Trig Functions Of Any Angle by 1FWEu5

VIEWS: 0 PAGES: 5

									Trig Functions Of Any Angle
  Evaluating

          (x,y)

           r
                  
                  Definitions
• An angle  with terminal point (x,y) has
  the following defined ratios:
  sin = y/r cos = x/r tan = y/x csc = r/y
  sec = r/x cot = x/y where r =√x2 + y2 or r2=x2+y2

EX: If (-3,4) is a terminal point, find trig values of 
    r2 = (-3)2+42 so r=5
             sin = 4/5 cos = -3/5 tan = -4/3
            csc = 5/4 sec = -5/3 cot = -3/4

EX: If tan = - √3 find sin and sec. y = -√3 and x=1
    r2 = 1 + 3 so r = 2 Then sin = -√3/2 and sec = 2
Quadrants & Quadrantal Values

• Pos or neg values depend on the quad of 
                 S (-,+)      (+,+)A

                 T (-,-)      C (+,-)
 Trig values where terminal point of  is on
  x or y axis. r = 1   (0,1)
                   (-1,0)       (1,0)

                            (0,-1)

 cos = -1 sin =1 tan3 =undef cot0=undef
              2       2
        Reference Angles
•   If  is in standard position, its reference
    angle  is the pos acute angle with x
    axis
                                      
                                           
If  = 220 then =220-180 or 40
If  = 7 then  = 2- 7 or 
       4                4    4
You try…
1.  = 100 2.  = 4 3.  =-2 4.  = 
                   3          3        6
Using Reference Angles

•     Trig function  = ± trig function 
    EX: cos300 = cos60 = ½
       sin300 = -sin60 = -√3 / 2
       cot300 = -cot60 = -√3 / 3
Procedure: Find  find trig value decide ±
You try…
1. tan225 2. sec150 3. cos5 4. csc11
                                               6
                                     3

								
To top