Documents
Resources
Learning Center
Upload
Plans & pricing Sign in
Sign Out

Immediate Objectives - Fractal Cosmos

VIEWS: 1 PAGES: 16

									       Immediate Objectives
1. To describe the physical basis for clock
retardation experimental results (e.g., particle
lifetimes)

2. To describe the physical basis for length
contraction experimental results (e.g., Michelson-
Morley experiment)

3. To explain why Einstein’s theory happens to
give correct results, despite being based on
unsupported postulates

4. Show that 1, 2, and 3 are consistent with the
behavior of fractal particles in the fractal cosmos
            19th Century Soups




                            Tom
Maxwell’s                  Young’s
 Choice                    Aether
 Aether
                                     Huygens
            Luminiferous              Aether
               Ether
                                              Velocity of light
     Orbital Speed                            300,000 km/sec
     30 km/sec                                relative to ether
     relative to ether




                                               Velocity of light
                                               300,000 km/sec
                                               relative to ether

    Aether Soup: Fixed velocity (zero )
             relative to ether




v   30 km/s     18.6 miles/sec    1
                               4
c 300,000 km/s 186,000 miles/sec 10
                                          2
                          1v       1
But the required accuracy   
                          2c   200 million
James Clerk Maxwell Dies          1879            Where’s the soup


Albert Michelson and Edward
                                  1887            No soup detected
C. Morley


George Fitzgerald                 1889            Length contraction


Hendrick Antoon Lorentz           1895            Lorentz-Fitzgerald contraction

                                                  Lorentz transformation
                                                  includes
H.A Lorentz                       1904
                                                  Length contraction and clock
                                                  retardation ( quite detailed )
                              Something missing
                                  Here for
                                 100 years

                                                  Psedudo-derivation of Lorentz
Albert Einstein                   1905
                                                  transformation


A. Einstein                       1905            E= mc2
          100th Anniversary of the Paper:
ELECTROMAGNETIC PHENOMENA IN A SYSTEM MOVING
    WITH ANY VELOCITY LESS THAN THAT OF LIGHT
                 By H.A. Lorentz

                x  x
                       tvx
                t    2
                       c
                                2
                      v
                  1 2
                      c
The Fractal Cosmos:
A Galilean Multiverse




GR             QFT
R0  13.7 billion light years  2  10 26
     R0
T0 
      c
     13.7 billion light years
T0                            13.7 billion years
           1 light year
                                                     Substrate of a
                year
                                                     Fractal Universe,
T0  4  1017 seconds                                Radius = R0
t 0  10 - 23 sec
T0
    10 40
t0

                                3D Standing
                                Wave
                                 = 4r0
                                                      R0
          2r0




      
2r0
      c

      
      c
2r0
                              
c                            c
         C      C
                          
    v                      v
             
        C  c  v
                      2
                  v
        C  c 1  2
                  c
        C  c 1     2
Derivation of Clock Retardation

     
c  c  v
                                       v
c  c  v  c 1  
            2     2   2
                             where  
                                       c
Period in the stationary frameis
     4r0
t0  
    c     c
Period in the moving frameis
            4r0
 
t0 
       c 1  2
       t0
 
t0 
       
        Forward- moving wave

                                  
                                  c
                                              
                                Rest frame : c
                                                 
                                 Moving frame : c  v
v
              Reverse - moving wave




                                              
    v                             Rest frame : c
                                                  
                                  Moving frame : c  v
Derivation of Length Contraction
            tf       tr   4r0
      
     t0               
            2        2 c 1  2
     t f (c  v)  4rx
     t r (c  v)  4rx
     2rx  2r  4r  1
          x  0
     cv cv   c 1  2
     2rx     1    1          4r0  1
                
            1  1        
                              c
      c                          1  2
                                  (1   )(1   )
     rx (1    1   )  2r0
                                      1  2
              (1   2 )1 
              (1   2 )1/ 2 
     rx  r0                 
                             
     rx  r0 1   2
Trigonometric Addition of Moving Waves
   Forw ardmoving w ave:
   f
         c  v ; or  f  k (c  v)
    k
   Reverse moving w ave:
   r
         c  v ; or  r  k (c  v)
    k
   Sum of forw ardand reverse w aves:
     coskx   f t   coskx   r t 
     coskx  k c  v t   coskx  k c  v t 
     coskx  kvt  kct  coskx  kvt  kct
     2 coskctcoskx  kvt
           2                       c 
   Let k      ; and kc     2 
                                    4r 
                                        
           4rx                      x
                               2
   Then,   2 cos t cos         x  vt
                               4rx
Is Einstein’s Relativity Theory Superfluous?
    Einstein special theory of relativity

    Step 1. Assumes two principles:

    Relativity (indistinguishable reference frames)
    Constant speed of light.

    Step 2. Derives L-T

    Step 3. Physical Meaning Unknown

    Fractal mechanics

    Step 1. Shows physical basis for clock retardation

    Step 2. Shows physical basis for L-F contraction

    Step 3. L-T follows for specific measurement methodologies

    Step 4. Two principles follow from L-T
       Superfluous Vs. Preposterous


Friends, Romans, countrymen, lend me your ears;
I come to bury [Einstein], not to praise him.
The evil that men do lives after them;
The good is oft interred with their bones;

     William Shakespeare, “Julius Caesar,” Act 3, Scene 2

								
To top