Lelvani, S.B. (2004). “Removal of selenate by Fe and NiFe
      nanosized particles”, Ind. Eng. Chem. Res. 43, p. 4922.
Morrison, S.J., Metzler, D.R., and Dwyer, B.P. (2002). “Removal of As, Mn, Mo, Se, U, V
      and Zn from groundwater by zero-valent iron in a passive treatment cell: Reaction
      progress modeling”, J. Contam. Hydrol. 56, p. 99.
Nurmi, J.T., Tratnyek, P.G., Sarathy, V., Baer, D.R., and Amonette, J.E. Characterization and
      properties of metallic iron nanoparticles: Spectroscopy, electrochemistry and kinetics,
      Environ. Sci. Technol. 39, 1221, 2005.
Parbs A. and Birke V. (2005) State-of-the-art report and inventory on already demonstrated
      innovative remediation technologies. EuroDemo Report D6-2. Available at
Ponder, S.M., Darab, J.G., and Mallouk, T.E. (2000). “Remediation of Cr (IV) and Pb(II)
      aqueous solutions using supported, nanoscale zero-valent iron”, Environ. Sci. Technol.
      34, p. 2564.
Ponder, S.M., Darab, J.G., Bucher, J., Caulder, D., Craig, I., Davis, L., Edelstein, N., Wilkin
      R.T. and McNeil M.S. (2003). “Laboratory evaluation of zero-valent iron to treat water
      impacted by acid mine drainage”, Chemosphere 53, pp. 715-725.
Schrick, B., Blough, J.L., Jones, A.D., and Mallouk, T.E. Hydrodechlorination of
      trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles, Chem.
      Mater. 14, 5140, 2002.
Song, H., and Carraway, E., Reduction of chlorinated ethanes by nanosized zerovalent iron:
     kinetics, pathway, and effects of reaction conditions, Environ. Sci. Technol. 39, 6237–
     6245, 2005.
Su, C., Puls, R.W., 2004. “Nitrate reduction by zerovalent iron: effects of formate, oxalate,
     citrate, chloride, sulfate, borate, and phosphate”. Environ. Sci. Technol. 38, pp. 2715–
Sun, Y.P., Li, X-Q, Zhang, W.X and Wang, P, A method for the preparation of stable
     dispersion of zero-valent iron nanoparticles. Colloids and Surfaces A: Physicochemical
     and Engineering Aspects, 308 (1-3), 60-66, 2007.
Tiehm, A., Kraßnitzer, S., Koltypin, Y., and Gedanken, A. Chloroethene dehalogenation with
     ultrasonically produced air-stable nano iron, Ultrasonics Sonochemistry, 16, (5), 617-
     621, 2009.
Vance, D. 2005. Evaluation of the control of reactivity and longevity of nano-scale colloids
     by the method of colloid manufacture. Meeting Summary: U.S. EPA Workshop on
     Nanotechnology for Site Remediation. Washington, D.C. 20–21 October.
Vlyssides, G. A., Papaioannou, D., Loizidou, M., Karlis, K. P. and Zorpas, A. A. (2000)
     Testing an electrochemical method for treatment of textile dye wastewater, Waste
     Management, 20, 569 – 574.
Vlyssides, G.A., Karlis, K.P., Rori, N. and Zorpas, A.A. (2002) Electrochemical treatment in
     relation to pH of domestic wastewater using Ti/Pt electrodes. Journal of Hazardous
     Materials, B95, 215-226.
Wang, C.B., and Zhang, W.X. Synthesizing nanoscale iron particles for rapid and complete
     dechlorination TCE and PCBs, Environ. Sci. Technol. 31, 2154, 1997.
Wei, Y-T, Wua, S-C, Chou, C-M, Che, C-H, Tsai, S-M. and Lien, H-L (2010) Influence of
     nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride
     degradation: A field case study. Water Research 44, 131–140.
Westerhoff, P., 2003. “Reduction of nitrate, bromate, and chlorate by zero valent iron (Fe 0)”.
     J. Environ. Eng. 129, pp. 10–16.
Westerhoff, P., James, J., 2003. “Nitrate removal in zero-valent iron packed columns.” Water
     Res. 37, 1818–1830.
Wiesner, M.R., G.V. Lowry, P. Alvarez, D. Dionysiou, and P. Biswas. 2006. Assessing the
     risks of manufactured nanomaterials. Environ . Sci. Technol., 40(14):4336–4345.
Wilkin, R.T., Puls, R.W., Sewell, G.W., 2003. “Long-term performance of permeable reactive
     barriers using zerovalent iron: geochemical and microbiological effects.” Ground Water
     41, pp. 493–503.
Zhang, W.X. 2005. Nano-Scale Iron Particles: Synthesis, Characterization, and Applications.
     Meeting Summary: U.S. EPA Workshop on Nanotechnology for Site Remediation.
     Washington, D.C. 20–21 October.
Zhang, W.X. Nanoscale iron particles for environmental remediation: An overview, J.
     Nanoparticle Res. 5, 323, 2003.
Zhou, T., Li, Y. Wong F.S. and Lu, X. Enhanced degradation of 2,4-dichlorophenol by
     ultrasound in a new Fenton like system (Fe/EDTA) at ambient circumstance., Ultrasonic
     Sonochemistry 15, 782-790, 2008.

To top