# prova

Document Sample

					\documentclass[10pt,a4paper,final]{article}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{amsmath}
\usepackage{graphicx}
\usepackage[latin1]{inputenc}

\setlength{\topmargin}{-0.75in}
\setlength{\textheight}{12.25in}
\setlength{\oddsidemargin}{0.0in}
\setlength{\evensidemargin}{0.0in}
\setlength{\textwidth}{6.5in}
\def\labelenumi{\arabic{enumi}.}
\def\theenumi{\arabic{enumi}}
\def\labelenumii{(\alph{enumii})}
\def\theenumii{\alph{enumii}}
\def\p@enumii{\theenumi.}
\def\labelenumiii{\arabic{enumiii}.}
\def\theenumiii{\arabic{enumiii}}
\def\p@enumiii{(\theenumi)(\theenumii)}
\def\labelenumiv{\arabic{enumiv}.}
\def\theenumiv{\arabic{enumiv}}
\def\p@enumiv{\p@enumiii.\theenumiii}
\pagestyle{plain}
\setcounter{secnumdepth}{0}
\newtheorem{theorem}{Theorem}
\newtheorem{acknowledgement}[theorem]{Acknowledgement}
\newtheorem{algorithm}[theorem]{Algorithm}
\newtheorem{axiom}[theorem]{Axiom}
\newtheorem{case}[theorem]{Case}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{conclusion}[theorem]{Conclusion}
\newtheorem{condition}[theorem]{Condition}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{criterion}[theorem]{Criterion}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{exercise}[theorem]{Exercício}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{notation}[theorem]{Notation}
\newtheorem{problem}[theorem]{Problem}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{solution}[theorem]{Solution}
\newtheorem{summary}[theorem]{Summary}
\newenvironment{proof}[1][Proof]{\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\begin{document}

\begin{figure}[!htb]
\centering
\includegraphics[scale=0.4]{logoNH.ps}
\end{figure}
\vspace{2cm}

\begin{exercise}
Sendo $A=\left( \begin{array}{cc} 3 & -1 \\ 4 & 0 \\ \end{array} \right)$ e $B=\left( \begin{array}{cc} -1 & 7 \\ -2 & 4 \\ \end{array} \right)$, encontre o valor da matriz X, para que se
tenha
$\frac{X-A}{2}=\frac{X+2B}{3}$.
\end{exercise}

\vspace{2cm}

\begin{exercise}
Sendo $A$ uma matriz $3$ por $3$, definida pela lei
$a_{ij}=\begin{cases} 1, & \text{se$i=j$},\\ i^2, & \text{se$i\neq j$}. \end{cases}$

Responda:
\begin{description}
\item[(a)] Determine a mattriz A;
\item[(b)] Encontre o traço desta matriz;
\item[(c)] Encontre o determinante desta matriz;
\item[(d)] Encontre a inversa desta matriz, se existir.
\end{description}
\end{exercise}

\vspace{2cm}

\begin{exercise}
Se $\left( \begin{array}{cc} 2 & 3 \\ 1 & 4 \\ \end{array} \right)$ $\left( \begin{array}{cc} a & 1 \\ -2 & b \\ \end{array} \right)$ = $\left( \begin{array}{cc} 5 & 7 \\ -5 & 9 \\ \end{array} \right)$, calcule o valor de $a+b$.
\end{exercise}

\vspace{2cm}

\begin{exercise}
Dadas as matrizes $A=\left( \begin{array}{cc} 2 & 0 \\ -1 & 3 \\ \end{array} \right)$ e $B=\left( \begin{array}{cc} 2 & \frac{1}{2} \\ 4 & 3 \\ \end{array} \right)$, encontre o valor de
$-3BA$.
\end{exercise}

\vspace{1cm}

\emph{"Eu voltei pra minha sina, contei pra uma menina, meu medo só
termina estando ali, ela é suave assim, e sabe quase tudo de mim,
ela sabe onde eu, queria estar enfim. É tanto, é tanto. Se ao menos
você soubesse. Te quero tanto."} - Tanto (I Want You) (Bob Dylan).

\end{document}


DOCUMENT INFO
Shared By:
Categories:
Tags:
Stats:
 views: 4 posted: 6/8/2012 language: pages: 3