Workbook__dis_

Document Sample
Workbook__dis_ Powered By Docstoc
					East Palo Alto Academy
Covalent Bonding
WORKBOOK


DIRECTIONS:       We know a lot about atoms. The question is how do two atoms
                  stick together to become a new compound? Using the space below,
                  please write a quick explanation of how do two atoms connect or
                  bond? Write your best explanation of how two atoms bond?




                                                                          DA 1
East Palo Alto Academy
Covalent Bonding
WORKBOOK

                                 SHARE OUT TIME

Take a quick look at your answer. In the minutes that follow, your teacher will ask
you to share your answer to the group. Let’s hear about what we know about
bonding.

                             WORDS I NEED TO KNOW

Directions:          Before we start our discussion about chemical bonding, there
                     are some important words we need to know. Work with a
                     partner to define the important terms that we need to know in
                     order to really understand bonding (turn the page for help).

  THE WORD WE NEED              Book Definition               My Definition



   The Outer Layer of
       Electrons




       The Rule of 8
            &
         Rule of 2




  The Power to Attract
       Electrons




  How do I know how
 many electrons are in
   the outer layer?




                                                                               DA 2
East Palo Alto Academy
Covalent Bonding
WORKBOOK

                     SOME HELP FOR WORDS I NEED TO KNOW

You can read the section below to help you understand the words you need to know.

The Outer Layer of Lecture (Valence)

The electrons in the outermost shell of an atom are known as the valence electrons. These
valence electrons are the electrons on an atom that can be gained or lost in a chemical
reaction. Since filled d or f subshells are seldom disturbed in a chemical reaction, we can
define valence electrons as follows: The electrons on an atom that are not present in the
previous rare gas, ignoring filled d or f subshells.

The Rule of 8 & Rule of 2 (Octet Rule/ Duet Rule)

The octet rule states that atoms tend to combine in such a way that they each have eight
electrons in their valence shells outer shell, giving them the same electronic configuration
as a noble gas. The rule is applicable to the main-group elements, especially carbon,
nitrogen, oxygen, and the halogens, but also to metals such as sodium or magnesium. In
simple terms, molecules or ions tend to be most stable when the outermost electron shells
of their constituent atoms contain eight electrons.

The Power to Attract Electrons (Electronegativity)

Electronegativity, is a chemical property that describes the tendency of an atom or a
functional group to attract electrons (or electron density) towards itself and thus the
tendency to form negative ions. An atom's electronegativity is affected by its atomic
number, the number of positively charged particles, and the distance that its valence
electrons reside from the charged nucleus. The higher the electronegativity number, the
more an element or compound attracts electrons towards it.


Determining the number of outer Layer electrons

The number of valence layer electrons is easy to determine. The periodic table is
organized by columns. The columns are organized according the number of valence layer
electrons, getting bigger from left to right.




                                                                                    DA 3
East Palo Alto Academy
Covalent Bonding
WORKBOOK

                                            How Many Outer Layer Electrons are there?


To determine the number of outer layer electrons, simply identify what row the atoms are
listed in and your atoms are listed in and identify the valence layer
electrons.




                                                                                                                                                                                        8 Valence electron
                                                                                                                                              6 Valence electron
                                                                               3 Valence electron




                                                                                                                                                                   7 Valence electron
                                                                                                    4 Valence electron

                                                                                                                         5 Valence electron
  1 Valence electron


                       2 Valence electron




                                                                                                                                                                                 DA 4
East Palo Alto Academy
Covalent Bonding
WORKBOOK

                             KHAN ACADEMY NOTES

What did Khan Say?

In the Space below writing down any interesting notes and ideas that you learned from
watching the explanation about bonding from Khan Academy




                                                                                 DA 5
East Palo Alto Academy
Covalent Bonding
WORKBOOK

              Notes from Mr. Ang’s Lecture on Covalent Bonding
       (New Science Words: Valence, Octet Rule, Duet Rule, Electronegativity)


What is Covalent Bonding? (Write it in your words and in science words)




What is Polar Bonding? (Write it in your words and in science words)




What is Non-Polar Covalent Bonding? (Write it in your words and in science words)




                                                                                DA 6
East Palo Alto Academy
Covalent Bonding
WORKBOOK

               Notes from Mr. Ang’s Lecture on Covalent Bonding

Why would some bonds be Polar Covalent, while others are Non-Polar Covalent? (Use
words like Valence, Octet Rule, & Electronegativity)




                                                                             DA 7
East Palo Alto Academy
Covalent Bonding
WORKBOOK

                              WHAT WE KNOW NOW!

Directions: In the space below provide a brief explanation of what you know about
Covalent Bonding. The Picture below is picture of two atoms bonded in a covalent bond.
Tell the story of this bond. (1) Explain how they are connected. (2) Describe how the
octet rule helps to explain why this happens? (3) Describe how the valence layer of
electrons has to do with this. (In your answer use words like (Valence, Electronegativity,
& Covalent)




                                                                                   DA 8
East Palo Alto Academy
Covalent Bonding
WORKBOOK


                                  Image Explanation

Please listen closely as your teacher explains how Bond Energies are associated with the
type of bonds being formed. Take notes using the space below:




                                                                                  DA 9
East Palo Alto Academy
Covalent Bonding
WORKBOOK

                                  QUICK WRITE

Before we proceed, it is important to identify how well you know the key ideas that
help us understand bonding. Use the space below to explain the following concepts:

   (a) What is the octet rule? (Use words like Valence & Electronegativity)




   (b) What is the valence layer? (Use words like Electronegativity)




   (c) What is a Covalent Bond? (Use words like Valence, Electronegativity, & Octet
       Rule)




                                                                              DA10
East Palo Alto Academy
Covalent Bonding
WORKBOOK


  (d) What is the electronegativity of an atom?




                                                  DA11
East Palo Alto Academy
Covalent Bonding
WORKBOOK


                         TYPES OF COVALENT BONDS

There are two types of covalent Bonds: (a) Polar Covalent Bonds and (b) Non-Polar
Covalent Bonds. Use the space below to complete the fill-ins as your teacher explains
the difference.



   A. NOT Equally Shared Bonds – A.K.A. Polar Covalent Bonds:

       A Pole is something that has opposite charges on opposite sides. Polar

       Covalent Bonds are bonds that are called “Polar” because the

       electrons spend more time with one of the atoms than with the other.

       Because the electrons are _________________, they create charges

       on both sides of the molecule. The reason why it is called polar is

       because the electrons are shared unevenly so the molecule has poles.




                                                                               DA12
East Palo Alto Academy
Covalent Bonding
WORKBOOK



  B. Non – Covalent Bonds a.k.a Equally Shared Bonds

      A Non-Polar Covalent bond is a bond where the electrons are shared

      ___________________. They are called “non-polar” because the

      electrons are shared equally, so the molecule does not have poles.




                                                                       DA13
East Palo Alto Academy
Covalent Bonding
WORKBOOK

                             READ & TRANSLATE

Electronegativity and Covalent Bonding
The example in which two hydrogen atoms bond is simple because both
atoms are the same. Also, each one has a single proton and a single electron,
so the attractions are easy to identify. However, many covalent bonds form
between two different atoms. These atoms often have different attractions
for shared electrons. In such cases, electronegativity values are a useful tool
to predict what kind of bond will form.

Atoms Share Electrons Equally or Unequally
Figure 6 lists the electronegativity values for several elements. In a
molecule such as H , the values of the two atoms in the bond are equal.
Because each one attracts the bonding electrons with the same force, they
share the electrons equally. A nonpolar covalent bond is a covalent bond in
which the bonding electrons in the molecular orbital are shared equally.

       What happens when the electronegativity values are not the same? If
the values differ significantly, the two atoms form a different type of
covalent bond. Think about a carbon atom bonding with an oxygen atom.
The O atom has a higher electronegativity and attracts the bonding electrons
more than the C atom does. As a result, the two atoms share the bonding
electrons, but unequally. This type of bond is a polar covalent bond. In a
polar covalent bond, the shared electrons, which are in a molecular orbital,
are more likely to be found nearer to the atom whose electronegativity is
higher.

       If the difference in electronegativity values of the two atoms is great
enough, the atom with the higher value may remove an electron from the
other atom. An ionic bond will form. For example, the electronegativity
difference between magnesium and oxygen is great enough for an O atom to
remove two electrons from a Mg atom. Figure 7 shows a model of how to
classify bonds based on electronegativity differences. Keep in mind that the
boundaries between bond types are arbitrary. This model is just one way that
you can classify bonds. You can also classify bonds by looking at the
characteristics of the substance.




                                                                        DA14
East Palo Alto Academy
Covalent Bonding
WORKBOOK




                         DA15
East Palo Alto Academy
Covalent Bonding
WORKBOOK

              WHAT THEY ARE REALLY SAYING IS…….

Directions:       Use the space below to describe what they authors were
                  trying to say in the reading on the page before. Explain
                  this in your own words.

What they are really saying is…..
(Use the phrases Polar Covalent & Non-Polar Covalent)




                                                                     DA16
East Palo Alto Academy
Covalent Bonding
WORKBOOK

                              What The?

Directions:       The following picture explains the difference between the
                  types of covalent bonds. It explains how different types
                  of bonds have different types of electronegativity. Use
                  the space below to explain what this image means.




                                                                     DA17
East Palo Alto Academy
Covalent Bonding
WORKBOOK

                WHAT DID WE LEARN FROM THE
                LEWIS DOT STRUCTURE VIDEO

Directions:       You will watch a short video about Doing Lewis Dot
                  Structures. While you watch the video, use the
                  information below to help you complete the fill in the
                  blank sentences.

The Lewis Dot Structure is a quick and easy way to create a model

of how covalent bonding happens. In Covalent Bonding electrons

want to have __________ in the Valent layer, so they share

electrons with other atoms to make sure they have a total of 8

Valent layer electrons. When you create Lewis dot structures you

move the atoms around and move the electrons around so that

every atom has 8 electrons surrounding them in their Valent layer.

Be careful, there are some exceptions. ______________ only

needs 2 Valent layer electrons and ______________can sometime

form triple bonds with itself that share 6 electrons.




                                                                  DA18
East Palo Alto Academy
Covalent Bonding
WORKBOOK

                       Lewis Dot Structure Exercise



Directions: In the following activity you will use the pasta and the pieces of
paper to make Lewis Dot structure. When making a Lewis Dot Structure, the
Pasta represents a single electron. Placing two pasta pieces together make a
bond of two shared electrons. After you make the molecules draw the Lewis
dot structure in the space provided:

        Molecule                         Lewis Dot Structure
            H2


           CH3


        C6H12O6


           C2H2


           PBr3


           N2H2




                                                                        DA19
East Palo Alto Academy
Covalent Bonding
WORKBOOK

                              MINI LECTURE

Use the space below to write any notes you are taking from your teacher’s

lecture on Covalent Bonding

BOND CHARACTER =




BOND STRENGTH =




                                                                      DA20
East Palo Alto Academy
Covalent Bonding
WORKBOOK

DIRECTIONS:

Read the text below and translate in into your own words on the following
page.


The Strength of the Bond and its connection to sharing electrons

There is a difference between bonds when the atoms in the bond have
different levels attraction to electrons (a.k.a. electronegativity). If there
is a big difference to the atoms ability to attract electrons then the
electrons will be shared unequally, so the compound will have different
charges on each side (a.k.a. it will be Polar). The bigger the difference
between the electronegativity values of two atoms joined by a bond, the
greater the polarity of the bond. In addition, greater ability to attract
electrons (a.k.a. electronegativity) produced stronger bonds. Of the
compounds listed in Table 1 on page 9, H—F has the greatest
electronegativity difference and because greatest polarity. Notice that
H—F also requires the largest input of energy to break the bond and
therefore has the strongest bond.

Electronegativity and Bond Types

You have learned that when sodium and chlorine react, and electron is
removed from Na and transferred to Cl to form Na+ and Cl- ions. These
ions form an ionic bond. However, when hydrogen and oxygen gas react,
their atoms form a polar covalent bond by sharing electrons. How do
you know which type of bond the atoms will form? Differences in
electronegativity values provide one model that can tell you.




                                                                      DA21
East Palo Alto Academy
Covalent Bonding
WORKBOOK

DIRECTIONS:

Read the text below and translate in into your own words on the following
page.


Bonds Can Be Classified by Bond Character

Figure 2 on page 16 shows the relationship between electronegativity
differences and the type of bond that forms between two elements. Notice
the general rule that can be used to predict the type of bond that forms. If the
difference in electronegativity is between 0 and 0.5, the bond is probably
nonpolar covalent. This means that the electrons are shared equally. If the
difference in electronegativity is between 0.5 and 2.1, the bond is considered
polar covalent, so the electrons are not shared equally. If the difference is
larger than 2.1, then the bond is usually ionic. Remember that this method of
classifying bonds is just one model. Another general rule states that covalent
bonds tend to form between nonmetals, while a nonmetal and a metal will
form an ionic bond.
       You can see how electronegativity differences provide information
about bond character. Think about the bonds that form between the ions
sodium and fluoride and between the ions calcium and oxide. The
electronegativity difference between Na and F is 3.1. Therefore, they form
an ionic bond. The electronegativity difference between Ca and O is 2.4.
They also form an ionic bond. However, the larger electronegativity
difference between Na and F means that the bond between them has a higher
percentage of ionic character.




                                                                         DA22
East Palo Alto Academy
Covalent Bonding
WORKBOOK

              WHAT THEY ARE REALLY SAYING IS…….

Directions:        Use the space below to describe what they authors were
                   trying to say in the reading on the page before. Explain
                   this in your own words.

What they are really saying is…..




                                                                      DA23
East Palo Alto Academy
Covalent Bonding
WORKBOOK

                         REVIEW

BOND CHARACTER =




BOND STRENGTH =




POLARITY =




                                  DA24
East Palo Alto Academy
Covalent Bonding
WORKBOOK

                             QUICK READ

Directions: Read the text below




                                          DA25
East Palo Alto Academy
Covalent Bonding
WORKBOOK

                             QUICK READ

Directions: Read the text below




                                          DA26
East Palo Alto Academy
Covalent Bonding
WORKBOOK

                             QUICK READ

Directions: Read the text below




                                          DA27
East Palo Alto Academy
Covalent Bonding
WORKBOOK



PARAGRAPH SUMMARIES
 Paragraph # What does it mean to you …. in your words?



      1




      2




      3




      4




      5




                         PRACTICE PROBLEMS

                                                          DA28
East Palo Alto Academy
Covalent Bonding
WORKBOOK




                     IN MY WORDS LAB PREP


                                            DA29
East Palo Alto Academy
Covalent Bonding
WORKBOOK

Directions:         Use the space below to describe each of the steps you
                    need to complete to the lab.




                 Chemical Bonding Lab
Chemical compounds are combinations of atoms held together by chemical bonds.
These chemical bonds are of two basic types—ionic and covalent. Ionic bonds result


                                                                            DA30
East Palo Alto Academy
Covalent Bonding
WORKBOOK

when one or more electrons from one atom or group of atoms are transferred to
another atom. Positive and negative ions are created through the transfer. In
covalent compounds no electrons are transferred; instead the bonded atoms share
electrons.
    The physical properties of a substance, such as melting point, solubility, and
conductivity, can be used to predict the type of bond that binds the atoms of the
compound. In this experiment, you will test six compounds to determine these
properties. Your compiled data will enable you to classify the substances as either
ionic or covalent compounds.

OBJECTIVES
Compare the melting points of six solids.
Determine the solubility of the solids in water and in ethanol.
Determine the conductivity of water solutions of the soluble solids.
Classify the compounds into groups of ionic and covalent compounds.
Summarize the properties of each group.

MATERIALS
   24-well               Aluminum foil square
    microplate            Thin-stemmed pipets (2)
   Bunsen burner         CaCl2 (calcium chloride)
   Conductivity          KI (potassium iodide)
    tester                NaCl (sodium chloride)
   Ethanol               C13H18O2 (ibuprofen)
   Iron ring             Chttp://en.wikipedia.org/wiki/Chemical_formula8H9NO2
   Ring stand             (acetaminophen)
   Thermal gloves        http://en.wikipedia.org/wiki/Chemical_formulaC12H22O11
   Lab apron              (sucrose)
   Safety goggles


           Always wear safety goggles, gloves, and a lab apron to protect your
eyes and clothing. If you get a chemical in your eyes, immediately flush the
chemical out at the eyewash station while calling to your teacher. Know the location
of the emergency lab shower and eyewash station and the procedures for using
them.

      Do not touch any chemicals. If you get a chemical on your skin or clothing,
wash the chemical off at the sink while calling to your teacher. Make sure you
carefully read the labels and follow the precautions on all containers of chemicals
that you use. If there are no precautions stated on the label, ask your teacher what


                                                                               DA31
East Palo Alto Academy
Covalent Bonding
WORKBOOK

precautions to follow. Do not taste any chemicals or items used in the laboratory.
Never return leftovers to their original container; take only small amounts to avoid
wasting supplies.

     Do not heat glassware that is broken, chipped, or cracked. Use tongs or a
hot mitt to handle heated glassware and other equipment because hot glassware
does not always look hot.
When using a flame, confine long hair and loose clothing. If your clothing
catches on fire, WALK to the emergency lab shower and use it to put out the fire.

Procedure
1. Put on safety goggles and a lab apron.
2. Before you begin, write a brief description of each of the six substances in Table
   1.
3. Place a folded square of aluminum foil on an iron ring attached to a ring stand.
   Position the ring so that it is just above the tip of a Bunsen burner flame, as
   shown in Figure 1. Light the burner for a moment to check that you have the
   correct height.
4. Place a few crystals of sucrose, sodium chloride, acetaminophen, calcium
   chloride, ibuprofen, and potassium iodide in separate locations on the square of
   aluminum foil. Do not allow the samples of crystals to touch. Draw and label a
   diagram that shows the position of each compound.

                           Figure 1




5. For this experiment, it is not necessary to have exact values for the melting point.
   The foil will continue to get hotter as it is heated, so the order of melting will give
   relative melting points. Light the burner and observe. Note the substance that
   melts first by writing a 1 in Table 1. Record the order of melting for the other
   substances.



                                                                                  DA32
East Palo Alto Academy
Covalent Bonding
WORKBOOK

6. After 2 min, record an n in Table 1 for each substance that did not melt.
   Extinguish the candle flame. Allow the can lid to cool while you complete the
   remainder of the experiment.

7. Put a few crystals of each of the white solids in the top row of your microplate.
   Repeat with the second row. Add 10 drops of water to each well in the top row.
   Do not stir. Record the solubility of each substance in Table 1.

8. Add 10 drops of ethanol to each well in the second row of the microplate. Do not
   stir. Record the solubility of each substance in Table 1.

9. Test the conductivity of each water solution in the top row by dipping both
   electrodes into each well of the microplate. Be sure to rinse the electrodes and
   dry them with a paper towel after each test. If the bulb of the conductivity
   apparatus lights up, the solution conducts electric current. Record your results in
   Table 1.

10. Clean the microplate by rinsing it with water into a pan provided by your
    teacher. If any wells are difficult to clean, use a cotton swab. Wash your hands
    thoroughly before you leave the lab and after all work is finished.




                                                                               DA33
East Palo Alto Academy
Covalent Bonding
WORKBOOK



                                         NAME: _______________________________________
                                        DATE: _________________________ PERIOD: _____

TABLE 1 CHARACTERISTICS OF COMPOUNDS
                                 Melting    Solubility     Solubility in
Compound           Description   point      in H2O         ethanol       Conductivity
Calcium chloride
Ibuprofen
Acetaminophen
Potassium iodide
Sodium chloride
Sucrose



Analysis
1. Organizing Results Group the substances into two groups according to their
   properties.




2. Organizing Results List the properties of each group.




Conclusions
1. Inferring Conclusions Use your textbook and your experimental data to
   determine which of the groups consists of ionic compounds and which consists
   of covalent compounds.




                                                                              DA34
East Palo Alto Academy
Covalent Bonding
WORKBOOK

2. Relating Ideas Write a statement to summarize the properties of ionic
   compounds and another statement to summarize the properties of covalent
   compounds.




                                                                        DA35
East Palo Alto Academy
Covalent Bonding
WORKBOOK

                                 MINI LECTURE

Directions: In the moments that follow, use the space below to take notes about
what the teacher explains about Resonance Structures.




                                                                            DA36
East Palo Alto Academy
Covalent Bonding
WORKBOOK

                       SUMMARY OF KEY IDEAS

Directions: In the space below, you will quickly write what you now
              understand about bonding. Use the boxes to the right to
              explain some of the key ides of Covalent Bonding.

     KEY IDEA &                             ANSWERS
     QUESTION


        Valence



   Electronegativity



   Covalent Bonding



    Polar Covalent
        Bonds


     Bond Energy



     Bond Length



      Lewis Dot
      Structures




                                                                    DA37

				
DOCUMENT INFO
Shared By:
Categories:
Tags:
Stats:
views:17
posted:8/19/2012
language:English
pages:37